Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.313
Filtrar
1.
Nat Commun ; 15(1): 3682, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693121

RESUMEN

In diabetes, macrophages and inflammation are increased in the islets, along with ß-cell dysfunction. Here, we demonstrate that galectin-3 (Gal3), mainly produced and secreted by macrophages, is elevated in islets from both high-fat diet (HFD)-fed and diabetic db/db mice. Gal3 acutely reduces glucose-stimulated insulin secretion (GSIS) in ß-cell lines and primary islets in mice and humans. Importantly, Gal3 binds to calcium voltage-gated channel auxiliary subunit gamma 1 (CACNG1) and inhibits calcium influx via the cytomembrane and subsequent GSIS. ß-Cell CACNG1 deficiency phenocopies Gal3 treatment. Inhibition of Gal3 through either genetic or pharmacologic loss of function improves GSIS and glucose homeostasis in both HFD-fed and db/db mice. All animal findings are applicable to male mice. Here we show a role of Gal3 in pancreatic ß-cell dysfunction, and Gal3 could be a therapeutic target for the treatment of type 2 diabetes.


Asunto(s)
Dieta Alta en Grasa , Galectina 3 , Secreción de Insulina , Células Secretoras de Insulina , Animales , Humanos , Masculino , Ratones , Calcio/metabolismo , Canales de Calcio/metabolismo , Canales de Calcio/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Dieta Alta en Grasa/efectos adversos , Galectina 3/metabolismo , Galectina 3/genética , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados
2.
J Ovarian Res ; 17(1): 101, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745186

RESUMEN

BACKGROUND: Shikonin (SK), a naphthoquinone with anti-tumor effects, has been found to decrease production of tumor-associated exosomes (exo). This study aims to verify the treatment effect of SK on ovarian cancer (OC) cells, especially on the production of exo and their subsequent effect on macrophage polarization. METHODS: OC cells SKOV3 and A2780 were treated with SK. The exo were isolated from OC cells with or without SK treatment, termed OC exo and SK OC exo, respectively. These exo were used to treat PMA-induced THP-1 cells (M0 macrophages). M2 polarization of macrophages was determined by measuring the M2 specific cell surface markers CD163 and CD206 as well as the secretion of M2 cytokine IL-10. The functions of galectin 3 (LGALS3/GAL3) and ß-catenin in macrophage polarization were determined by gain- or loss-of-function assays. CB-17 SCID mice were subcutaneously injected with SKOV3 cells to generate xenograft tumors, followed by OC exo or SK OC exo treatment for in vivo experiments. RESULTS: SK suppressed viability, migration and invasion, and apoptosis resistance of OC cells in vitro. Compared to OC exo, SK OC exo reduced the M2 polarization of macrophages. Regarding the mechanism, SK reduced exo production in cancer cells, and it decreased the protein level of GAL3 in exo and recipient macrophages, leading to decreased ß-catenin activation. M2 polarization of macrophages was restored by LGALS3 overexpression but decreased again by the ß-catenin inhibitor FH535. Compared to OC exo, the SK OC exo treatment reduced the xenograft tumor growth in mice, and it decreased the M2 macrophage infiltration within tumor tissues. CONCLUSION: This study suggests that SK reduces M2 macrophage population in OC by repressing exo production and blocking exosomal GAL3-mediated ß-catenin activation.


Asunto(s)
Exosomas , Galectina 3 , Macrófagos , Naftoquinonas , Neoplasias Ováricas , beta Catenina , Naftoquinonas/farmacología , Naftoquinonas/uso terapéutico , Femenino , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Humanos , Exosomas/metabolismo , Animales , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , beta Catenina/metabolismo , Galectina 3/metabolismo , Ratones , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Movimiento Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ratones SCID
3.
Viruses ; 16(5)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38793619

RESUMEN

BACKGROUND AND AIMS: The outcomes of HBV infections are related to complex immune imbalances; however, the precise mechanisms by which HBV induces immune dysfunction are not well understood. METHODS: HBV transgenic (HBs-Tg) mice were used to investigate intrahepatic NK cells in two distinct subsets: conventional NK (cNK) and liver-resident NK (LrNK) cells during a chronic HBV infection. RESULTS: The cNK cells, but not the LrNK cells, were primarily responsible for the increase in the number of bulk NK cells in the livers of ageing HBs-Tg mice. The hepatic cNK cells showed a stronger ability to produce IL-10, coupled with a higher expression of CD69, TIGIT and PD-L1, and lower NKG2D expression in ageing HBs-Tg mice. A lower mitochondrial mass and membrane potential, and less polarized localization were observed in the hepatic cNK cells compared with the splenic cNK cells in the HBs-Tg mice. The enhanced galectin-3 (Gal-3) secreted from HBsAg+ hepatocytes accounted for the IL-10 production of hepatic cNK cells via ITGB1 signaling. For humans, LGALS3 and ITGB1 expression is positively correlated with IL-10 expression, and negatively correlated with the poor clinical progression of HCC. CONCLUSIONS: Gal-3-ITGB1 signaling shapes hepatic cNK cells but not LrNK cells during a chronic HBV infection, which may correlate with HCC progression.


Asunto(s)
Carcinoma Hepatocelular , Galectina 3 , Virus de la Hepatitis B , Interleucina-10 , Células Asesinas Naturales , Neoplasias Hepáticas , Hígado , Ratones Transgénicos , Transducción de Señal , Animales , Ratones , Células Asesinas Naturales/inmunología , Humanos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/inmunología , Interleucina-10/genética , Interleucina-10/metabolismo , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/virología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/virología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Hígado/patología , Hígado/inmunología , Hígado/virología , Hígado/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/virología , Progresión de la Enfermedad , Masculino , Femenino , Hepatocitos/virología , Hepatocitos/metabolismo , Hepatocitos/inmunología , Ratones Endogámicos C57BL , Galectinas/genética , Galectinas/metabolismo
4.
Parasit Vectors ; 17(1): 232, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769548

RESUMEN

BACKGROUND: Schistosoma japonicum eggs lodge in the liver and induce a fibrotic granulomatous immune response in the liver of host. Galectin 3 (Gal-3) is a protein implicated in fibrosis in multiple organs. However, the pathology and molecular mechanisms promoting hepatic granuloma formation remain poorly understood. METHODS: To investigate the effect of blocking galectin-receptor interactions by α-lactose on liver immunopathology in mice with S. japonicum infection, C57BL/6 mice were infected with S. japonicum and alpha (α)-lactose was intraperitoneally injected to block the interactions of galectins and their receptors. RESULTS: Compared with S. japonicum-infected mice, there were significantly decreased Gal-3 mRNA and protein expression levels, decreased intensity of Gal-3 fluorescence in the liver, decreased serum ALT and AST levels, decreased egg numbers of S. japonicum in the liver section, attenuated hepatic and spleen pathology, and alleviated liver fibrosis accompanied with decreased protein expression levels of fibrosis markers [α-smooth muscle actin (α-SMA), collagen I, and collagen IV] in the liver of S. japonicum-infected mice blocked galectin-receptor interactions with hematoxylin-eosin staining, Masson's trichrome staining, immunohistochemistry, or Western blot analysis. Compared with S. japonicum-infected mice, blocking galectin-receptor interactions led to increased eosinophil infiltration and higher eosinophil cationic protein (ECP) expression in the liver, accompanied by increased mRNA levels of eosinophil granule proteins [ECP and eosinophil peroxidase (EPO)], IL-5, CCL11, and CCR3 in the liver and decreased mRNA levels of Gal-3 and M2 macrophage cytokines (TGF-ß, IL-10, and IL-4) in the liver and spleen by using quantitative real-time reverse transcription-polymerase chain reaction. In addition, there were increased Beclin1 protein expression and protein expression ratio of LC3B-II/LC3B-I and decreased p62 protein expression and protein expression ratios of phospho-mTOR/mTOR and phospho-AKT/AKT by Western blot; increased double-labeled F4/80+/LC3B+ cells by immunofluorescence staining; increased M1 macrophage polarization in the liver of S. japonicum-infected mice blocked galectin-receptor interactions by flow cytometric analysis and immunofluorescence staining. CONCLUSIONS: Our data found that blockage of galectin-receptor interactions downregulated Gal-3, which in turn led to reduced liver functional damage, elevated liver eosinophil recruitment, promoted macrophage autophagy through the Akt/mTOR signaling pathway, and alleviated liver pathology and fibrosis. Therefore, Gal-3 plays a pivotal role during S. japonicum infection and could be a target of pharmacologic potential for liver fibrosis induced by S. japonicum infection.


Asunto(s)
Galectina 3 , Cirrosis Hepática , Ratones Endogámicos C57BL , Schistosoma japonicum , Esquistosomiasis Japónica , Animales , Esquistosomiasis Japónica/parasitología , Esquistosomiasis Japónica/complicaciones , Cirrosis Hepática/parasitología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones , Galectina 3/metabolismo , Galectina 3/genética , Hígado/parasitología , Hígado/patología , Hígado/metabolismo , Femenino , Lactosa/farmacología , Lactosa/análogos & derivados , Galectinas/metabolismo , Galectinas/genética
5.
Lung Cancer ; 192: 107830, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38805901

RESUMEN

OBJECTIVES: We aimed to reveal the clinicopathological differences between epidermal growth factor receptor (EGFR)-mutated and wild-type (WT) lung adenocarcinoma (LUAD) focusing on the predominant subtype. METHODS: This study included 352 with EGFR mutation and 370 with WT patients in consecutive stage I LUAD classified by the predominant subtype, and their clinicopathological characteristics and prognosis were analyzed. Using the Cancer Genome Atlas Program (TCGA) cohort, we analyzed differences in gene expression between EGFR mutation and WT groups. Furthermore, we performed immunohistochemical evaluations for 46 with EGFR mutation and 47 with WT patients in consecutive stage I papillary predominant adenocarcinoma (PPA). RESULTS: Compared to the PPA with WT [n = 115], those with EGFR mutation [n = 99] exhibited smaller invasive size (p = 0.03) and less frequent vessel invasion (p < 0.01). However, PPA with EGFR mutation showed significantly worse 5-ys recurrence-free survival (RFS) rates compared to those with WT (70.6 % versus 83.3 %, p = 0.03). Contrarily, no significant differences were observed in other predominant subtypes. In the TCGA cohort, PPA with EGFR mutation tended to show higher expression of galectin-3, which is associated with tumor metastasis and resistance to anoikis, compared to those with WT (p = 0.06). Immunohistochemical evaluation revealed that galectin-3 expression was significantly higher in PPA with EGFR mutation than in those with WT (p < 0.01). CONCLUSIONS: The prognosis of PPA with EGFR mutation proved to be less favorable compared to that with WT, and galectin-3 is highly expressed in EGFR-mutated PPA.


Asunto(s)
Adenocarcinoma del Pulmón , Receptores ErbB , Neoplasias Pulmonares , Mutación , Humanos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Masculino , Femenino , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/mortalidad , Adenocarcinoma del Pulmón/metabolismo , Anciano , Persona de Mediana Edad , Pronóstico , Estadificación de Neoplasias , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Anciano de 80 o más Años , Adulto , Adenocarcinoma Papilar/genética , Adenocarcinoma Papilar/patología , Adenocarcinoma Papilar/metabolismo , Adenocarcinoma Papilar/mortalidad
6.
BMC Musculoskelet Disord ; 25(1): 249, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561725

RESUMEN

BACKGROUND: This study investigated the role of Galectin-3 in the degeneration of intervertebral disc cartilage. METHODS: The patients who underwent lumbar spine surgery due to degenerative disc disease were recruited and divided into Modic I, Modic II, and Modic III; groups. HE staining was used to detect the pathological changes in endplates. The changes of Galectin-3, MMP3, Aggrecan, CCL3, and Col II were detected by immunohistochemistry, RT-PCR, and Western blot. MTT and flow cytometry were used to detect cartilage endplate cell proliferation, cell cycle, and apoptosis. RESULTS: With the progression of degeneration (from Modic I to III), the chondrocytes and density of the cartilage endplate of the intervertebral disc decreased, and the collagen arrangement of the cartilage endplate of the intervertebral disc was broken and calcified. Meanwhile, the expressions of Aggrecan, Col II, Galectin-3, Aggrecan, and CCL3 gradually decreased. After treatment with Galectin-3 inhibitor GB1107, the proliferation of rat cartilage end plate cells was significantly reduced (P < 0.05). GB1107 (25 µmol/L) also significantly promoted the apoptosis of cartilage endplate cells (P < 0.05). Moreover, the percentage of cartilage endplate cells in the G1 phase was significantly higher, while that in the G2 and S phases was significantly lower (P < 0.05). Additionally, the mRNA and protein expression levels of MMP3, CCL3, and Aggrecan in rat cartilage end plate cells were lower than those in the control group. CONCLUSIONS: Galectin-3 decreases with the progression of the cartilage endplate degeneration of the intervertebral disc. Galectin-3 may affect intervertebral disc degeneration by regulating the degradation of the extracellular matrix.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Animales , Humanos , Ratas , Agrecanos/genética , Agrecanos/metabolismo , Cartílago/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/patología , Metaloproteinasa 3 de la Matriz
7.
Front Cell Infect Microbiol ; 14: 1322119, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638825

RESUMEN

Background: Uropathogenic Escherichia coli (UPEC) activates innate immune response upon invading the urinary tract, whereas UPEC can also enter bladder epithelial cells (BECs) through interactions with fusiform vesicles on cell surfaces and subsequently escape from the vesicles into the cytoplasm to establish intracellular bacterial communities, finally evading the host immune system and leading to recurrent urinary tract infection (RUTI). Tailin Fang II (TLF-II) is a Chinese herbal formulation composed of botanicals that has been clinically proven to be effective in treating urinary tract infection (UTI). However, the underlying therapeutic mechanisms remain poorly understood. Methods: Network pharmacology analysis of TLF-II was conducted. Female Balb/C mice were transurethrally inoculated with UPEC CFT073 strain to establish the UTI mouse model. Levofloxacin was used as a positive control. Mice were randomly divided into four groups: negative control, UTI, TLF-II, and levofloxacin. Histopathological changes in bladder tissues were assessed by evaluating the bladder organ index and performing hematoxylin-eosin staining. The bacterial load in the bladder tissue and urine sample of mice was quantified. Activation of the TLR4-NF-κB pathway was investigated through immunohistochemistry and western blotting. The urinary levels of interleukin (IL)-1ß and IL-6 and urine leukocyte counts were monitored. We also determined the protein expressions of markers associated with fusiform vesicles, Rab27b and Galectin-3, and levels of the phosphate transporter protein SLC20A1. Subsequently, the co-localization of Rab27b and SLC20A1 with CFT073 was examined using confocal fluorescence microscopy. Results: Data of network pharmacology analysis suggested that TLF-II could against UTI through multiple targets and pathways associated with innate immunity and inflammation. Additionally, TLF-II significantly attenuated UPEC-induced bladder injury and reduced the bladder bacterial load. Meanwhile, TLF-II inhibited the expression of TLR4 and NF-κB on BECs and decreased the urine levels of IL-1ß and IL-6 and urine leukocyte counts. TLF-II reduced SLC20A1 and Galectin-3 expressions and increased Rab27b expression. The co-localization of SLC20A1 and Rab27b with CFT073 was significantly reduced in the TLF-II group. Conclusion: Collectively, innate immunity and bacterial escape from fusiform vesicles play important roles in UPEC-induced bladder infections. Our findings suggest that TLF-II combats UPEC-induced bladder infections by effectively mitigating bladder inflammation and preventing bacterial escape from fusiform vesicles into the cytoplasm. The findings suggest that TLF-II is a promising option for treating UTI and reducing its recurrence.


Asunto(s)
Cistitis , Infecciones por Escherichia coli , Enfermedades del Sistema Inmune , Infecciones Urinarias , Escherichia coli Uropatógena , Femenino , Ratones , Animales , Vejiga Urinaria/microbiología , FN-kappa B , Levofloxacino/farmacología , Galectina 3 , Interleucina-6 , Receptor Toll-Like 4 , Infecciones Urinarias/microbiología , Infecciones por Escherichia coli/microbiología
8.
Glycoconj J ; 41(2): 93-118, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38630380

RESUMEN

Galectin-3 has a variety of important pathophysiological significance in the human body. Much evidence shows that the abnormal expression of galectin-3 is related to the formation and development of many diseases. Pectin is mostly obtained from processed citrus fruits and apples and is a known natural inhibitor of galactin-3. A large number of peels produced each year are discarded, and it is necessary to recycle some of the economically valuable active compounds in these by-products to reduce resource waste and environmental pollution. By binding with galectin-3, pectin can directly reduce the expression level of galectin-3 on the one hand, and regulate the expression level of cytokines by regulating certain signaling pathways on the other hand, to achieve the effect of treating diseases. This paper begins by presenting an overview of the basic structure of pectin, subsequently followed by a description of the structure of galectin-3 and its detrimental impact on human health when expressed abnormally. The health effects of pectin as a galectin-3 inhibitor were then summarized from the perspectives of anticancer, anti-inflammatory, ameliorating fibrotic diseases, and anti-diabetes. Finally, the challenges and prospects of future research on pectin are presented, which provide important references for expanding the application of pectin in the pharmaceutical industry or developing functional dietary supplements.


Asunto(s)
Galectina 3 , Pectinas , Animales , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Proteínas Sanguíneas , Galectina 3/metabolismo , Galectina 3/antagonistas & inhibidores , Galectinas/metabolismo , Galectinas/antagonistas & inhibidores , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Pectinas/farmacología , Pectinas/química
9.
Cancer Lett ; 591: 216879, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636895

RESUMEN

Galectin-3 (Gal-3) is a multifunctional protein that plays a pivotal role in the initiation and progression of various central nervous system diseases, including cancer. Although the involvement of Gal-3 in tumour progression, resistance to treatment and immunosuppression has long been studied in different cancer types, mainly outside the central nervous system, its elevated expression in myeloid and glial cells underscores its profound impact on the brain's immune response. In this context, microglia and infiltrating macrophages, the predominant non-cancerous cells within the tumour microenvironment, play critical roles in establishing an immunosuppressive milieu in diverse brain tumours. Through the utilisation of primary cell cultures and immortalised microglial cell lines, we have elucidated the central role of Gal-3 in promoting cancer cell migration, invasion, and an immunosuppressive microglial phenotypic activation. Furthermore, employing two distinct in vivo models encompassing primary (glioblastoma) and secondary brain tumours (breast cancer brain metastasis), our histological and transcriptomic analysis show that Gal-3 depletion triggers a robust pro-inflammatory response within the tumour microenvironment, notably based on interferon-related pathways. Interestingly, this response is prominently observed in tumour-associated microglia and macrophages (TAMs), resulting in the suppression of cancer cells growth.


Asunto(s)
Neoplasias Encefálicas , Movimiento Celular , Proliferación Celular , Galectina 3 , Glioblastoma , Microglía , Microambiente Tumoral , Microglía/metabolismo , Microglía/patología , Galectina 3/metabolismo , Galectina 3/genética , Humanos , Animales , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/genética , Glioblastoma/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Línea Celular Tumoral , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Invasividad Neoplásica , Proteínas Sanguíneas/metabolismo , Galectinas/metabolismo , Galectinas/genética , Transducción de Señal , Ratones , Regulación Neoplásica de la Expresión Génica
10.
Food Funct ; 15(9): 4887-4893, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38597504

RESUMEN

Inhibition of galectin-3-mediated interactions by modified citrus pectin (MCP) could affect several rate-limiting steps in cancer metastasis, but the ability of MCP to antagonize galectin-8 function remains unknown. We hypothesized that MCP could bind to galectin-8 in addition to galectin-3. In this study, a combination of gradual ethanol precipitation and DEAE-Sepharose Fast Flow chromatography was used to isolate several fractions from MCP. The ability of these fractions to antagonize galectin-8 function was studied as well as the primary structure and initial structure-function relationship of the major active component MCP-30-3. The results showed that MCP-30-3 (168 kDa) was composed of Gal (13.8%), GalA (63.1%), GlcA (13.0%), and Glc (10.1%). MCP-30-3 could specifically bind to galectin-8, with an MIC value of 0.04 mg mL-1. After MCP-30-3 was hydrolyzed by ß-galactosidase or pectinase, its binding activity was significantly reduced. These results provide new insights into the interaction between MCP structure and galectin function, as well as the potential utility in the development of functional foods.


Asunto(s)
Citrus , Galectinas , Pectinas , Humanos , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Citrus/química , Galectina 3/metabolismo , Galectinas/metabolismo , Galectinas/química , Pectinas/química , Pectinas/farmacología , Poligalacturonasa/química , Poligalacturonasa/metabolismo , Unión Proteica
11.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612416

RESUMEN

Acute kidney injury (AKI) is a public health burden with increasing morbidity and mortality rates and health care costs. Acute tubular necrosis (ATN) is the most common cause of AKI. Cisplatin (CIS) is a platinum-based chemotherapeutic agent used in the treatment of a wide variety of malignancies such as lung, breast, ovary, testis, bladder, cervix, and head and neck cancers. Autophagy plays an important role in AKI. Galectin-3 (Gal-3) is significantly increased in renal tubules in AKI; however, its role in autophagy is not well understood. Male C57B6/J and B6.Cg-Lgals3 /J Gal-3 knockout (KO) mice were used to induce AKI using a CIS mouse model of ATN. Renal Gal-3 and autophagy proteins' expression were measured using standard histologic, immunofluorescent, and enzyme-linked immunosorbent assay techniques. The data were presented as the mean ± S.E. Statistically significant differences (p < 0.05) were calculated between experimental groups and corresponding control groups by one-way analysis of variance. There was a significant increase in renal concentrations of Gal-3 in the Gal-3 wild-type CIS-treated mice when compared with sham control mice. There were significantly higher concentrations of renal LC3B, ATG13, Ulk-1, Beclin, ATG5, ATG12, ATG9A, and p-AMPK in the CIS-treated Gal-3 KO mice than in the Gal-3 wild-type CIS-treated mice. Further, there were significantly higher concentrations of mTOR, p- NF-κB, beta-catenin, and p62 in the kidneys of the Gal-3 wild-type CIS-treated mice than in the Gal-3 KO CIS-treated mice. Our findings affirm the connection between Gal-3 and autophagy, revealing its central role as a connector with prosurvival signaling proteins. Gal-3 plays a pivotal role in orchestrating cellular responses by interacting with prosurvival signal pathways and engaging with autophagy proteins. Notably, our observations highlight that the absence of Gal-3 can enhance autophagy in CIS-induced ATN.


Asunto(s)
Lesión Renal Aguda , Necrosis de la Corteza Renal , Animales , Masculino , Ratones , Autofagia , Cisplatino/efectos adversos , Cisplatino/farmacología , Galectina 3/genética , Riñón , Necrosis
12.
PLoS One ; 19(4): e0300809, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38662778

RESUMEN

The nuclear farnesoid X receptor (FXR), a master regulator of bile acid and metabolic homeostasis, is a key target for treatment of nonalcoholic steatohepatitis (NASH). This study compared efficacy of FXR agonists obeticholic acid (OCA) and INT-787 by liver histopathology, plasma biomarkers of liver damage, and hepatic gene expression profiles in the Amylin liver NASH (AMLN) diet-induced and biopsy-confirmed Lepob/ob mouse model of NASH. Lepob/ob mice were fed the AMLN diet for 12 weeks before liver biopsy and subsequent treatment with vehicle, OCA, or INT-787 for 8 weeks. Hepatic steatosis, inflammation, and fibrosis (liver lipids, galectin-3, and collagen 1a1 [Col1a1], respectively), as well as plasma alanine transaminase (ALT) and aspartate transaminase (AST) levels, were assessed. Hepatic gene expression was assessed in Lepob/ob mice that were fed the AMLN diet for 14 weeks then treated with vehicle, OCA, or INT-787 for 2 weeks. INT-787, which is equipotent to OCA but more hydrophilic, significantly reduced liver lipids, galectin-3, and Col1a1 compared with vehicle, and to a greater extent than OCA. INT-787 significantly reduced plasma ALT and AST levels, whereas OCA did not. INT-787 modulated a substantially greater number of genes associated with FXR signaling, lipid metabolism, and stellate cell activation relative to OCA in hepatic tissue. These findings demonstrate greater efficacy of INT-787 treatment compared with OCA in improving liver histopathology, decreasing liver enzyme levels, and enhancing gene regulation, suggesting superior clinical potential of INT-787 for the treatment of NASH and other chronic liver diseases.


Asunto(s)
Ácido Quenodesoxicólico , Ácido Quenodesoxicólico/análogos & derivados , Modelos Animales de Enfermedad , Hígado , Enfermedad del Hígado Graso no Alcohólico , Receptores Citoplasmáticos y Nucleares , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/genética , Ácido Quenodesoxicólico/farmacología , Ácido Quenodesoxicólico/uso terapéutico , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Ratones , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Galectina 3/metabolismo , Galectina 3/genética
13.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38474195

RESUMEN

Neuroblastoma (NB) is one of the highly vascularized childhood solid tumors, and understanding the molecular mechanisms underlying angiogenesis in NB is crucial for developing effective therapeutic strategies. B-cell receptor-associated protein 31 (BAP31) has been implicated in tumor progression, but its role in angiogenesis remains unexplored. This study investigated BAP31 modulation of pro-angiogenic factors in SH-SY5Y NB cells. Through protein overexpression, knockdown, antibody blocking, and quantification experiments, we demonstrated that overexpression of BAP31 led to increased levels of vascular endothelial growth factor A (VEGFA) and Galectin-3 (GAL-3), which are known to promote angiogenesis. Conditioned medium derived from BAP31-overexpressing neuroblastoma cells stimulated migration and tube formation in endothelial cells, indicating its pro-angiogenic properties. Also, we demonstrated that BAP31 enhances capillary tube formation by regulating hypoxia-inducible factor 1 alpha (HIF-1α) and its downstream target, GAL-3. Furthermore, GAL-3 downstream proteins, Jagged 1 and VEGF receptor 2 (VEGFR2), were up-regulated, and blocking GAL-3 partially inhibited the BAP31-induced tube formation. These findings suggest that BAP31 promotes angiogenesis in NB by modulating GAL-3 and VEGF signaling, thereby shaping the tumor microenvironment. This study provides novel insights into the pro-angiogenic role of BAP31 in NB.


Asunto(s)
Neuroblastoma , Factor A de Crecimiento Endotelial Vascular , Niño , Humanos , Angiogénesis , Línea Celular Tumoral , Células Endoteliales/metabolismo , Galectina 3/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neovascularización Patológica/patología , Neuroblastoma/metabolismo , Microambiente Tumoral , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
Toxicology ; 504: 153786, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522819

RESUMEN

This study evaluated the effect of pharmacological inhibition of galectin 3 (Gal-3) with modified citrus pectin (MCP) on the heart and kidney in a model of cisplatin-induced acute toxicity. Male Wistar rats were divided into four groups (n = 6/group): SHAM, which received sterile saline intraperitoneally (i.p.) for three days; CIS, which received cisplatin i.p. (10 mg/kg/day) for three days; MCP, which received MCP orally (100 mg/kg/day) for seven days, followed by sterile saline i.p. for three days; MCP+CIS, which received MCP orally for seven days followed by cisplatin i.p. for three days. The blood, heart, and kidneys were collected six hours after the last treatment. MCP treatment did not change Gal-3 protein levels in the blood and heart, but it did reduce them in the kidneys of the MCP groups compared to the SHAM group. While no morphological changes were evident in the cardiac tissue, increased malondialdehyde (MDA) levels and deregulation of the mitochondrial oxidative phosphorylation system were observed in the heart homogenates of the MCP+CIS group. Cisplatin administration caused acute tubular degeneration in the kidneys; the MCP+CIS group also showed increased MDA levels. In conclusion, MCP therapy in the acute model of cisplatin-induced toxicity increases oxidative stress in cardiac and renal tissues. Further investigations are needed to determine the beneficial and harmful roles of Gal-3 in the cardiorenal system since it can act differently in acute and chronic diseases/conditions.


Asunto(s)
Antineoplásicos , Cisplatino , Galectina 3 , Riñón , Pectinas , Ratas Wistar , Animales , Cisplatino/toxicidad , Pectinas/farmacología , Masculino , Galectina 3/metabolismo , Galectina 3/antagonistas & inhibidores , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Antineoplásicos/toxicidad , Ratas , Cardiotoxicidad , Miocardio/metabolismo , Miocardio/patología , Malondialdehído/metabolismo , Corazón/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Galectinas/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/patología , Enfermedades Renales/prevención & control
15.
Cell Res ; 34(5): 345-354, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467743

RESUMEN

Neural signals can significantly influence cancer prognosis. However, how cancer cells may proactively modulate the nervous system to benefit their own survival is incompletely understood. In this study, we report an overlapping pattern of brain responses, including that in the paraventricular nucleus of the hypothalamus, in multiple mouse models of peripheral cancers. A multi-omic screening then identifies leukemia inhibitory factor (LIF) and galectin-3 (Gal3) as the key cytokines released by these cancer cell types to trigger brain activation. Importantly, increased plasma levels of these two cytokines are observed in patients with different cancers. We further demonstrate that pharmacologic or genetic blockage of cancer cell-derived LIF or Gal3 signaling abolishes the brain responses and strongly inhibits tumor growth. In addition, ablation of peripheral sympathetic actions can similarly restore antitumor immunity. These results have elucidated a novel, shared mechanism of multiple cancer cell types hijacking the nervous system to promote tumor progression.


Asunto(s)
Galectina 3 , Factor Inhibidor de Leucemia , Transducción de Señal , Animales , Humanos , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular Tumoral , Galectina 3/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Ratones Endogámicos C57BL , Neoplasias/metabolismo , Neoplasias/patología
16.
Eur J Pediatr ; 183(5): 2333-2342, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430280

RESUMEN

Cystic fibrosis (CF) is a multisystemic disease in which airway obstruction, infection, and inflammation play a critical role in the pathogenesis and progression of CF lung disease. The carbohydrate-binding protein Galectin-3 is increased in several inflammatory and fibrotic diseases and has recently been forwarded as a biomarker in these diseases. We aimed to define the role of serum Galectin-3 in children with CF by comparison with healthy subjects. This is a cross-sectional, case-control study. 143 CF and 30 healthy subjects were enrolled in the study. Peripheral blood and sputum concentrations of Galectins-3, interleukin (IL)-17A, IL-8, and neutrophil elastase (NE) were determined with commercial ELISA kits. There was no significant difference between the groups in age and gender (p = 0.592, p = 0.613, respectively). Serum Galectin-3 and NE concentrations were higher in the patient group than in healthy controls (p = 0.002, p < 0.001, respectively). There were no significant differences between groups according to IL-17A and IL-8 concentrations. Serum Galectin-3 was correlated with age (r = 0.289, p < 0.001) and body mass index (BMI) (r = 0.493, p < 0.001) in children with CF. Sputum Galectin-3 levels are negatively correlated with percent predictive forced expiratory volume in 1 s (FEV1) (r = - 0.297, p = 0.029), FEV1 z-score, (r = - 0.316, p = 0.020), percent predictive forced vital capacity (FVC) (r = - 0.347, p = 0.010), and FVC z-score (r = - 0.373, p = 0.006).   Conclusion: The study shows that serum Galectin-3 levels increased in clinically stable CF patients, and serum Galectin-3 response may depend on age, gender, and BMI. The sputum Galectin-3 was found to be negatively correlated with patients' lung functions. What is known: • Galectin-3 is a key regulator of chronic inflammation in the lung, liver, kidney, and tumor microenvironment. What is new: • Children with cystic fibrosis (CF) have higher serum Galectin-3 concentrations than healthy children. • Serum Galectin-3 expression influenced by age, BMI, and gender in children with CF.


Asunto(s)
Biomarcadores , Fibrosis Quística , Galectina 3 , Humanos , Fibrosis Quística/sangre , Fibrosis Quística/fisiopatología , Masculino , Femenino , Niño , Galectina 3/sangre , Estudios Transversales , Estudios de Casos y Controles , Biomarcadores/sangre , Adolescente , Esputo/metabolismo , Esputo/química , Galectinas/sangre , Interleucina-17/sangre , Preescolar , Elastasa de Leucocito/sangre , Proteínas Sanguíneas/análisis , Interleucina-8/sangre
17.
Br J Cancer ; 130(9): 1463-1476, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38438589

RESUMEN

BACKGROUND: Uterine serous cancer (USC) comprises around 10% of all uterine cancers. However, USC accounts for approximately 40% of uterine cancer deaths, which is attributed to tumor aggressiveness and limited effective treatment. Galectin 3 (Gal3) has been implicated in promoting aggressive features in some malignancies. However, Gal3's role in promoting USC pathology is lacking. METHODS: We explored the relationship between LGALS3 levels and prognosis in USC patients using TCGA database, and examined the association between Gal3 levels in primary USC tumors and clinical-pathological features. CRISPR/Cas9-mediated Gal3-knockout (KO) and GB1107, inhibitor of Gal3, were employed to evaluate Gal3's impact on cell function. RESULTS: TCGA analysis revealed a worse prognosis for USC patients with high LGALS3. Patients with no-to-low Gal3 expression in primary tumors exhibited reduced clinical-pathological tumor progression. Gal3-KO and GB1107 reduced cell proliferation, stemness, adhesion, migration, and or invasion properties of USC lines. Furthermore, Gal3-positive conditioned media (CM) stimulated vascular tubal formation and branching and transition of fibroblast to cancer-associated fibroblast compared to Gal3-negative CM. Xenograft models emphasized the significance of Gal3 loss with fewer and smaller tumors compared to controls. Moreover, GB1107 impeded the growth of USC patient-derived organoids. CONCLUSION: These findings suggest inhibiting Gal3 may benefit USC patients.


Asunto(s)
Proteínas Sanguíneas , Cistadenocarcinoma Seroso , Galectina 3 , Neoplasias Uterinas , Humanos , Femenino , Neoplasias Uterinas/patología , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Cistadenocarcinoma Seroso/patología , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Proliferación Celular , Línea Celular Tumoral , Pronóstico , Animales , Ratones , Galectinas/genética , Galectinas/metabolismo , Movimiento Celular
18.
J Biosci ; 492024.
Artículo en Inglés | MEDLINE | ID: mdl-38445557

RESUMEN

Multiple endocytic processes operate in cells in tandem to uptake multiple cargoes involved in diverse cellular functions, including cell adhesion and migration. The best-studied clathrin-mediated endocytosis (CME) involves the formation of a well-defined cytoplasmic clathrin coat to facilitate cargo uptake. According to the glycolipid-lectin (GL-Lect) hypothesis, galectin-3 (Gal3) binds to glycosylated membrane receptors and glycosphingolipids (GSLs) to drive membrane bending and tubular membrane invaginations that undergo scission to form a morphologically distinct class of uptake structures, termed clathrin-independent carriers (CLICs). Which components from cytoskeletal machinery are involved in the scission of CLICs remains to be explored. In this study, we propose that dynein is recruited onto Gal3-induced tubular endocytic pits and provides the pulling force for friction-driven scission. The uptake of Gal3 and its cargoes (CD98/CD147) is significantly dependent on dynein activity, whereas only transferrin (CME marker) is slightly affected upon dynein inhibition. Our study reveals that Gal3 and Gal3-dependent (CD98 and CD147) clathrin-independent cargoes require dynein for the clathrin-independent endocytosis.


Asunto(s)
Endocitosis , Galectina 3 , Galectina 3/genética , Endocitosis/genética , Transporte Biológico , Clatrina , Dineínas
19.
Neurourol Urodyn ; 43(3): 754-766, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38356381

RESUMEN

AIMS: To explore the effect of blocking galectin-3 in the bladder pain syndrome associated with interstitial cystitis. METHODS: A galectin-3 inhibitor was used to treat mice with cyclophosphamide-induced cystitis. The expression of galectin-3 in bladder tissues and urine was examined by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA), respectively. Suprapubic-pelvic pain, bladder voiding, bladder pain-like nociceptive behavior, and referred hyperalgesia were assessed. The weights of the bladders were also measured, and inflammatory cell infiltration and inflammatory cytokine levels were examined by histopathological evaluation. The inflammatory cytokines interleukin 1ß (IL-1ß), nerve growth factor (NGF), IL-6, and tumor necrosis factor α (TNF-α) were measured by ELISA. RESULTS: Increases in galectin-3 levels, inflammation, bladder weight, and bladder pain-related symptoms were observed in bladders with cyclophosphamide-induced cystitis. Administration of the galectin-3 inhibitor significantly mitigated bladder pain-related symptoms and inflammatory response. In response to the 500 µM dose of the galectin-3 inhibitor, nociceptive behaviors, nociceptive score, and bladder-to-body weight ratios were reduced by 65.1%, 65.3%, and 40.3%, respectively, while 500 µM Gal-3 inhibitor increased pelvic pain threshold by 86.7%. Moreover, galectin-3 inhibitor treatment inhibited the inflammation. Compared to untreated CYP-induced mice, there were significant changes in the levels of IL-1ß (41.72 ± 2.05 vs. 18.91 ± 2.26 pg/mg tissues), NGF (9.64 ± 0.38 vs. 1.88 ± 0.05 pg/mg tissues), IL-6 (42.67 + 1.51 vs. 21.26 + 2.78 pg/mg tissues, and TNF-α (22.02 ± 1.08 vs. 10.70 ± 0.80 pg/mg tissues) in response to the highest dose of the Gal-3 inhibitor subgroup (500 µM), and 500 µM Gal-3 inhibitor reduced mast cell infiltration ratios by 71.8%. CONCLUSIONS: The galectin-3 inhibitor relieved pelvic pain, urinary symptoms, and bladder inflammation in mice with cyclophosphamide-induced cystitis. Thus, galectin-3 inhibitors may be novel agents in interstitial cystitis treatment.


Asunto(s)
Cistitis Intersticial , Cistitis , Ratones , Animales , Cistitis Intersticial/inducido químicamente , Cistitis Intersticial/tratamiento farmacológico , Cistitis Intersticial/metabolismo , Galectina 3/efectos adversos , Factor de Necrosis Tumoral alfa , Interleucina-6 , Factor de Crecimiento Nervioso , Cistitis/inducido químicamente , Cistitis/complicaciones , Cistitis/tratamiento farmacológico , Inflamación/patología , Ciclofosfamida , Dolor Pélvico/inducido químicamente , Dolor Pélvico/tratamiento farmacológico , Citocinas/metabolismo
20.
PeerJ ; 12: e16922, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371379

RESUMEN

Objective: This study aimed to investigate the potential role of galectin-3 (Gal-3) in the pathogenesis of fibrotic alterations in ovarian endometriosis (OVE). Methods: In this study, we collected the ectopic endometrial tissues and eutopic endometrial tissues from 31 OVE patients treated by laparoscopy, and the eutopic endometrial tissues from 23 non-OVE patients with leiomyoma or other benign diseases were used as control. Hematoxylin and eosin (H&E) and Masson's trichrome staining were utilized for histopathological assessment. The primary normal endometrial stromal cells (NESC), ectopic endometrial stromal cells (ECSC), and eutopic endometrial stromal cells (EUSC) were isolated. Gal-3 overexpression plasmids (Gal-OE) and short hairpin RNA targeting Gal-3 (Gal-3-shRNA) were transfected into the immortalized human endometriotic cell line 12Z, respectively. RT-qPCR, Western blot analysis, and immunohistochemistry were used to detect the mRNA and protein expression levels of Gal-3, type I collagen (COL-1), connective tissue growth factor (CTGF) and α-smooth muscle actin (α-SMA), respectively. Results: H&E and Masson staining showed that ovarian ectopic endometrium exhibited glandular hyperplasia, high columnar glandular epithelium, apical plasma secretion, more subnuclear vacuoles, and obvious fibrosis, compared with normal endometrium. The mRNA and protein levels of Gal-3 , CTGF, α-SMA, and COL-1 were all upregulated in the ectopic endometrial tissues of OVE patients compared to the eutopic endometrial tissues from OVE patients and non-OVE patients. Moreover, ECSC expressed higher levels of Gal-3, CTGF, α-SMA, and COL-1 than EUSC and NESC. Follow-up investigations demonstrated that the Gal-3 overexpression substantially increased fibrosis-related markers including CTGF, α-SMA, and COL-1 within the 12Z cell line. Conversely, Gal-3 knockdown showed the opposite effects. Conclusion: Gal-3 promotes fibrosis in OVE, positioning it as a prospective therapeutic target for mitigating fibrosis in endometriosis.


Asunto(s)
Endometriosis , Galectina 3 , Femenino , Humanos , Colágeno/metabolismo , Endometriosis/genética , Fibrosis , Galectina 3/genética , ARN Mensajero/metabolismo , Células del Estroma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA