Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Hear Res ; 345: 43-51, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28034618

RESUMEN

Our previous studies have shown that the stimulation of A1 adenosine receptors in the inner ear can mitigate the loss of sensory hair cells and hearing loss caused by exposure to traumatic noise. Here, we focus on the role of adenosine receptors (AR) in the development of noise-induced neural injury in the cochlea using A1AR and A2AAR null mice (A1AR-/- and A2AAR-/-). Wildtype (WT) and AR deficient mice were exposed to octave band noise (8-16 kHz, 100 dB SPL) for 2 h to induce cochlear injury and hearing loss. Auditory thresholds and input/output functions were assessed using auditory brainstem responses (ABR) before and two weeks post-exposure. The loss of outer hair cells (OHC), afferent synapses and spiral ganglion neurons (SGN) were assessed by quantitative histology. A1AR-/- mice (6-8 weeks old) displayed a high frequency hearing loss (ABR threshold shift and reduced ABR wave I and II amplitudes). This hearing loss was further aggravated by acute noise exposure and exceeded the hearing loss in the WT and A2AAR-/- mice. All mice experienced the loss of OHC, synaptic ribbons and SGN after noise exposure, but the loss of SGN was significantly higher in A1AR-/- mice than in the A2AAR-/- and WT genotypes. The A2AAR-/- demonstrated better preservation of OHC and afferent synapses and the minimal loss of SGN after noise exposure. The findings suggest that the loss of A1AR expression results in an increased susceptibility to cochlear neural injury and hearing loss, whilst absence of A2AAR increases cochlear resistance to acoustic trauma.


Asunto(s)
Cóclea/metabolismo , Pérdida Auditiva Provocada por Ruido/metabolismo , Audición , Ruido/efectos adversos , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Animales , Umbral Auditivo , Cóclea/lesiones , Cóclea/patología , Cóclea/fisiopatología , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico , Femenino , Predisposición Genética a la Enfermedad , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patología , Pérdida Auditiva Provocada por Ruido/etiología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Pérdida Auditiva Provocada por Ruido/prevención & control , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Factores Protectores , Receptor de Adenosina A1/deficiencia , Receptor de Adenosina A1/genética , Receptor de Adenosina A2A/deficiencia , Receptor de Adenosina A2A/genética , Factores de Riesgo , Ganglio Espiral de la Cóclea/lesiones , Ganglio Espiral de la Cóclea/metabolismo , Ganglio Espiral de la Cóclea/patología , Sinapsis/metabolismo , Sinapsis/patología , Factores de Tiempo
2.
Stem Cells Dev ; 23(5): 502-14, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24172073

RESUMEN

A loss of sensory hair cells or spiral ganglion neurons from the inner ear causes deafness, affecting millions of people. Currently, there is no effective therapy to repair the inner ear sensory structures in humans. Cochlear implantation can restore input, but only if auditory neurons remain intact. Efforts to develop stem cell-based treatments for deafness have demonstrated progress, most notably utilizing embryonic-derived cells. In an effort to bypass limitations of embryonic or induced pluripotent stem cells that may impede the translation to clinical applications, we sought to utilize an alternative cell source. Here, we show that adult human mesenchymal-like stem cells (MSCs) obtained from nasal tissue can repair spiral ganglion loss in experimentally lesioned cochlear cultures from neonatal rats. Stem cells engraft into gentamicin-lesioned organotypic cultures and orchestrate the restoration of the spiral ganglion neuronal population, involving both direct neuronal differentiation and secondary effects on endogenous cells. As a physiologic assay, nasal MSC-derived cells engrafted into lesioned spiral ganglia demonstrate responses to infrared laser stimulus that are consistent with those typical of excitable cells. The addition of a pharmacologic activator of the canonical Wnt/ß-catenin pathway concurrent with stem cell treatment promoted robust neuronal differentiation. The availability of an effective adult autologous cell source for inner ear tissue repair should contribute to efforts to translate cell-based strategies to the clinic.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Regeneración Nerviosa , Adulto , Animales , Cóclea/crecimiento & desarrollo , Cóclea/lesiones , Cóclea/patología , Oído Interno/crecimiento & desarrollo , Oído Interno/patología , Humanos , Neuronas/patología , Ratas , Ganglio Espiral de la Cóclea/crecimiento & desarrollo , Ganglio Espiral de la Cóclea/lesiones , Ganglio Espiral de la Cóclea/patología , Vía de Señalización Wnt/genética
3.
Neurosci Lett ; 534: 101-6, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23219799

RESUMEN

Neural stem cell (NSC) transplantation into the cochlea is widely used for the treatment of spiral ganglion neuron (SGN) degenerative disease and injury in the animal models, but the migration of the transplanted NSCs to the injury region is difficult and the mechanism is still unclear. In this study, we aimed to validate whether the SGN-degenerated cochlear microenvironment plays a role in the NSC migration and investigated whether stromal cell-derived factor-1 (SDF-1) was involved in the NSCs migration. Using a rat SGN degeneration model, we demonstrated that the transplanted NSCs are more likely to migrate to the injury region during the early post-injury (EPI) than the late post-injury (LPI) stage and the control cochlea. We found that the expressions of SDF-1 increased transiently after SGN degeneration. Additionally, we showed that the NSCs express CXCR4, a receptor for SDF-1. We observed that the region to which the transplanted NSC localized coincides with the region where the SDF-1 is highly expressed following the degeneration of SGNs. Finally, we observed that the increased SDF-1 is derived from the Schwann cells in the SGN-degenerated model. These results suggest that SDF-1, which is derived from cochlear Schwann cells and up-regulated in the early injury microenvironment, plays a beneficial role in the NSC migration to the injury region. Optimizing SDF-1 expression in the host microenvironment or increasing the CXCR4 expression of the donor stem cells may improve the migration efficiency of transplanted cells toward the injury region in the cochlea.


Asunto(s)
Quimiocina CXCL12/metabolismo , Degeneración Nerviosa/patología , Células-Madre Neurales/citología , Neuronas/patología , Ganglio Espiral de la Cóclea/patología , Animales , Movimiento Celular , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Degeneración Nerviosa/metabolismo , Células-Madre Neurales/fisiología , Células-Madre Neurales/trasplante , Bulbo Olfatorio/citología , Ratas , Ratas Sprague-Dawley , Receptores CXCR4/metabolismo , Células de Schwann/metabolismo , Ganglio Espiral de la Cóclea/lesiones , Ganglio Espiral de la Cóclea/metabolismo
4.
Am J Otolaryngol ; 32(1): 8-12, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20022668

RESUMEN

OBJECTIVE: To study whether adenovirus-mediated human ß-nerve growth factor (Ad-hNGFß) gene has any protective effect on rat cochlear spiral ganglion after blast exposure. METHODS: Deafness was induced by blast exposure (172.0 dB) in 20 healthy rats. Seven days after blast exposure, Ad-hNGFß was infused into the perilymphatic space of 10 animals as the hNGFß/blast group, and artificial perilymph fluid (APF) was infused into the perilymphatic space of 10 animals as the APF/blast control group. An additional control group consisted of 10 healthy rats which received Ad-hNGFß target gene with no blast exposure (hNGFß/control group). Auditory functions were monitored by thresholds of auditory brain stem responses (ABR). At weeks 1, 4, and 8 postoperatively, the animals were killed, and the cochleae were removed for immunohistochemical, hematoxylin and eosin staining study. RESULTS: The ABR threshold shifts in the hNGFß/blast group were significantly smaller than that of APF/blast control group. There were no significant differences of the ABR values between before and after operation in the hNGFß/control group. Expression of Ad-hNGFß protein was detected in each turn of the cochlea in the first week, with almost equal intensity in all turns. In the fourth week, the reactive intensity decreased. In the eighth week, no reaction was detectable. The results of hematoxylin and eosin stain showed that the number of spiral ganglions in the hNGFß/blast group was significantly greater than that of the APF/blast control group in the 4th week (P < .01). CONCLUSION: Adenovirus-mediated human ß-nerve growth factor can be expressed at a high level and for a relatively long period in the blast impaired cochlea, suggesting that Ad-hNGFß has a protective effect on rat cochlear spiral ganglion cells after blast exposure.


Asunto(s)
Traumatismos por Explosión , Sordera/prevención & control , Factor de Crecimiento Nervioso/farmacología , Ganglio Espiral de la Cóclea/lesiones , Adenoviridae , Animales , Sordera/etiología , Potenciales Evocados Auditivos , Técnicas de Transferencia de Gen , Terapia Genética , Humanos , Inmunohistoquímica , Factor de Crecimiento Nervioso/administración & dosificación , Perilinfa , Distribución Aleatoria , Ratas
5.
Brain Res ; 905(1-2): 152-60, 2001 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-11423090

RESUMEN

Post-traumatic invasion of macrophages into the cochlear nerve of the rat and measurement of how their invasion was modified by the administration of methylprednisolone were investigated for the first time by using a reproducible and quantifiable experimental model of cochlear nerve injury. Two weeks after precise cochlear nerve compression, a massive invasion of ED1 immunostained macrophages was observed at the compressed portion of the cochlear nerve, and this invasion of macrophages was markedly reduced in the rats to which methylprednisolone had been administered during the pre- and post-compression period. Concomitantly, the residual number of spiral ganglion cells was found to be greater in the compression+methylprednisolone group than in the control compression group. The tissue loss observed in the lesion epicenter was also significantly less in the compression+methylprednisolone group than in the control compression group. The results of our present study demonstrated the effectiveness of methylprednisolone treatment to ameliorate trauma induced cochlear nerve degeneration in the acute phase. However, these results may reflect the sum effects of methylprednisolone on macrophages, including both its beneficial effect by inhibiting the negative aspects of macrophages through attenuating macrophage recruitment to the lesion site, and at the same time an undesirable effect by sacrificing the positive aspects of macrophage function. Moreover, one reservation should be added that the protective effects of steroid to injured cochlear nerve may have operated via a pathway not related to macrophage function. Besides macrophages, various cells and factors participate in the process of CNS injury, and their effects may potentially work either positively or negatively with respect to CNS protection and regeneration at each particular time during the on-going process of CNS injury. Therefore, future investigation in CNS injury should be directed toward understanding such complex mechanisms involved in this process.


Asunto(s)
Antiinflamatorios/farmacología , Nervio Coclear/efectos de los fármacos , Nervio Coclear/lesiones , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Metilprednisolona/farmacología , Enfermedades del Nervio Vestibulococlear/tratamiento farmacológico , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Nervio Coclear/patología , Modelos Animales de Enfermedad , Activación de Macrófagos/fisiología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Compresión Nerviosa , Conducción Nerviosa/efectos de los fármacos , Conducción Nerviosa/fisiología , Ratas , Ratas Sprague-Dawley , Degeneración Retrógrada/tratamiento farmacológico , Degeneración Retrógrada/patología , Degeneración Retrógrada/fisiopatología , Ganglio Espiral de la Cóclea/efectos de los fármacos , Ganglio Espiral de la Cóclea/lesiones , Ganglio Espiral de la Cóclea/patología , Enfermedades del Nervio Vestibulococlear/patología , Enfermedades del Nervio Vestibulococlear/fisiopatología
6.
Rev Laryngol Otol Rhinol (Bord) ; 119(5): 317-22, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-10089801

RESUMEN

On the basis of data reported in the literature, the authors have attempted to define the relationship between the functional results of cochlear implants and possible traumatic damage caused by the insertion of electrodes and their support into the cochlear bony walls. These findings show that traumatic conditions result in functional damage only when they involve the body of Corti's ganglion cells or the central part of their axon, whereas functional results are not influenced by traumatic damage to the peripheral part of the axon. Traumatic damage sustained by other non-nervous structures and the inevitable fibrosis and subsequent bone metaplasia processes which occur when a foreign body penetrates a living organism also appear to be unimportant.


Asunto(s)
Cóclea/lesiones , Implantes Cocleares , Electrodos Implantados , Complicaciones Posoperatorias/etiología , Axones/patología , Cóclea/patología , Análisis de Falla de Equipo , Reacción a Cuerpo Extraño/patología , Humanos , Órgano Espiral/lesiones , Órgano Espiral/patología , Complicaciones Posoperatorias/patología , Ganglio Espiral de la Cóclea/lesiones , Ganglio Espiral de la Cóclea/patología
7.
Acta Otolaryngol ; 113(4): 498-501, 1993 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8379305

RESUMEN

Afferent auditory neurons are essential for the transmission of auditory information from Corti's organ to the central auditory pathway. Auditory neurons are very sensitive to acute insult and have a limited ability to regenerate injured neuronal processes. Therefore, these neurons appear to be a limiting factor in restoration of hearing function following an injury to the peripheral auditory receptor. In a previous study nerve growth factor (NGF) was shown to stimulate neurite repair but not survival of injured auditory neurons. In this study, we have demonstrated a neuritogenesis promoting effect of naftidrofuryl in an vitro model for injury to adult auditory neurons, i.e. dissociated cell cultures of adult rat spiral ganglia. Conversely, naftidrofuryl did not have any demonstrable survival promoting effect on these in vitro preparations of injured auditory neurons. The potential uses of this drug as a therapeutic agent in acute diseases of the inner ear are discussed in the light of these observations.


Asunto(s)
Nafronil/farmacología , Regeneración Nerviosa/efectos de los fármacos , Neuritas/efectos de los fármacos , Ganglio Espiral de la Cóclea/efectos de los fármacos , Ganglio Espiral de la Cóclea/lesiones , Animales , Recuento de Células , Supervivencia Celular , Medios de Cultivo , Técnicas de Cultivo , Factor 2 de Crecimiento de Fibroblastos , Laminina , Neuritas/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Péptidos , Ratas , Ratas Wistar , Ganglio Espiral de la Cóclea/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA