Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Proteins ; 88(4): 604-615, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31644822

RESUMEN

Ste24 enzymes, a family of eukaryotic integral membrane proteins, are zinc metalloproteases (ZMPs) originally characterized as "CAAX proteases" targeting prenylated substrates, including a-factor mating pheromone in yeast and prelamin A in humans. Recently, Ste24 was shown to also cleave nonprenylated substrates. Reduced activity of the human ortholog, HsSte24, is linked to multiple disease states (laminopathies), including progerias and lipid disorders. Ste24 possesses a unique "α-barrel" structure consisting of seven transmembrane (TM) α-helices encircling a large intramembranous cavity (~14 000 Å3 ). The catalytic zinc, coordinated via a HExxH…E/H motif characteristic of gluzincin ZMPs, is positioned at one of the cavity's bases. The interrelationship between Ste24 as a gluzincin, a long-studied class of soluble ZMPs, and as a novel cavity-containing integral membrane protein protease has been minimally explored to date. Informed by homology to well-characterized soluble, gluzincin ZMPs, we develop a model of Ste24 that provides a conceptual framework for this enzyme family, suitable for development and interpretation of structure/function studies. The model consists of an interfacial, zinc-containing "ZMP Core" module surrounded by a "ZMP Accessory" module, both capped by a TM helical "α-barrel" module of as yet unknown function. Multiple sequence alignment of 58 Ste24 orthologs revealed 38 absolutely conserved residues, apportioned unequally among the ZMP Core (18), ZMP Accessory (13), and α-barrel (7) modules. This Tripartite Architecture representation of Ste24 provides a unified image of this enzyme family.


Asunto(s)
Proteínas de la Membrana/química , Metaloendopeptidasas/química , Neprilisina/química , Termolisina/química , Secuencia de Aminoácidos , Bacillus/química , Bacillus/enzimología , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Geobacter/química , Geobacter/enzimología , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Modelos Moleculares , Neprilisina/genética , Neprilisina/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces/química , Saccharomyces/enzimología , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Termolisina/genética , Termolisina/metabolismo
2.
Elife ; 82019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30964001

RESUMEN

A newfound signaling pathway employs a GGDEF enzyme with unique activity compared to the majority of homologs associated with bacterial cyclic di-GMP signaling. This system provides a rare opportunity to study how signaling proteins natively gain distinct function. Using genetic knockouts, riboswitch reporters, and RNA-Seq, we show that GacA, the Hypr GGDEF in Geobacter sulfurreducens, specifically regulates cyclic GMP-AMP (3',3'-cGAMP) levels in vivo to stimulate gene expression associated with metal reduction separate from electricity production. To reconcile these in vivo findings with prior in vitro results that showed GacA was promiscuous, we developed a full kinetic model combining experimental data and mathematical modeling to reveal mechanisms that contribute to in vivo specificity. A 1.4 Å-resolution crystal structure of the Geobacter Hypr GGDEF domain was determined to understand the molecular basis for those mechanisms, including key cross-dimer interactions. Together these results demonstrate that specific signaling can result from a promiscuous enzyme.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Geobacter/enzimología , Geobacter/metabolismo , Metales/metabolismo , Nucleótidos Cíclicos/metabolismo , Transducción de Señal , Cristalografía por Rayos X , Regulación Bacteriana de la Expresión Génica , Cinética , Modelos Teóricos , Oxidación-Reducción , Conformación Proteica
3.
FEBS J ; 285(18): 3402-3421, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30066435

RESUMEN

Type IVa pili are bacterial appendages involved in diverse physiological processes, including electron transfer in Geobacter sulfurreducens. ATP hydrolysis coupled with conformational changes powers the extension (PilB) and retraction (PilT) motors in the pilus machinery. We report the unliganded crystal structures of the core ATPase domain of PilB and PilT-4 from G. sulfurreducens at 3.1 and 2.6 Å resolution, respectively. PilB structure revealed three distinct conformations, that is, open, closed, and open' which were previously proposed to be mediated by ATP/ADP binding. PilT-4 subunits, on the other hand, were observed in the closed state conformation. We further report that both PilB and PilT-4 hexamers have two high-affinity ATP-binding sites. Comparative structural analysis and solution data presented here supports the "symmetric rotary model" for these ATPase motors. Our data further suggest that pores of these motors rotate either clockwise or counterclockwise to facilitate assembly or disassembly of right-handed or left-handed pilus. DATABASE: Structural data are available in the RCSB PDB database under the PDB ID 5ZFQ (PilT-4), 5ZFR (PilB).


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Proteínas Fimbrias/química , Fimbrias Bacterianas/fisiología , Geobacter/enzimología , Proteínas Motoras Moleculares/química , Oxidorreductasas/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Proteínas Fimbrias/metabolismo , Modelos Moleculares , Proteínas Motoras Moleculares/metabolismo , Oxidorreductasas/metabolismo , Unión Proteica , Conformación Proteica , Homología de Secuencia
4.
J Am Chem Soc ; 139(41): 14488-14500, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-28918628

RESUMEN

Aromatic compounds are environmental pollutants with toxic and carcinogenic properties. Despite the stability of aromatic rings, bacteria are able to degrade the aromatic compounds into simple metabolites and use them as growth substrates under oxic or even under anoxic conditions. In anaerobic microorganisms, most monocyclic aromatic growth substrates are converted to the central intermediate benzoyl-coenzyme A, which is enzymatically reduced to cyclohexa-1,5-dienoyl-CoA. The strictly anaerobic bacterium Geobacter metallireducens uses the class II benzoyl-CoA reductase complex for this reaction. The catalytic BamB subunit of this complex harbors an active site tungsten-bis-pyranopterin cofactor with the metal being coordinated by five protein/cofactor-derived sulfur atoms and a sixth, so far unknown, ligand. Although BamB has been biochemically and structurally characterized, its mechanism still remains elusive. Here we use continuum electrostatic and QM/MM calculations to model benzoyl-CoA reduction by BamB. We aim to elucidate the identity of the sixth ligand of the active-site tungsten ion together with the interplay of the electron and proton transfer events during the aromatic ring reduction. On the basis of our calculations, we propose that benzoyl-CoA reduction is initiated by a hydrogen atom transfer from a W(IV) species with an aqua ligand, yielding W(V)-[OH-] and a substrate radical intermediate. In the next step, a proton-assisted second electron transfer takes place with a conserved active-site histidine serving as the second proton donor. Interestingly, our calculations suggest that the electron for the second reduction step is taken from the pyranopterin cofactors rather than from the tungsten ion. The resulting cationic radical, which is distributed over both pyranopterins, is stabilized by conserved anionic amino acid residues. The stepwise mechanism of the reduction shows similarities to the Birch reduction known from organic chemistry. However, the strict coupling of protons and electrons allows the reaction to proceed under milder conditions.


Asunto(s)
Benceno/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Tungsteno/metabolismo , Acilcoenzima A/metabolismo , Dominio Catalítico , Transporte de Electrón , Geobacter/enzimología , Histidina/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Protones , Pterinas/metabolismo , Teoría Cuántica
5.
Nat Chem Biol ; 11(8): 586-91, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26120796

RESUMEN

In chemical synthesis, the widely used Birch reduction of aromatic compounds to cyclic dienes requires alkali metals in ammonia as extremely low-potential electron donors. An analogous reaction is catalyzed by benzoyl-coenzyme A reductases (BCRs) that have a key role in the globally important bacterial degradation of aromatic compounds at anoxic sites. Because of the lack of structural information, the catalytic mechanism of enzymatic benzene ring reduction remained obscure. Here, we present the structural characterization of a dearomatizing BCR containing an unprecedented tungsten cofactor that transfers electrons to the benzene ring in an aprotic cavity. Substrate binding induces proton transfer from the bulk solvent to the active site by expelling a Zn(2+) that is crucial for active site encapsulation. Our results shed light on the structural basis of an electron transfer process at the negative redox potential limit in biology. They open the door for biological or biomimetic alternatives to a basic chemical synthetic tool.


Asunto(s)
Proteínas Bacterianas/química , Benceno/química , Electrones , Contaminantes Ambientales/química , Geobacter/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Acilcoenzima A/química , Acilcoenzima A/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Benceno/metabolismo , Biocatálisis , Biodegradación Ambiental , Cristalografía por Rayos X , Transporte de Electrón , Contaminantes Ambientales/metabolismo , Geobacter/enzimología , Cinética , Modelos Moleculares , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/aislamiento & purificación , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Protones , Especificidad por Sustrato , Tungsteno/química , Tungsteno/metabolismo , Zinc/química , Zinc/metabolismo
6.
J Phys Chem B ; 119(24): 7612-24, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-25731703

RESUMEN

PpcA, a tri-heme cytochrome c7 from Geobacter sulfurreducens, was investigated as a model for photosensitizer-initiated electron transfer within a multi-heme "molecular wire" protein architecture. Escherichia coli expression of PpcA was found to be tolerant of cysteine site-directed mutagenesis, demonstrated by the successful expression of natively folded proteins bearing cysteine mutations at a series of sites selected to vary characteristically with respect to the three -CXXCH- heme binding domains. The introduced cysteines readily reacted with Ru(II)-(2,2'-bpy)2(4-bromomethyl-4'-methyl-2,2'-bipyridine) to form covalently linked constructs that support both photo-oxidative and photo-reductive quenching of the photosensitizer excited state, depending upon the initial heme redox state. Excited-state electron-transfer times were found to vary from 6 × 10(-12) to 4 × 10(-8) s, correlated with the distance and pathways for electron transfer. The fastest rate is more than 10(3)-fold faster than previously reported for photosensitizer-redox protein constructs using amino acid residue linking. Clear evidence for inter-heme electron transfer within the multi-heme protein is not detected within the lifetimes of the charge-separated states. These results demonstrate an opportunity to develop multi-heme c-cytochromes for investigation of electron transfer in protein "molecular wires" and to serve as frameworks for metalloprotein designs that support multiple-electron-transfer redox chemistry.


Asunto(s)
2,2'-Dipiridil/química , Grupo Citocromo c/química , Geobacter/enzimología , Rutenio/química , 2,2'-Dipiridil/metabolismo , Grupo Citocromo c/metabolismo , Transporte de Electrón , Modelos Moleculares , Procesos Fotoquímicos , Rutenio/metabolismo
7.
Acta Biochim Pol ; 59(3): 401-6, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22924162

RESUMEN

Metacaspases, cysteine proteases belonging to the peptidase C14 family, are suspected of being involved in the programmed cell death of plants, although their sequences and substrate specificity differ from those of animal caspases. At present, the knowledge on the metacaspase reaction mechanism is based only on biochemical data and homology models constructed on caspase templates. Here we propose a novel template for metacaspase modeling and demonstrate important advantages in comparison to the conventionally used caspase templates. We also point out the connection between plant and bacterial metacaspases, underlining the prokaryotic roots of Programmed Cell Death (PCD).


Asunto(s)
Caspasas/química , Geobacter/enzimología , Análisis de Secuencia de Proteína/métodos , Homología de Secuencia de Aminoácido , Triticum/enzimología , Algoritmos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Caspasa 7/química , Dominio Catalítico , Muerte Celular , Bases de Datos de Proteínas , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Plantas/química , Pliegue de Proteína , Estructura Secundaria de Proteína , Alineación de Secuencia , Especificidad por Sustrato
8.
Biochem Biophys Res Commun ; 393(3): 466-70, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20152799

RESUMEN

Multiheme proteins play major roles in various biological systems. Structural information on these systems in solution is crucial to understand their functional mechanisms. However, the presence of numerous proton-containing groups in the heme cofactors and the magnetic properties of the heme iron, in particular in the oxidised state, complicates significantly the assignment of the NMR signals. Consequently, the multiheme proteins superfamily is extremely under-represented in structural databases, which constitutes a severe bottleneck in the elucidation of their structural-functional relationships. In this work, we present a strategy that simplifies the assignment of the NMR signals in multiheme proteins and, concomitantly, their solution structure determination, using the triheme cytochrome PpcA from the bacterium Geobacter sulfurreducens as a model. Cost-effective isotopic labeling was used to double label (13C/15N) the protein in its polypeptide chain, with the correct folding and heme post-translational modifications. The combined analysis of 1H-13C HSQC NMR spectra obtained for labeled and unlabeled samples of PpcA allowed a straight discrimination between the heme cofactors and the polypeptide chain signals and their confident assignment. The results presented here will be the foundations to assist solution structure determination of multiheme proteins, which are still very scarce in the literature.


Asunto(s)
Coenzimas/química , Hemoproteínas/química , Resonancia Magnética Nuclear Biomolecular/métodos , Cristalografía , Citocromos/química , Geobacter/enzimología , Hemo/química , Marcaje Isotópico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA