Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
BMC Plant Biol ; 24(1): 518, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851683

RESUMEN

Plant polyploidization increases the complexity of epigenomes and transcriptional regulation, resulting in genome evolution and enhanced adaptability. However, few studies have been conducted on the relationship between gene expression and epigenetic modification in different plant tissues after allopolyploidization. In this study, we studied gene expression and DNA methylation modification patterns in four tissues (stems, leaves, flowers and siliques) of Brassica napusand its diploid progenitors. On this basis, the alternative splicing patterns and cis-trans regulation patterns of four tissues in B. napus and its diploid progenitors were also analyzed. It can be seen that the number of alternative splicing occurs in the B. napus is higher than that in the diploid progenitors, and the IR type increases the most during allopolyploidy. In addition, we studied the fate changes of duplicated genes after allopolyploidization in B. napus. We found that the fate of most duplicated genes is conserved, but the number of neofunctionalization and specialization is also large. The genetic fate of B. napus was classified according to five replication types (WGD, PD, DSD, TD, TRD). This study also analyzed generational transmission analysis of expression and DNA methylation patterns. Our study provides a reference for the fate differentiation of duplicated genes during allopolyploidization.


Asunto(s)
Brassica napus , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Poliploidía , Brassica napus/genética , Brassica napus/metabolismo , Genes Duplicados/genética , Genes de Plantas , Empalme Alternativo , Duplicación de Gen , Epigénesis Genética
2.
Mol Biol Evol ; 41(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38758089

RESUMEN

Polyploidy is a prominent mechanism of plant speciation and adaptation, yet the mechanistic understandings of duplicated gene regulation remain elusive. Chromatin structure dynamics are suggested to govern gene regulatory control. Here, we characterized genome-wide nucleosome organization and chromatin accessibility in allotetraploid cotton, Gossypium hirsutum (AADD, 2n = 4X = 52), relative to its two diploid parents (AA or DD genome) and their synthetic diploid hybrid (AD), using DNS-seq. The larger A-genome exhibited wider average nucleosome spacing in diploids, and this intergenomic difference diminished in the allopolyploid but not hybrid. Allopolyploidization also exhibited increased accessibility at promoters genome-wide and synchronized cis-regulatory motifs between subgenomes. A prominent cis-acting control was inferred for chromatin dynamics and demonstrated by transposable element removal from promoters. Linking accessibility to gene expression patterns, we found distinct regulatory effects for hybridization and later allopolyploid stages, including nuanced establishment of homoeolog expression bias and expression level dominance. Histone gene expression and nucleosome organization are coordinated through chromatin accessibility. Our study demonstrates the capability to track high-resolution chromatin structure dynamics and reveals their role in the evolution of cis-regulatory landscapes and duplicate gene expression in polyploids, illuminating regulatory ties to subgenomic asymmetry and dominance.


Asunto(s)
Cromatina , Diploidia , Evolución Molecular , Gossypium , Poliploidía , Gossypium/genética , Cromatina/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Nucleosomas/genética , Genes Duplicados , Regiones Promotoras Genéticas
3.
BMC Ecol Evol ; 23(1): 76, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097959

RESUMEN

BACKGROUND: Gene duplication is an important process in evolution. What causes some genes to be retained after duplication and others to be lost is a process not well understood. The most prevalent theory is the gene duplicability hypothesis, that something about the function and number of interacting partners (number of subunits of protein complex, etc.), determines whether copies have more opportunity to be retained for long evolutionary periods. Some genes are also more susceptible to dosage balance effects following WGD events, making them more likely to be retained for longer periods of time. One would expect these processes that affect the retention of duplicate copies to affect the conditional probability ratio after consecutive whole genome duplication events. The probability that a gene will be retained after a second whole genome duplication event (WGD2), given that it was retained after the first whole genome duplication event (WGD1) versus the probability a gene will be retained after WGD2, given it was lost after WGD1 defines the probability ratio that is calculated. RESULTS: Since duplicate gene retention is a time heterogeneous process, the time between the events (t1) and the time since the most recent event (t2) are relevant factors in calculating the expectation for observation in any genome. Here, we use a survival analysis framework to predict the probability ratio for genomes with different values of t1 and t2 under the gene duplicability hypothesis, that some genes are more susceptible to selectable functional shifts, some more susceptible to dosage compensation, and others only drifting. We also predict the probability ratio with different values of t1 and t2 under the mutational opportunity hypothesis, that probability of retention for certain genes changes in subsequent events depending upon how they were previously retained. These models are nested such that the mutational opportunity model encompasses the gene duplicability model with shifting duplicability over time. Here we present a formalization of the gene duplicability and mutational opportunity hypotheses to characterize evolutionary dynamics and explanatory power in a recently developed statistical framework. CONCLUSIONS: This work presents expectations of the gene duplicability and mutational opportunity hypotheses over time under different sets of assumptions. This expectation will enable formal testing of processes leading to duplicate gene retention.


Asunto(s)
Genes Duplicados , Motivación , Genes Duplicados/genética , Genoma , Duplicación de Gen
4.
Plant Mol Biol ; 113(4-5): 323-327, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37925670

RESUMEN

Duplication of genes at different time period, through recurrent and frequent polyploidization events, have played a major role in plant evolution, adaptation and diversification. Interestingly, some of the ancestral duplicated genes (referred as paleologs), have been maintained for millions of years, and there is still a poor knowledge of the reasons of their retention, especially when testing the phenotypic effect of individual copies by using functional genetic approaches. To fill this gap, we performed functional genetic (CRISPR-Cas9), physiological, transcriptomic and evolutionary studies to finely investigate this open question, taking the example of the petC gene (involved in cytochrome b6/f and thus impacting photosynthesis) that is present in four paleologous copies in the oilseed crop Brassica napus. RNA-Seq and selective pressure analyses suggested that all paleologous copies conserved the same function and that they were all highly transcribed. Thereafter, the Knock Out (K.O.) of one, several or all petC copies highlighted that all paleologous copies have to be K.O. to suppress the gene function. In addition, we could determine that phenotypic effects in single and double mutants could only be deciphered in high light conditions. Interestingly, we did not detect any significant differences between single mutants K.O. for either the A03 or A09 copy (despite being differentially transcribed), or even between mutants for a single or two petC copies. Altogether, this work revealed that petC paleologs have retained their ancestral function and that the retention of these copies is explained by their compensatory role, especially in optimal environmental conditions.


Asunto(s)
Brassica napus , Brassica napus/genética , Genoma de Planta/genética , Genes de Plantas/genética , Genes Duplicados/genética , Poliploidía
5.
Proc Natl Acad Sci U S A ; 120(44): e2303836120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37871213

RESUMEN

Transcriptional divergence of duplicated genes after whole genome duplication (WGD) has been described in many plant lineages and is often associated with subgenome dominance, a genome-wide mechanism. However, it is unknown what underlies the transcriptional divergence of duplicated genes in polyploid species that lack subgenome dominance. Soybean is a paleotetraploid with a WGD that occurred 5 to 13 Mya. Approximately 50% of the duplicated genes retained from this WGD exhibit transcriptional divergence. We developed accessible chromatin region (ACR) datasets from leaf, flower, and seed tissues using MNase-hypersensitivity sequencing. We validated enhancer function of several ACRs associated with known genes using CRISPR/Cas9-mediated genome editing. The ACR datasets were used to examine and correlate the transcriptional patterns of 17,111 pairs of duplicated genes in different tissues. We demonstrate that ACR dynamics are correlated with divergence of both expression level and tissue specificity of individual gene pairs. Gain or loss of flanking ACRs and mutation of cis-regulatory elements (CREs) within the ACRs can change the balance of the expression level and/or tissue specificity of the duplicated genes. Analysis of DNA sequences associated with ACRs revealed that the extensive sequence rearrangement after the WGD reshaped the CRE landscape, which appears to play a key role in the transcriptional divergence of duplicated genes in soybean. This may represent a general mechanism for transcriptional divergence of duplicated genes in polyploids that lack subgenome dominance.


Asunto(s)
Evolución Molecular , Glycine max , Glycine max/genética , Glycine max/metabolismo , Genoma , Genes Duplicados/genética , Secuencia de Bases , Duplicación de Gen , Genoma de Planta/genética
6.
Int J Mol Sci ; 24(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37176071

RESUMEN

Genome duplication supplies raw genetic materials and has been thought to be essential for evolutionary innovation and ecological adaptation. Here, we select Kelch-like (klhl) genes to study the evolution of the duplicated genes in the polyploid Carassius complex, including amphidiploid C. auratus and amphitriploid C. gibelio. Phylogenetic, chromosomal location and read coverage analyses indicate that most of Carassius klhl genes exhibit a 2:1 relationship with zebrafish orthologs and confirm two rounds of polyploidy, an allotetraploidy followed by an autotriploidy, occurred during Carassius evolution. The lineage-specific expansion and biased retention/loss of klhl genes are also found in Carassius. Transcriptome analyses across eight adult tissues and seven embryogenesis stages reveal varied expression dominance and divergence between the two species. The expression of klhls in response to Carassius herpesvirus 2 infection shows different expression changes corresponding to distinct herpesvirus resistances in three C. gibelio gynogenetic clones. Finally, we find that most C. gibelio klhl genes possess three alleles except eight genes that have lost one or two alleles due to genome rearrangement. The allele expression bias is prosperous for Cgklhl genes and varies during embryogenesis owning to the sequential expression manner of the alleles. The current study provides global insights into the genomic and transcriptional evolution of duplicated genes in a given superfamily resulting from multiple rounds of polyploidization.


Asunto(s)
Cyprinidae , Perfilación de la Expresión Génica , Genes Duplicados , Genómica , Familia de Multigenes , Poliploidía , Animales , Alelos , Cyprinidae/embriología , Cyprinidae/genética , Cyprinidae/virología , Desarrollo Embrionario , Evolución Molecular , Proteínas de Peces/genética , Genes Duplicados/genética , Herpesviridae/fisiología , Familia de Multigenes/genética , Filogenia , Pez Cebra/genética
7.
Methods Mol Biol ; 2545: 155-173, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36720812

RESUMEN

Phylogenetic gene trees recapitulate the evolutionary history of genes across species, forming an essential framework for comparative genomic studies. In particular, within the context of whole-genome duplications (WGDs), they serve as a basis to investigate patterns of duplicate gene retention and loss, timing of genome rediploidization, and, more generally, to explore the functional consequences of the duplication in descending species. Yet, despite ever more sophisticated models to describe the evolution of gene sequences, building accurate gene trees remains a challenge in ancient polyploid taxons. WGDs generate complex gene families with many duplicated copies and recurrent gene losses, which complicate this task even more. Here, we describe how to use SCORPiOs, a novel method that leverages synteny conservation to provide more accurate phylogenies in the presence of a known WGD event.


Asunto(s)
Medicamentos Herbarios Chinos , Filogenia , Genes Duplicados , Genómica
8.
Genome Biol Evol ; 14(12)2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36461901

RESUMEN

Whole genome duplication (WGD) is often considered a major driver of evolution that leads to phenotypic novelties. However, the importance of WGD for evolution is still controversial because most documented WGD events occurred anciently and few experimental systems amenable to genetic analysis are available. Here, we report a recent WGD event in the hermaphroditic nematode Allodiplogaster sudhausi and present a comparison with a gonochoristic (male/female) sister species that did not undergo WGD. Self-fertilizing reproduction of A. sudhausi makes it amenable to functional analysis and an ideal system to study WGD events. We document WGD in A. sudhausi through karyotype analysis and whole genome sequencing, the latter of which allowed us to 1) identify functional bias in retention of protein domains and metabolic pathways, 2) show most duplicate genes are under evolutionary constraint, 3) show a link between sequence and expression divergence, and 4) characterize differentially expressed duplicates. We additionally show WGD is associated with increased body size and an abundance of repeat elements (36% of the genome), including a recent expansion of the DNA-hAT/Ac transposon family. Finally, we demonstrate the use of CRISPR/Cas9 to generate mutant knockouts, whereby two WGD-derived duplicate genes display functional redundancy in that they both need to be knocked out to generate a phenotype. Together, we present a novel experimental system that is convenient for examining and characterizing WGD-derived genes both computationally and functionally.


Asunto(s)
Duplicación de Gen , Nematodos , Femenino , Masculino , Animales , Evolución Molecular , Genoma , Genes Duplicados , Nematodos/genética
9.
Proc Biol Sci ; 289(1985): 20221810, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36285500

RESUMEN

We model the post-hexaploidy evolution of four genomes from the Solanaceae, a group of flowering plants comprising tomatoes, potatoes and their relatives. The hexaploidy that these genomes descend from occurred through two sequential allopolyploidy events and was marked by the unequal losses of duplicated genes from the different progenitor subgenomes. In contrast with the hexaploid Brassiceae (broccoli and its relatives), where the subgenome with the most surviving genes arrived last in the hexaploidy, among the Solanaceae the most preserved subgenome descends from one of the original two tetraploid progenitors. In fact, the last-arriving subgenome in these plants actually has the fewest surviving genes in the modern genomes. We explore whether the distribution of repetitive elements (REs) in these genomes can explain the biases in gene losses, but while the signals we find are broadly consistent with a role for high RE density in driving gene losses, the REs turn over so quickly that little signal of the RE condition at the time of paleopolyploidy is extant in the modern genomes.


Asunto(s)
Brassicaceae , Solanaceae , Genes Duplicados , Poliploidía , Solanaceae/genética , Evolución Molecular , Brassicaceae/genética , Sesgo , Genoma de Planta
10.
Plant J ; 112(5): 1316-1330, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36305286

RESUMEN

The environmental adaptation of eudicots is the most reasonable explanation for why they compose the largest clade of modern plants (>70% of angiosperms), which indicates that the basal eudicots would be valuable and helpful to study their survival and ability to thrive throughout evolutionary processes. Here, we detected two whole-genome duplication (WGD) events in the high-quality assembled Akebia trifoliata genome (652.73 Mb) with 24 138 protein-coding genes based on the evidence of intragenomic and intergenomic collinearity, synonymous substitution rate (KS ) values and polyploidization and diploidization traces; these events putatively occurred at 85.15 and 146.43 million years ago (Mya). The integrated analysis of 16 species consisting of eight basal and eight core eudicots further revealed that there was a putative ancient WGD at the early stage of eudicots (temporarily designated θ) at 142.72 Mya, similar to the older WGD of Akebia trifoliata, and a putative core eudicot-specific WGD (temporarily designated ω). Functional enrichment analysis of retained duplicate genes following the θ event is suggestive of adaptation to the extreme environment change in both the carbon dioxide concentration and desiccation around the Jurassic-Cretaceous boundary, while the retained duplicate genes following the ω event is suggestive of adaptation to the extreme droughts, possibly leading to the rapid spread of eudicots in the mid-Cretaceous. Collectively, the A. trifoliata genome experienced two WGD events, and the older event may have occurred at the early stage of eudicots, which likely increased plant environmental adaptability and helped them survive in ancient extreme environments.


Asunto(s)
Duplicación de Gen , Genoma de Planta , Genoma de Planta/genética , Filogenia , Genes Duplicados , Plantas/genética , Cromosomas , Evolución Molecular
11.
Plant Physiol ; 190(1): 340-351, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35789395

RESUMEN

The genomes of Gramineae plants have been preferentially sequenced owing to their economic value. These genomes are often quite complex, for example harboring many duplicated genes, and are the main source of genetic innovation and often the result of recurrent polyploidization. Deciphering these complex genome structures and linking duplicated genes to specific polyploidization events are important for understanding the biology and evolution of plants. However, efforts have been hampered by the complexity of analyzing these genomes. Here, we analyzed 29 well-assembled and up-to-date Gramineae genome sequences by hierarchically relating duplicated genes in collinear regions to specific polyploidization or speciation events. We separated duplicated genes produced by each event, established lists of paralogous and orthologous genes, and ultimately constructed an online database, GGDB (http://www.grassgenome.com/). Homologous gene lists from each plant and between plants can be displayed, searched, and downloaded from the database. Interactive comparison tools are deployed to demonstrate homology among user-selected plants and to draw genome-scale or local alignment figures and gene-based phylogenetic trees corrected by exploiting gene collinearity. Using these tools and figures, users can easily detect structural changes in genomes and explore the effects of paleo-polyploidy on crop genome structure and function. The GGDB will provide a useful platform for improving our understanding of genome changes and functional innovation in Gramineae plants.


Asunto(s)
Genoma de Planta , Poliploidía , Evolución Molecular , Duplicación de Gen , Genes Duplicados , Genoma de Planta/genética , Filogenia , Plantas/genética , Poaceae/genética
12.
BMC Plant Biol ; 22(1): 298, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35710333

RESUMEN

BACKGROUND: Gene conversion has an important effect on duplicate genes produced by polyploidization. Poplar (Populus trichocarpa) and willow (Salix brachista) are leading models and excellent green plants in the Salicaceae. Although much attention has been paid to the evolution of duplicated genes in poplar and willow, the role of conversion between duplicates generated from polyploidization remains poorly understood. RESULTS: Here, through genomic synteny analyses, we identified duplicate genes generated by the Salicaceae common tetraploidization (SCT) in the poplar and willow genomes. We estimated that at least 0.58% and 0.25% of poplar and willow duplicates were affected by whole-gene conversion after the poplar-willow divergence, with more (5.73% and 2.66%) affected by partial-gene conversion. Moreover, we found that the converted duplicated genes were unevenly distributed on each chromosome in the two genomes, and the well-preserved homoeologous chromosome regions may facilitate the conversion of duplicates. Notably, we found that conversion maintained the similarity of duplicates, likely contributing to the conservation of certain sequences, but is essentially accelerated the rate of evolution and increased species divergence. In addition, we found that converted duplicates tended to have more similar expression patterns than nonconverted duplicates. We found that genes associated with multigene families were preferentially converted. We also found that the genes encoding conserved structural domains associated with specific traits exhibited a high frequency of conversion. CONCLUSIONS: Extensive conversion between duplicate genes generated from the SCT contributes to the diversification of the family Salicaceae and has had long-lasting effects on those genes with important biological functions.


Asunto(s)
Populus , Salix , Evolución Molecular , Genes Duplicados/genética , Familia de Multigenes , Populus/genética , Salix/genética , Sintenía
13.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35408823

RESUMEN

CHRFAM7A is a relatively recent and exclusively human gene arising from the partial duplication of exons 5 to 10 of the α7 neuronal nicotinic acetylcholine receptor subunit (α7 nAChR) encoding gene, CHRNA7. CHRNA7 is related to several disorders that involve cognitive deficits, including neuropsychiatric, neurodegenerative, and inflammatory disorders. In extra-neuronal tissues, α7nAChR plays an important role in proliferation, differentiation, migration, adhesion, cell contact, apoptosis, angiogenesis, and tumor progression, as well as in the modulation of the inflammatory response through the "cholinergic anti-inflammatory pathway". CHRFAM7A translates the dupα7 protein in a multitude of cell lines and heterologous systems, while maintaining processing and trafficking that are very similar to the full-length form. It does not form functional ion channel receptors alone. In the presence of CHRNA7 gene products, dupα7 can assemble and form heteromeric receptors that, in order to be functional, should include at least two α7 subunits to form the agonist binding site. When incorporated into the receptor, in vitro and in vivo data showed that dupα7 negatively modulated α7 activity, probably due to a reduction in the number of ACh binding sites. Very recent data in the literature report that the presence of the duplicated gene may be responsible for the translational gap in several human diseases. Here, we will review the studies that have been conducted on CHRFAM7A in different pathologies, with the intent of providing evidence regarding when and how the expression of this duplicated gene may be beneficial or detrimental in the pathogenesis, and eventually in the therapeutic response, to CHRNA7-related neurological and non-neurological diseases.


Asunto(s)
Genes Duplicados , Inflamación , Enfermedades Neurodegenerativas , Receptor Nicotínico de Acetilcolina alfa 7 , Sitios de Unión , Humanos , Inflamación/genética , Inflamación/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Isoformas de Proteínas/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
14.
Plant Cell ; 34(7): 2466-2474, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35253876

RESUMEN

Gene duplications have long been recognized as a contributor to the evolution of genes with new functions. Multiple copies of genes can result from tandem duplication, from transposition to new chromosomes, or from whole-genome duplication (polyploidy). The most common fate is that one member of the pair is deleted to return the gene to the singleton state. Other paths involve the reduced expression of both copies (hypofunctionalization) that are held in duplicate to maintain sufficient quantity of function. The two copies can split functions (subfunctionalization) or can diverge to generate a new function (neofunctionalization). Retention of duplicates resulting from doubling of the whole genome occurs for genes involved with multicomponent interactions such as transcription factors and signal transduction components. In contrast, these classes of genes are underrepresented in small segmental duplications. This complementary pattern suggests that the balance of interactors affects the fate of the duplicate pair. We discuss the different mechanisms that maintain duplicated genes, which may change over time and intersect.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Genes Duplicados/genética , Poliploidía , Factores de Transcripción/genética
15.
Commun Biol ; 5(1): 25, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017661

RESUMEN

Bactrocera dorsalis is an invasive polyphagous pest causing considerable ecological and economic damage worldwide. We report a high-quality chromosome-level genome assembly and combine various transcriptome data to explore the molecular mechanisms of its rapid adaptation to new environments. The expansions of the DDE transposase superfamily and key gene families related to environmental adaptation and enrichment of the expanded and unique gene families in metabolism and defence response pathways explain its environmental adaptability. The relatively high but not significantly different expression of heat-shock proteins, regardless of the environmental conditions, suggests an intrinsic mechanism underlying its adaptation to high temperatures. The mitogen-activated protein kinase pathway plays a key role in adaptation to new environments. The prevalence of duplicated genes in its genome explains the diversity in the B. dorsalis complex. These findings provide insights into the genetic basis of the invasiveness and diversity of B. dorsalis, explaining its rapid adaptation and expansion.


Asunto(s)
Cromosomas de Insectos/genética , Genoma de los Insectos/genética , Tephritidae , Termotolerancia/genética , Transcriptoma/genética , Animales , Femenino , Genes Duplicados/genética , Masculino , Tephritidae/genética , Tephritidae/patogenicidad , Tephritidae/fisiología
16.
Genes (Basel) ; 12(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34946893

RESUMEN

The peanut (Arachis hypogaea L.) is the leading oil and food crop among the legume family. Extensive duplicate gene pairs generated from recursive polyploidizations with high sequence similarity could result from gene conversion, caused by illegitimate DNA recombination. Here, through synteny-based comparisons of two diploid and three tetraploid peanut genomes, we identified the duplicated genes generated from legume common tetraploidy (LCT) and peanut recent allo-tetraploidy (PRT) within genomes. In each peanut genome (or subgenomes), we inferred that 6.8-13.1% of LCT-related and 11.3-16.5% of PRT-related duplicates were affected by gene conversion, in which the LCT-related duplicates were the most affected by partial gene conversion, whereas the PRT-related duplicates were the most affected by whole gene conversion. Notably, we observed the conversion between duplicates as the long-lasting contribution of polyploidizations accelerated the divergence of different Arachis genomes. Moreover, we found that the converted duplicates are unevenly distributed across the chromosomes and are more often near the ends of the chromosomes in each genome. We also confirmed that well-preserved homoeologous chromosome regions may facilitate duplicates' conversion. In addition, we found that these biological functions contain a higher number of preferentially converted genes, such as catalytic activity-related genes. We identified specific domains that are involved in converted genes, implying that conversions are associated with important traits of peanut growth and development.


Asunto(s)
Arachis/genética , Evolución Molecular , Genes Duplicados , Genoma de Planta , Poliploidía , Recombinación Genética , Arachis/clasificación , Arachis/metabolismo , Biología Computacional , Bases de Datos Genéticas , Análisis de Secuencia de ADN/métodos
17.
BMC Genomics ; 22(1): 460, 2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34147070

RESUMEN

BACKGROUND: Duplicated gene pairs produced by ancient polyploidy maintain high sequence similarity over a long period of time and may result from illegitimate recombination between homeologous chromosomes. The genomes of Asian cultivated rice Oryza sativa ssp. indica (XI) and Oryza sativa ssp. japonica (GJ) have recently been updated, providing new opportunities for investigating ongoing gene conversion events and their impact on genome evolution. RESULTS: Using comparative genomics and phylogenetic analyses, we evaluated gene conversion rates between duplicated genes produced by polyploidization 100 million years ago (mya) in GJ and XI. At least 5.19-5.77% of genes duplicated across the three rice genomes were affected by whole-gene conversion after the divergence of GJ and XI at ~ 0.4 mya, with more (7.77-9.53%) showing conversion of only portions of genes. Independently converted duplicates surviving in the genomes of different subspecies often use the same donor genes. The ongoing gene conversion frequency was higher near chromosome termini, with a single pair of homoeologous chromosomes, 11 and 12, in each rice genome being most affected. Notably, ongoing gene conversion has maintained similarity between very ancient duplicates, provided opportunities for further gene conversion, and accelerated rice divergence. Chromosome rearrangements after polyploidization are associated with ongoing gene conversion events, and they directly restrict recombination and inhibit duplicated gene conversion between homeologous regions. Furthermore, we found that the converted genes tended to have more similar expression patterns than nonconverted duplicates. Gene conversion affects biological functions associated with multiple genes, such as catalytic activity, implying opportunities for interaction among members of large gene families, such as NBS-LRR disease-resistance genes, contributing to the occurrence of the gene conversion. CONCLUSION: Duplicated genes in rice subspecies generated by grass polyploidization ~ 100 mya remain affected by gene conversion at high frequency, with important implications for the divergence of rice subspecies.


Asunto(s)
Oryza , Anciano de 80 o más Años , Evolución Molecular , Duplicación de Gen , Genes Duplicados , Genoma de Planta , Humanos , Oryza/genética , Filogenia
18.
Nat Commun ; 12(1): 3531, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112794

RESUMEN

Camptothecin and its derivatives are widely used for treating malignant tumors. Previous studies revealed only a limited number of candidate genes for camptothecin biosynthesis in Camptotheca acuminata, and it is still poorly understood how its biosynthesis of camptothecin has evolved. Here, we report a high-quality, chromosome-level C. acuminata genome assembly. We find that C. acuminata experiences an independent whole-genome duplication and numerous genes derive from it are related to camptothecin biosynthesis. Comparing with Catharanthus roseus, the loganic acid O-methyltransferase (LAMT) in C. acuminata fails to convert loganic acid into loganin. Instead, two secologanic acid synthases (SLASs) convert loganic acid to secologanic acid. The functional divergence of the LAMT gene and positive evolution of two SLAS genes, therefore, both contribute greatly to the camptothecin biosynthesis in C. acuminata. Our results emphasize the importance of high-quality genome assembly in identifying genetic changes in the evolutionary origin of a secondary metabolite.


Asunto(s)
Camptotheca/metabolismo , Camptotecina/metabolismo , Cromosomas/metabolismo , Genoma de Planta , Metabolismo Secundario/genética , Camptotheca/enzimología , Camptotheca/genética , Camptotecina/biosíntesis , Cromosomas/genética , Sistema Enzimático del Citocromo P-450 , Evolución Molecular , Regulación de la Expresión Génica de las Plantas/genética , Genes Duplicados , Genómica , Iridoides/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Filogenia , Proteína O-Metiltransferasa/genética , Proteína O-Metiltransferasa/metabolismo , RNA-Seq , Vinblastina/metabolismo
19.
Fish Shellfish Immunol ; 115: 58-69, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34033909

RESUMEN

Quantitative real-time PCR is one of the most widely used techniques for measuring changes in the expression of target transcripts due to its sensitivity, specificity, and cost-effectiveness. However, the essential step that determines appropriate and correct data interpretation is the selection of proper endogenous control genes. Identifying useful reference genes with stable expression is critical for accurate normalization and precise results. Functional divergence of duplicated genes in tetraploid species, like common carp, can complicate the choice for a proper reference gene. In the present study, we determined the expression stability of duplicated genes of 40s, b2m, ef1α, gapdh, g6pd, and odc1 in different tissues of common carp (Cyprinus carpio L.). Gene expression analysis comprised healthy control fish, fish under bacterial and parasitic infections, and across the early stage of common carp development. Obtained data were compared with the actb gene, which is used widely as a reference in RT-qPCR analysis. The application of the three different algorithms - geNorm, NormFinder, BestKeeper, allowed comparative evaluation of the expression stability of the tested genes. Subsequently, the RefFinder, a web-based tool, was used to rank the examined housekeeping genes comprehensively. We demonstrate variable transcription stability levels in the examined mRNAs as well as differences in expression between paralog gene copies. The 40s, b2m, ef1α and actb genes showed the most stable expression across all physiological conditions and tissues. The gapdh, odc1, and g6pd gene variants demonstrated lower stability. Differences in expression patterns between duplicated genes underline the possibility of functional divergence between them. This aspect should be considered in polyploid species before selecting the reference gene(s). Our study also points on the importance of choice for a reference gene (paralog) when expressing newly identified genes and the spatial expression profile is performed. SUBJECTS: Aquaculture, Molecular Biology, Fish Science.


Asunto(s)
Carpas/genética , Perfilación de la Expresión Génica/veterinaria , Genes Duplicados , Genes Esenciales , Animales , Duplicación de Gen
20.
Plant Mol Biol ; 106(1-2): 193-206, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33742369

RESUMEN

KEY MESSAGE: We provided a study on homeologous gene evolution of homeologous genes by comparing Brassica genomes. Polyploidy has played fundamental roles during the evolution of plants. Following polyploidization, many duplicated genes are diversified or lost in a process termed diploidization. Understanding the retention and diversification of homeologs after polyploidization will help elucidate the process of diploidization. Here, we investigated the evolution of homeologous genes in Brassica genomes and observed similarly asymmetrical gene retention among different functional groups and consistent retention after recurrent polyploidizations. In the comparative analysis of Brassica diploid genomes, we found that preferentially retained genes show different patterns on sequence and expression divergence: genes with the function of 'biosynthetic process' and 'transport' were under much stronger purifying selection, while transcriptional regulatory genes diverged much faster than other genes. Duplicate pairs of the former two functional groups show conserved high expression patterns, while most of transcriptional regulatory genes are simultaneously lowly expressed. Furthermore, homeologs in diploids and allotetraploids showed similar loss and retention patterns: duplicates in progenitor genomes were more likely to be retained and accumulated fewer substitutions. However, transcriptional regulation is also enriched in the genes that do not have any non-synonymous mutations in the Brassica allotetraploids, indicating that some of these genes were under strong purifying selection. Overall, our study provided insight into the evolution of homeologs genes during diploidization process.


Asunto(s)
Brassica/genética , Genes de Plantas , Poliploidía , Arabidopsis/genética , Secuencia de Bases , Diploidia , Evolución Molecular , Dosificación de Gen , Regulación de la Expresión Génica de las Plantas , Genes Duplicados , Filogenia , Selección Genética , Sintenía/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA