Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Plant Physiol Biochem ; 209: 108526, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38537383

RESUMEN

Drought stress inhibits seed germination, plant growth and development of tobacco, and seriously affects the yield and quality of tobacco leaves. However, the molecular mechanism underlying tobacco drought stress response remains largely unknown. In this study, integrated analysis of transcriptome and metabolome was performed on the germinated seeds of a cultivated variety K326 and its EMS mutagenic mutant M28 with great drought tolerance. The result showed that drought stress inhibited seed germination of the both varieties, while the germination rate of M28 was faster than that of K326 under drought stress. Besides, the levels of phytohormone ABA, GA19, and zeatin were increased by drought stress in M28. Five vital pathways were identified through integrated transcriptomic and metabolomic analysis, including zeatin biosynthesis, aspartate and glutamate synthesis, phenylamine metabolism, glutathione metabolism, and phenylpropanoid synthesis. Furthermore, 20 key metabolites in the above pathways were selected for further analysis of gene modular-trait relationship, and then four highly correlated modules were found. Then analysis of gene expression network was carried out of Top30 hub gene of these four modules, and 9 key candidate genes were identified, including HSP70s, XTH16s, APX, PHI-1, 14-3-3, SCP, PPO. In conclusion, our study uncovered some key drought-responsive pathways and genes of tobacco during seeds germination, providing new insights into the regulatory mechanisms of tobacco drought stress response.


Asunto(s)
Germinación , Transcriptoma , Germinación/genética , Sequías , Zeatina/metabolismo , Semillas/metabolismo , Metaboloma , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
2.
Funct Plant Biol ; 512024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38467137

RESUMEN

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-associated proteins are a class of transmembrane proteins involved in intracellular trafficking pathways. However, the functions of many SNARE domain-containing proteins remain unclear. We have previously identified a SNARE-associated gene in alfalfa (Medicago sativa ) KILLING ME SLOWLY1 (MsKMS1 ), which is involved in various abiotic stresses. In this study, we investigated the function of MsKMS1 in the seed germination of transgenic tobacco (Nicotiana tabacum ). Phylogenetic analysis showed that MsKMS1 was homologous to the SNARE-associated or MAPR component-related proteins of other plants. Germination assays revealed that MsKMS1 negatively regulated seed germination under normal, D-mannitol and abscisic acid-induced stress conditions, yet MsKMS1 -overexpression could confer enhanced heat tolerance in transgenic tobacco. The suppressive effect on germination in MsKMS1 -overexpression lines was associated with higher abscisic acid and salicylic acid contents in seeds. This was accompanied by the upregulation of abscisic acid biosynthetic genes (ZEP and NCED ) and the downregulation of gibberellin biosynthetic genes (GA20ox2 and GA20ox3 ). Taken together, these results suggested that MsKMS1 negatively regulated seed germination by increasing abscisic acid and salicylic acid contents through the expression of genes related to abscisic acid and gibberellin biosynthesis. In addition, MsKMS1 could improve heat tolerance during the germination of transgenic tobacco seeds.


Asunto(s)
Ácido Abscísico , Germinación , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Germinación/genética , Medicago sativa/genética , Medicago sativa/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacología , Nicotiana/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas SNARE/farmacología
3.
BMC Genomics ; 25(1): 119, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38281016

RESUMEN

BACKGROUND: Organisms from many distinct evolutionary lineages acquired the capacity to enter a dormant state in response to environmental conditions incompatible with maintaining normal life activities. Most studied organisms exhibit seasonal or annual episodes of dormancy, but numerous less studied organisms enter long-term dormancy, lasting decades or even centuries. Intriguingly, many planktonic animals produce encased embryos known as resting eggs or cysts that, like plant seeds, may remain dormant for decades. Herein, we studied a rotifer Brachionus plicatilis as a model planktonic species that forms encased dormant embryos via sexual reproduction and non-dormant embryos via asexual reproduction and raised the following questions: Which genes are expressed at which time points during embryogenesis? How do temporal transcript abundance profiles differ between the two types of embryos? When does the cell cycle arrest? How do dormant embryos manage energy? RESULTS: As the molecular developmental kinetics of encased embryos remain unknown, we employed single embryo RNA sequencing (CEL-seq) of samples collected during dormant and non-dormant embryogenesis. We identified comprehensive and temporal transcript abundance patterns of genes and their associated enriched functional pathways. Striking differences were uncovered between dormant and non-dormant embryos. In early development, the cell cycle-associated pathways were enriched in both embryo types but terminated with fewer nuclei in dormant embryos. As development progressed, the gene transcript abundance profiles became increasingly divergent between dormant and non-dormant embryos. Organogenesis was suspended in dormant embryos, concomitant with low transcript abundance of homeobox genes, and was replaced with an ATP-poor preparatory phase characterized by very high transcript abundance of genes encoding for hallmark dormancy proteins (e.g., LEA proteins, sHSP, and anti-ROS proteins, also found in plant seeds) and proteins involved in dormancy exit. Surprisingly, this period appeared analogous to the late maturation phase of plant seeds. CONCLUSIONS: The study highlights novel divergent temporal transcript abundance patterns between dormant and non-dormant embryos. Remarkably, several convergent functional solutions appear during the development of resting eggs and plant seeds, suggesting a similar preparatory phase for long-term dormancy. This study accentuated the broad novel molecular features of long-term dormancy in encased animal embryos that behave like "animal seeds".


Asunto(s)
Rotíferos , Animales , Rotíferos/genética , Perfilación de la Expresión Génica , Transcriptoma , Proteínas/metabolismo , Semillas , Latencia en las Plantas , Germinación/genética
4.
Plant Physiol Biochem ; 206: 108302, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38171134

RESUMEN

Yellow seed is one desirable trait with great potential to improve seed oil quality and yield. The present study surveys the redundant role of BnTTG1 genes in the proanthocyanidins (PA) biosynthesis, oil content and abiotic stress resistance. Stable yellow seed mutants were generated after mutating BnTTG1 by CRISPR/Cas9 genome editing system. Yellow seed phenotype could be obtained only when both functional homologues of BnTTG1 were simultaneously knocked out. Homozygous mutants of BnTTG1 homologues showed decreased thickness and PA accumulation in seed coat. Transcriptome and qRT-PCR analysis indicated that BnTTG1 mutation inhibited the expression of genes involved in phenylpropanoid and flavonoid biosynthetic pathways. Increased seed oil content and alteration of fatty acid (FA) composition were observed in homozygous mutants of BnTTG1 with enriched expression of genes involved in FA biosynthesis pathway. In addition, target mutation of BnTTG1 accelerated seed germination rate under salt and cold stresses. Enhanced seed germination capacity in BnTTG1 mutants was correlated with the change of expression level of ABA responsive genes. Overall, this study elucidated the redundant role of BnTTG1 in regulating seed coat color and established an efficient approach for generating yellow-seeded oilseed rape genetic resources with increase oil content, modified FA composition and resistance to multiple abiotic stresses.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Germinación/genética , Semillas/genética , Semillas/metabolismo , Brassica rapa/genética , Mutagénesis , Estrés Fisiológico/genética , Aceites de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Plant J ; 117(1): 212-225, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37828913

RESUMEN

Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is a key enzyme producing the signaling lipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 ] in eukaryotes. Although PIP5K genes are reported to be involved in pollen tube germination and growth, the essential roles of PIP5K in these processes remain unclear. Here, we performed a comprehensive genetic analysis of the Arabidopsis thaliana PIP5K4, PIP5K5, and PIP5K6 genes and revealed that their redundant function is essential for pollen germination. Pollen with the pip5k4pip5k5pip5k6 triple mutation was sterile, while pollen germination efficiency and pollen tube growth were reduced in the pip5k6 single mutant and further reduced in the pip5k4pip5k6 and pip5k5pip5k6 double mutants. YFP-fusion proteins, PIP5K4-YFP, PIP5K5-YFP, and PIP5K6-YFP, which could rescue the sterility of the triple mutant pollen, preferentially localized to the tricolpate aperture area and the future germination site on the plasma membrane prior to germination. Triple mutant pollen grains under the germination condition, in which spatiotemporal localization of the PtdIns(4,5)P2 fluorescent marker protein 2xmCHERRY-2xPHPLC as seen in the wild type was abolished, exhibited swelling and rupture of the pollen wall, but neither the conspicuous protruding site nor site-specific deposition of cell wall materials for germination. These data indicate that PIP5K4-6 and their product PtdIns(4,5)P2 are essential for pollen germination, possibly through the establishment of the germination polarity in a pollen grain.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Germinación/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Tubo Polínico/metabolismo , Polen
6.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37958860

RESUMEN

Chenopodium quinoa Willd. (quinoa), a member of the Amaranthaceae family, is an allotetraploid annual plant, endemic to South America. The plant of C. quinoa presents significant ecological plasticity with exceptional adaptability to several environmental stresses, including salinity. The resilience of quinoa to several abiotic stresses, as well as its nutritional attributes, have led to significant shifts in quinoa cultivation worldwide over the past century. This work first defines germination sensu stricto in quinoa where the breakage of the pericarp and the testa is followed by endosperm rupture (ER). Transcriptomic changes in early seed germination stages lead to unstable expression levels in commonly used reference genes that are typically stable in vegetative tissues. Noteworthy, no suitable reference genes have been previously identified specifically for quinoa seed germination under salt stress conditions. This work aims to identify these genes as a prerequisite step for normalizing qPCR data. To this end, germinating seeds from UDEC2 and UDEC4 accessions, with different tolerance to salt, have been analyzed under conditions of absence (0 mM NaCl) and in the presence (250 mM NaCl) of sodium chloride. Based on the relevant literature, six candidate reference genes, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Monensin sensitivity1 (MON1), Polypyrimidine tract-binding protein (PTB), Actin-7 (ACT7), Ubiquitin-conjugating enzyme (UBC), and 18S ribosomal RNA (18S), were selected and assessed for stability using the RefFinder Tool encompassing the statistical algorithms geNorm, NormFinder, BestKeeper, and ΔCt in the evaluation. The data presented support the suitability of CqACT7 and CqUBC as reference genes for normalizing gene expression during seed germination under salinity stress. These recommended reference genes can be valuable tools for consistent qPCR studies on quinoa seeds.


Asunto(s)
Chenopodium quinoa , Germinación , Germinación/genética , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Estrés Salino , Semillas/genética
7.
PLoS Genet ; 19(11): e1011052, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37976306

RESUMEN

Rapid and uniform seed germination is required for modern cropping system. Thus, it is important to optimize germination performance through breeding strategies in maize, in which identification for key regulators is needed. Here, we characterized an AP2/ERF transcription factor, ZmEREB92, as a negative regulator of seed germination in maize. Enhanced germination in ereb92 mutants is contributed by elevated ethylene signaling and starch degradation. Consistently, an ethylene signaling gene ZmEIL7 and an α-amylase gene ZmAMYa2 are identified as direct targets repressed by ZmEREB92. OsERF74, the rice ortholog of ZmEREB92, shows conserved function in negatively regulating seed germination in rice. Importantly, this orthologous gene pair is likely experienced convergently selection during maize and rice domestication. Besides, mutation of ZmEREB92 and OsERF74 both lead to enhanced germination under cold condition, suggesting their regulation on seed germination might be coupled with temperature sensitivity. Collectively, our findings uncovered the ZmEREB92-mediated regulatory mechanism of seed germination in maize and provide breeding targets for maize and rice to optimize seed germination performance towards changing climates.


Asunto(s)
Germinación , Oryza , Germinación/genética , Almidón/genética , Almidón/metabolismo , Zea mays/metabolismo , Semillas/genética , Semillas/metabolismo , Fitomejoramiento , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo
8.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37834462

RESUMEN

Autophagy is an evolutionarily conserved mechanism for degrading and recycling various cellular components, functioning in both normal development and stress conditions. This process is tightly regulated by a set of autophagy-related (ATG) proteins, including ATG2 in the ATG9 cycling system and ATG5 in the ATG12 conjugation system. Our recent research demonstrated that autophagy-mediated compartmental cytoplasmic deletion is essential for pollen germination. However, the precise mechanisms through which autophagy regulates pollen germination, ensuring its fertility, remain largely unknown. Here, we applied multi-omics analyses, including transcriptomic and metabolomic approaches, to investigate the downstream pathways of autophagy in the process of pollen germination. Although ATG2 and ATG5 play similar roles in regulating pollen germination, high-throughput transcriptomic analysis reveals that silencing ATG5 has a greater impact on the transcriptome than silencing ATG2. Cross-comparisons of transcriptome and proteome analysis reveal that gene expression at the mRNA level and protein level is differentially affected by autophagy. Furthermore, high-throughput metabolomics analysis demonstrates that pathways related to amino acid metabolism and aminoacyl-tRNA biosynthesis were affected by both ATG2 and ATG5 silencing. Collectively, our multi-omics analyses reveal the central role of autophagy in cellular metabolism, which is critical for initiating pollen germination and ensuring pollen fertility.


Asunto(s)
Autofagia , Multiómica , Proteínas Relacionadas con la Autofagia/genética , Autofagia/genética , Proteína 12 Relacionada con la Autofagia/genética , Polen/genética , Polen/metabolismo , Germinación/genética
9.
PeerJ ; 11: e15819, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810777

RESUMEN

Background: Maize is sensitive to salt stress, especially during the germination and seedling stages. Methods: We conducted germination experiments on 60 maize materials under salt stress, and screened out the most salt-tolerant and salt-sensitive varieties based on germination indicators. Afterwards, transcriptome analysis was performed to screen for key regulators in the plumule and flag leaf at the germination and seedling stages, respectively. Following that, transgenic tobacco was developed to expose the roles and mechanisms of the candidate genes, enabling a deeper investigation of their functions. Results: Out of the 60 inbred lines of maize, "975-12" exhibits the highest level of salt tolerance, while "GEMS64" displays the lowest. The application of salt stress resulted in a significant increase in the levels of antioxidant enzymes in both "975-12" and "GEMS64". ABA signal transduction and jasmonic acid pathways were the pathways that mainly affected by salt stress. In addition, a significant finding has been made indicating that when exposed to high levels of salt stress, the expression of ZmHSP90 in '975-12' increased while in 'GEMS64' decreased. Furthermore, in tobacco plants overexpressing ZmHSP90, there was an increase in antioxidant enzyme activity associated with salt tolerance. ZmHSP90 enhanced the expression levels of NtSOS1, NtHKT1, and NtNHX1 as compared to those in the salt treatment, causing the maintenance of Na+ and K+ homeostasis, suggesting that high expression of ZmHSP90 was conducive to regulate Na+ transporters to maintain K+/Na+ balanced in tobacco.


Asunto(s)
Antioxidantes , Zea mays , Antioxidantes/metabolismo , Zea mays/genética , Plantas Modificadas Genéticamente/genética , Germinación/genética , Plantones/genética , Tolerancia a la Sal/genética
10.
Plant Cell Rep ; 42(11): 1721-1732, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37594528

RESUMEN

KEY MESSAGE: Ethylene formation via methionine reacting with trichloroisocyanuric acid under FeSO4 condition in a non-enzymatical manner provides one economically and efficiently novel ethylene-forming approach in planta. Rice seed germination can be stimulated by trichloroisocyanuric acid (TCICA). However, the molecular basis of TCICA in stimulating rice seed germination remains unclear. In this study, the molecular mechanism on how TCICA stimulated rice seed germination was examined via comparative transcriptome. Results showed that clustering of transcripts of TCICA-treated seeds, water-treated seeds, and dry seeds was clearly separated. Twenty-two and three hundred differentially expressed genes were identified as TCICA treatment responsive genes and TCICA treatment potentially responsive genes, respectively. Two and one TCICA treatment responsive genes were involved in ethylene signal transduction and iron homeostasis, respectively. Seventeen of the three hundred TCICA treatment potentially responsive genes were significantly annotated to iron ion binding. Meanwhile, level of methionine (ethylene precursor) showed a 73.9% decrease in response to TCICA treatment. Ethylene was then proved to produce via methionine reacting with TCICA under FeSO4 condition in vitro. Revealing ethylene formation by TCICA not only may bring novel insights into crosstalk between ethylene and other phytohormones during rice seed germination, but also may provide one economically and efficiently novel approach to producing ethylene in planta independently of the ethylene biosynthesis in plants and thereby may broaden its applications in investigational and applied purposes.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Germinación/genética , Perfilación de la Expresión Génica , Etilenos/farmacología , Etilenos/metabolismo , Semillas/metabolismo , Transcriptoma/genética , Metionina/genética , Metionina/metabolismo , Hierro/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácido Abscísico/metabolismo
11.
BMC Plant Biol ; 23(1): 247, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170087

RESUMEN

BACKGROUND: The disruption of seed dormancy is a complicated process and is controlled by various factors. Among these factors, membrane lipids and plant hormones are two of the most important ones. Paris polyphylla is an important Chinese herbaceous species, and the dormancy trait of its seed limits the cultivation of this herb. RESULTS: In this study, we investigate the global metabolic and transcriptomic profiles of Paris polyphylla during seed dormancy breaking. Widely targeted metabolomics revealed that lysophospholipids (lysoPLs) increased during P. polyphylla seed dormancy breaking. The expression of phospholipase A2 (PLA2), genes correlated to the production of lysoPLs, up-regulated significantly during this process. Abscisic acid (ABA) decreased dramatically during seed dormancy breaking of P. polyphylla. Changes of different GAs varied during P. polyphylla seeds dormancy breaking, 13-OH GAs, such as GA53 were not detected, and GA3 decreased significantly, whereas 13-H GAs, such as GA15, GA24 and GA4 increased. The expression of CYP707As was not synchronous with the change of ABA content, and the expression of most UGTs, GA20ox and GA3ox up-regulated during seed dormancy breaking. CONCLUSIONS: These results suggest that PLA2 mediated production of lysoPLs may correlate to the seed dormancy breaking of P. polyphylla. The conversion of ABA to ABA-GE catalysed by UGTs may be the main cause of ABA degradation. Through inhibition the expression of genes related to the synthesis of 13-OH GAs and up-regulation genes related to the synthesis of 13-H GAs, P. polyphylla synthesized more bioactive 13-H GA (GA4) to break its seed dormancy.


Asunto(s)
Liliaceae , Latencia en las Plantas , Latencia en las Plantas/fisiología , Giberelinas/metabolismo , Multiómica , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Liliaceae/metabolismo , Semillas/genética , Semillas/metabolismo , Germinación/genética , Regulación de la Expresión Génica de las Plantas
12.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37108569

RESUMEN

Cysteine proteases (CPs) are vital proteolytic enzymes that play critical roles in various plant processes. However, the particular functions of CPs in maize remain largely unknown. We recently identified a pollen-specific CP (named PCP), which highly accumulated on the surface of maize pollen. Here, we reported that PCP played an important role in pollen germination and drought response in maize. Overexpression of PCP inhibited pollen germination, while mutation of PCP promoted pollen germination to some extent. Furthermore, we observed that germinal apertures of pollen grains in the PCP-overexpression transgenic lines were excessively covered, whereas this phenomenon was not observed in the wild type (WT), suggesting that PCP regulated pollen germination by affecting the germinal aperture structure. In addition, overexpression of PCP enhanced drought tolerance in maize plants, along with the increased activities of the antioxidant enzymes and the decreased numbers of the root cortical cells. Conversely, mutation of PCP significantly impaired drought tolerance. These results may aid in clarifying the precise functions of CPs in maize and contribute to the development of drought-tolerant maize materials.


Asunto(s)
Germinación , Zea mays , Germinación/genética , Zea mays/metabolismo , Resistencia a la Sequía , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Polen/genética , Polen/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
13.
Genes Genomics ; 45(7): 921-934, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37004590

RESUMEN

BACKGROUND: The plant-specific valine-glutamine (VQ) motif containing proteins tightly regulate plant growth, development, and stress responses. However, the genome-wide identification and functional analysis of Brassica oleracea (B. oleracea) VQ genes have not been reported. OBJECTIVE: To identify the VQ gene family in B. oleracea and analyze the function of Bo25-1 in pollen germination. METHODS: The Hidden Markov Model (HMM) of VQ family was used to query the BoVQ genes in the B. oleracea genome. The BoVQ genes preferentially expressed in anthers were screened by qRT-PCR. Subcellular localization of VQ25-1 was observed in Nicotiana benthamiana (N. benthamiana) leaves. To analysis the role of BoVQ25-1 in pollen germination, the expression of BoVQ25-1 was suppressed using antisense-oligonucleotides (AS-ODN). RESULTS: A total of 64 BoVQ genes were identified in the B. oleracea genome. BoVQ25-1 was found to be preferentially expressed in the B. oleracea anthers. BoVQ25-1 was cloned from the anthers of the B. oleracea cultivar 'Fast Cycle'. BoVQ25-1 is localized to the nucleus. The pollen germination rate significantly decreased after AS-ODN treatment. CONCLUSION: Sixty-four BoVQ genes were identified in the B. oleracea genome, of which BoVQ25-1 plays an important role in pollen germination.


Asunto(s)
Brassica , Glutamina , Glutamina/metabolismo , Valina/metabolismo , Germinación/genética , Brassica/metabolismo , Polen/genética
14.
New Phytol ; 237(6): 2104-2117, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36495066

RESUMEN

Fatty acid (FA) ß-oxidation provides energy for oil seed germination but also produces massive byproduct reactive oxygen species (ROS), posing potential oxidative damage to plant cells. How plants overcome the contradiction between energy supply and ROS production during seed germination remains unclear. In this study, we identified an Arabidopsis mvs1 (methylviologen-sensitive) mutant that was hypersensitive to ROS and caused by a missense mutation (G1349 substituted as A) of a cytochrome P450 gene, CYP77A4. CYP77A4 was highly expressed in germinating seedling cotyledons, and its protein is localized in the endoplasmic reticulum. As CYP77A4 catalyzes the epoxidation of unsaturated FA, disruption of CYP77A4 resulted in increased unsaturated FA abundance and over accumulated ROS in the mvs1 mutant. Consistently, scavenging excess ROS or blocking FA ß-oxidation could repress the ROS overaccumulation and hypersensitivity in the mvs1 mutant. Furthermore, H2 O2 transcriptionally upregulated CYP77A4 expression and post-translationally modified CYP77A4 by sulfenylating its Cysteine-456, which is necessary for CYP77A4's role in modulating FA abundance and ROS production. Together, our study illustrates that CYP77A4 mediates direct balancing of lipid mobilization and ROS production by the epoxidation of FA during seed germination.


Asunto(s)
Arabidopsis , Germinación , Especies Reactivas de Oxígeno/metabolismo , Germinación/genética , Ácidos Grasos/metabolismo , Movilización Lipídica , Semillas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Catálisis , Regulación de la Expresión Génica de las Plantas
15.
Plant Physiol ; 191(3): 1836-1856, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36494098

RESUMEN

Rapeseed (Brassica napus), an important oil crop worldwide, provides large amounts of lipids for human requirements. Calcineurin B-like (CBL)-interacting protein kinase 9 (CIPK9) was reported to regulate seed oil content in the plant. Here, we generated gene-silenced lines through RNA interference biotechnology and loss-of-function mutant bnacipk9 using CRISPR/Cas9 to further study BnaCIPK9 functions in the seed oil metabolism of rapeseeds. We discovered that compared with wild-type (WT) lines, gene-silenced and bnacipk9 lines had substantially different oil contents and fatty acid compositions: seed oil content was improved by 3%-5% and 1%-6% in bnacipk9 lines and gene-silenced lines, respectively; both lines were with increased levels of monounsaturated fatty acids and decreased levels of polyunsaturated fatty acids. Additionally, hormone and glucose content analyses revealed that compared with WT lines the bnacipk9 lines showed significant differences: in bnacipk9 seeds, indoleacetic acid and abscisic acid (ABA) levels were higher; glucose and sucrose contents were higher with a higher hexose-to-sucrose ratio in bnacipk9 mid-to-late maturation development seeds. Furthermore, the bnacipk9 was less sensitive to glucose and ABA than the WT according to stomatal aperture regulation assays and the expression levels of genes involved in glucose and ABA regulating pathways in rapeseeds. Notably, in Arabidopsis (Arabidopsis thaliana), exogenous ABA and glucose imposed on developing seeds revealed the effects of ABA and glucose signaling on seed oil accumulation. Altogether, our results strongly suggest a role of CIPK9 in mediating the interaction between glucose flux and ABA hormone signaling to regulate seed oil metabolism in rapeseed.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brassica napus , Brassica rapa , Humanos , Ácido Abscísico/metabolismo , Glucosa/metabolismo , Brassica rapa/genética , Brassica rapa/metabolismo , Semillas/metabolismo , Arabidopsis/genética , Aceites de Plantas/metabolismo , Sacarosa/metabolismo , Hormonas/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Arabidopsis/metabolismo
16.
Plant Physiol ; 191(1): 96-109, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36282529

RESUMEN

Degradation of starch accumulated in pollen provides energy and cellular materials for pollen germination and pollen tube elongation. Little is known about the function of cytosolic disproportionating enzyme2 (DPE2) in rice (Oryza sativa). Here, we obtained several DPE2 knockout mutant (dpe2) lines via genomic editing and found that the mutants grew and developed normally but with greatly reduced seed-setting rates. Reciprocal crosses between dpe2 and wild-type plants demonstrated that the mutant was male sterile. In vitro and in vivo examinations revealed that the pollen of the dpe2 mutant developed and matured normally but was defective in germination and elongation. DPE2 deficiency increased maltose content in pollen, whereas it reduced the levels of starch, glucose, fructose, and adenosine triphosphate (ATP). Exogenous supply of glucose or ATP to the germination medium partially rescued the pollen germination defects of dpe2. The expression of cytosolic phosphorylase2 (Pho2) increased significantly in dpe2 pollen. Knockout of Pho2 resulted in a semi-sterile phenotype. We failed to obtain homozygous dpe2 pho2 double mutant lines. Our results demonstrate that maltose catalyzed by DPE2 to glucose is the main energy source for pollen germination and pollen tube elongation, while Pho2 might partially compensate for deficiency of DPE2.


Asunto(s)
Arabidopsis , Oryza , Tubo Polínico/genética , Tubo Polínico/metabolismo , Oryza/genética , Oryza/metabolismo , Arabidopsis/genética , Maltosa/metabolismo , Polen/genética , Polen/metabolismo , Glucosa/metabolismo , Almidón/metabolismo , Germinación/genética
17.
Plant Signal Behav ; 17(1): 2139115, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36420997

RESUMEN

Root parasitic weed Phelipanche aegyptiaca is an obligate plant parasite that causes severe damage to host crops. Agriculture crops mainly belong to the Brassicaceae, Leguminosae, Cruciferae, and Solanaceae plant families affected by this parasitic weed, leading to the devastating loss of crop yield and economic growth. This root-specific parasitic plant is not able to complete its life cycle without a suitable host and is dependent on the host plant for nutrient uptake and germination. Therefore, selected parasitic genes of P. aegyptiaca which were known to be upregulated upon interaction with the host were chosen. These genes are essential for parasitism, and reduced activity of these genes could affect host-parasitic interaction and provide resistance to the host against these parasitic weeds. To check and examine the role of these parasitic genes which can affect the development of host resistance, we silenced selected genes in the P. aegyptiaca using the tobacco rattle virus (TRV) based virus-induced gene silencing (VIGS) method. Our results demonstrated that the total number of P. aegyptiaca parasite tubercles attached to the root of the host plant Nicotiana benthamiana was substantially decreased in all the silenced plants. However, silencing of the P. aegyptiaca MNT1 gene which encodes the mannitol transporter showed a significantly reduced number of germinated shoots and tubercles. Thus, our study indicates that the mannitol transport gene of P. aegyptiaca plays a crucial role in parasitic germination, and silencing of the PaMNT1 gene abolishes the germination of parasites on the host roots.


Asunto(s)
Orobanchaceae , Parásitos , Animales , Germinación/genética , Regulación de la Expresión Génica de las Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Malezas , Manitol
18.
EMBO Rep ; 23(10): e54371, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36062942

RESUMEN

Light and ambient high temperature (HT) have opposite effects on seed germination. Light induces seed germination through activating the photoreceptor phytochrome B (phyB), resulting in the stabilization of the transcription factor HFR1, which in turn sequesters the suppressor PIF1. HT suppresses seed germination and triggers protein S-nitrosylation. Here, we find that HT suppresses seed germination by inducing the S-nitrosylation of HFR1 at C164, resulting in its degradation, the release of PIF1, and the activation of PIF1-targeted SOMNUS (SOM) expression to alter gibberellin (GA) and abscisic acid (ABA) metabolism. Active phyB (phyBY276H ) antagonizes HFR1 S-nitrosylation and degradation by increasing S-nitrosoglutathione reductase (GSNOR) activity. In line with this, substituting cysteine-164 of HFR1 with serine (HFR1C164S ) abolishes the S-nitrosylation of HFR1 and decreases the HT-induced degradation of HFR1. Taken together, our study suggests that HT and phyB antagonistically modulate the S-nitrosylation level of HFR1 to coordinate seed germination, and provides the possibility to enhance seed thermotolerance through gene-editing of HFR1.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cisteína/metabolismo , Proteínas de Unión al ADN , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Giberelinas/metabolismo , Giberelinas/farmacología , Luz , Fitocromo/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Proteína S/metabolismo , Proteína S/farmacología , Semillas/genética , Serina/metabolismo , Temperatura , Factores de Transcripción/metabolismo
19.
J Plant Physiol ; 275: 153742, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35696829

RESUMEN

Geminiviruses are a large group of plant viruses that have been a serious threat to worldwide agriculture. Transcription of the virus-encoded genes is necessary for geminiviruses to complete their life cycle, but the host proteins which directly target geminivirus promoters for suppression of viral gene transcription remain to be identified. Using Beet severe curly top virus (BSCTV) which causes severe plant symptoms as a system, we performed a yeast one-hybrid screening and identified ABA INSENSITIVE 5 (ABI5), a critical transcription factor in Abscisic acid (ABA) signaling transduction, as an interactor with the viral promoter. Further data showed that an ABA-responsive element in the viral promoter is necessary for its interaction with ABI5 and symptom development. Overexpression of ABI5 suppresses the transcription activity of the viral promoter and BSCTV infection in Nicotiana benthamiana and Arabidopsis; whilst depletion of ABI5 enhances the infection of BSCTV in Arabidopsis. Taken together, our study uncovered the function of ABI5 in the plant-virus interaction and will provide us with a new strategy to protect crops from geminivirus infection.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Geminiviridae , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Geminiviridae/genética , Geminiviridae/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Plantas Modificadas Genéticamente/metabolismo
20.
PeerJ ; 10: e13304, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35578673

RESUMEN

The long dormancy period of Paris polyphylla var. yunnanensis seeds affects the supply of this scarce plant, which is used as an important traditional Chinese medicine. Mature seeds with a globular embryo and germinating seeds with developed embryo were used to explore the mechanisms of seed germination in this species. The protein profiles between the mature and germinating seeds were compared using the isobaric tags for relative and absolute quantification (iTRAQ) approach. Of the 4,488 proteins identified, a total of 1,305 differentially expressed proteins (DEPs) were detected. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of these DEPs indicated that metabolic pathways and the biosynthesis of secondary metabolites were the two top pathways. Additionally, phytohormone quantification shows that the abscisic acid (ABA) level significantly decreased, whereas the GA3 level dramatically increased among nine endogenous gibberellins (GAs), resulting in a significant increase of the GA3/ABA ratio in germinating seeds. The biosynthesis pathways of carotenoid as a precursor for ABA production and GA were further analyzed, and showed that proteinic expressions of the candidate genes in the two pathways did not correlate with the transcriptional abundances. However, 9-cis-epoxycarotenoid dioxygenase (NCED), a rate limited enzyme for ABA biosynthesis, was significantly decreased in mRNA levels in germinating seeds. By contrast, gibberellin 20-oxidase (GA20ox), a key enzyme GA biosynthesis, exhibited the major increase in one copy and a slight decrease in three others at the protentional level in germinating seeds. Gibberellin 2-oxidase (GA2ox), an inactivate enzyme in bioactive GAs, has the tendency to down-regulate in mRNA or at the proteinic level in germinating seeds. Altogether, these results suggested that the analyses of ABA and GA levels, the GA3/ABA ratio, and the expressional patterns of their regulatory genes may provide a novel mechanistic understanding of how phytohormones regulate seed germination in P. polyphylla var. yunnanensis.


Asunto(s)
Germinación , Liliaceae , Germinación/genética , Proteómica , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Semillas/genética , Liliaceae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA