Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 876
Filtrar
1.
J Am Soc Mass Spectrom ; 35(6): 1261-1271, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38780179

RESUMEN

We investigated the applicability of proton transfer reaction-time-of-flight mass spectrometry (PTR-TOF-MS) for quantitative analysis of mixtures comprising glycerin, acetol, glycidol, acetaldehyde, acetone, and propylene glycol. While PTR-TOF-MS offers real-time simultaneous determination, the method selectivity is limited when analyzing compounds with identical elemental compositions or when labile compounds present in the mixture produce fragments that generate overlapping ions with other matrix components. In this study, we observed significant fragmentation of glycerin, acetol, glycidol, and propylene glycol during protonation via hydronium ions (H3O+). Nevertheless, specific ions generated by glycerin (m/z 93.055) and propylene glycol (m/z 77.060) enabled their selective detection. To thoroughly investigate the selectivity of the method, various mixtures containing both isotope-labeled and unlabeled compounds were utilized. The experimental findings demonstrated that when samples contained high levels of glycerin, it was not feasible to perform time-resolved analysis in H3O+ mode for acetaldehyde, acetol, and glycidol. To overcome the observed selectivity limitations associated with the H3O+ reagent ions, alternative ionization modes were investigated. The ammonium ion mode proved appropriate for analyzing propylene glycol (m/z 94.086) and acetone (m/z 76.076) mixtures. Concerning the nitric oxide mode, specific m/z were identified for acetaldehyde (m/z 43.018), acetone (m/z 88.039), glycidol (m/z 73.028), and propylene glycol (m/z 75.044). It was concluded that considering the presence of multiple product ions and the potential influence of other compounds, it is crucial to conduct a thorough selectivity assessment when employing PTR-TOF-MS as the sole method for analyzing compounds in complex matrices of unknown composition.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Espectrometría de Masas , Nicotiana , Compuestos Orgánicos Volátiles , Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Nicotiana/química , Propilenglicol/análisis , Propilenglicol/química , Acetaldehído/análisis , Acetaldehído/química , Acetona/análisis , Acetona/química , Acetona/análogos & derivados , Glicerol/análisis , Glicerol/química , Calor , Compuestos Epoxi/química , Compuestos Epoxi/análisis , Propanoles/química , Propanoles/análisis
2.
Food Chem ; 452: 139542, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728898

RESUMEN

This study investigated the effects of ethanol, 1,2-propanediol, and glycerol on the structure and aggregation behavior of silver carp (Hypophthalmichthys molitrix) myosin. All alcohols induced extensive alteration in the tertiary structure of myosin. Both ethanol and 1,2-propanediol further promoted an increase in the content of ß-sheets in myosin and induced myosin aggregation. While glycerol had almost no impact on the secondary structure of myosin. Molecular dynamics simulations revealed that increasing the concentration of ethanol and 1,2-propanediol affected the overall structural changes in the myosin heavy chain (MHC), while glycerol exerted a more pronounced effect on the MHC tail when compared to the MHC head. Disruption of the hydration layers induced by ethanol and 1,2-propanediol contributed to local structural changes in myosin. Glycerol at a concentration of 20% induced the formation of a larger hydration layer around the MHC tail, which facilitated the stabilization of the protein structure.


Asunto(s)
Carpas , Etanol , Proteínas de Peces , Glicerol , Simulación de Dinámica Molecular , Animales , Carpas/metabolismo , Glicerol/química , Glicerol/farmacología , Etanol/química , Etanol/farmacología , Proteínas de Peces/química , Propilenglicol/química , Miosinas/química , Miosinas/metabolismo , Agregado de Proteínas , Estructura Secundaria de Proteína
3.
Carbohydr Polym ; 337: 122165, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710577

RESUMEN

This research intended to remove residual protein from chitin with proteases in deep eutectic solvents (DESs). The activities of some proteases in several DESs, including choline chloride/p-toluenesulfonic acid, betaine/glycerol (Bet/G), choline chloride/malic acid, choline chloride/lactic acid, and choline chloride/urea, which are capable of dissolving chitin, were tested, and only in Bet/G some proteases were found to be active, with subtilisin A, ficin, and bromelain showing higher activity than other proteases. However, the latter two proteases caused degradation of chitin molecules. Further investigation revealed that subtilisin A in Bet/G did not exhibit "pH memory", which is a universal characteristic displayed by enzymes dispersed in organic phases, and the catalytic characteristics of subtilisin A in Bet/G differed significantly from those in aqueous phase. The conditions for protein removal from chitin by subtilisin A in Bet/G were determined: Chitin dissolved in Bet/G with 0.5 % subtilisin A (442.0 U/mg, based on the mass of chitin) was hydrolyzed at 45 °C for 30 min. The residual protein content in chitin decreased from 5.75 % ± 0.10 % to 1.01 % ± 0.12 %, improving protein removal by 57.20 % compared with protein removal obtained by Bet/G alone. The crystallinity and deacetylation degrees of chitin remained unchanged after the treatment.


Asunto(s)
Betaína , Quitina , Disolventes Eutécticos Profundos , Glicerol , Quitina/química , Betaína/química , Glicerol/química , Disolventes Eutécticos Profundos/química , Hidrólisis , Subtilisina/metabolismo , Subtilisina/química , Concentración de Iones de Hidrógeno , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/química , Colina/química
4.
Food Res Int ; 187: 114334, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763634

RESUMEN

Red-fleshed apple cultivars with an enhanced content of polyphenolic compounds have attracted increasing interest due to their promising health benefits. Here, we have analysed the polyphenolic content of young, red-fleshed apples (RFA) and optimised extraction conditions of phenolics by utilising natural deep eutectic solvents (NDES). We also compare the antioxidant, neuroprotective and antimicrobial activities of NDES- and methanol-extracted phenolics from young RFA. High-performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC-HRMS) was used for phenolics identification and quantification. Besides young RFA, ripe red-fleshed, young and ripe white-fleshed apples were analysed, revealing that young RFA possess the highest phenolic content (2078.4 ± 4.0 mg gallic acid equivalent/100 g), and that ripe white-fleshed apples contain the least amount of phenolics (545.0 ± 32.0 mg gallic acid equivalent/100 g). The NDES choline chloride-glycerol containing 40 % w/w H2O gave similar yields at 40 °C as methanol. In addition, the polyphenolics profile, and bioactivities of the NDES extract from young RFA were comparable that of methanol extracts. Altogether, our data show that NDES extracts of young RFA are a promising source of bioactive polyphenolics with potential applications in diverse sectors, e.g., for functional food production, smart material engineering and natural therapies.


Asunto(s)
Antioxidantes , Disolventes Eutécticos Profundos , Frutas , Malus , Polifenoles , Malus/química , Polifenoles/análisis , Polifenoles/aislamiento & purificación , Antioxidantes/análisis , Antioxidantes/química , Cromatografía Líquida de Alta Presión , Frutas/química , Disolventes Eutécticos Profundos/química , Extractos Vegetales/química , Colina/química , Glicerol/química , Fármacos Neuroprotectores/aislamiento & purificación , Fármacos Neuroprotectores/química , Espectrometría de Masas
5.
Food Chem Toxicol ; 188: 114668, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641044

RESUMEN

The safety of propylene glycol (PG) and vegetable glycerin (VG) as solvents in electronic cigarette liquid has received increasing attention and discussion. However, the conclusions derived from toxicity assessments conducted through animal experiments and traditional in vitro methodologies have consistently been contentious. This study constructed an original real-time aerosol exposure system, centered around a self-designed microfluidic bionic-lung chip, to assess the biological effects following exposure to aerosols from different solvents (PG, PG/VG mixture alone and PG/VG mixture in combination with nicotine) on BEAS-2B cells. The study aimed to investigate the impact of aerosols from different solvents on gene expression profiles, intracellular biomarkers (i.e., reactive oxygen species content, nitric oxide content, and caspase-3/7 activity), and extracellular biomarkers (i.e., IL-6, IL-8, TNF-α, and malondialdehyde) of BEAS-2B cells on-chip. Transcriptome analyses suggest that ribosomal function could serve as a potential target for the impact of aerosols derived from various solvents on the biological responses of BEAS-2B cells on-chip. And the results showed that aerosols of PG/VG mixtures had significantly less effect on intracellular and extracellular biomarkers in BEAS-2B cells than aerosols of PG, whereas increasing nicotine levels might elevate these effects of aerosol from PG/VG mixture.


Asunto(s)
Aerosoles , Sistemas Electrónicos de Liberación de Nicotina , Solventes , Humanos , Solventes/toxicidad , Solventes/química , Línea Celular , Propilenglicol/toxicidad , Glicerol/toxicidad , Glicerol/química , Dispositivos Laboratorio en un Chip , Especies Reactivas de Oxígeno/metabolismo , Nicotina/toxicidad , Biomarcadores/metabolismo
6.
Chemosphere ; 358: 142060, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38648981

RESUMEN

The widespread application of engineered nanoparticles (NPs) in environmental remediation has raised public concerns about their toxicity to aquatic organisms. Although appropriate surface modification can mitigate the ecotoxicity of NPs, the lack of polymer coating to inhibit toxicity completely and the insufficient knowledge about charge effect hinder the development of safe nanomaterials. Herein, we explored the potential of polyglycerol (PG) functionalization in alleviating the environmental risks of NPs. Iron oxide NPs (ION) of 20, 100, and 200 nm sizes (IONS, IONM and IONL, respectively) were grafted with PG to afford ION-PG. We examined the interaction of ION and ION-PG with Caenorhabditis elegans (C. elegans) and found that PG suppressed non-specific interaction of ION with C. elegans to reduce their accumulation and to inhibit their translocation. Particularly, IONS-PG was completely excluded from worms of all developmental stages. By covalently introducing sulfate, carboxyl and amino groups onto IONS-PG, we further demonstrated that positively charged IONS-PG-NH3+ induced high intestinal accumulation, cuticle adhesion and distal translocation, whereas the negatively charged IONS-PG-OSO3- and IONS-PG-COO- were excreted out. Consequently, no apparent deleterious effects on brood size and life span were observed in worms treated by IONS-PG and IONS-PG bearing negatively charged groups. This study presents new surface functionalization approaches for developing ecofriendly nanomaterials.


Asunto(s)
Caenorhabditis elegans , Glicerol , Polímeros , Caenorhabditis elegans/efectos de los fármacos , Animales , Glicerol/química , Glicerol/toxicidad , Polímeros/química , Nanopartículas Magnéticas de Óxido de Hierro/química , Nanopartículas Magnéticas de Óxido de Hierro/toxicidad , Tamaño de la Partícula , Propiedades de Superficie
7.
Biomater Adv ; 160: 213830, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552500

RESUMEN

Cancer, namely breast and prostate cancers, is the leading cause of death in many developed countries. Controlled drug delivery systems are key for the development of new cancer treatment strategies, to improve the effectiveness of chemotherapy and tackle off-target effects. In here, we developed a biomaterials-based wireless electrostimulation system with the potential for controlled and on-demand release of anti-cancer drugs. The system is composed of curcumin-loaded poly(3,4-ethylenedioxythiophene) nanoparticles (CUR/PEDOT NPs), encapsulated inside coaxial poly(glycerol sebacate)/poly(caprolactone) (PGS/PCL) electrospun fibers. First, we show that the PGS/PCL nanofibers are biodegradable, which allows the delivery of NPs closer to the tumoral region, and have good mechanical properties, allowing the prolonged storage of the PEDOT NPs before their gradual release. Next, we demonstrate PEDOT/CUR nanoparticles can release CUR on-demand (65 % of release after applying a potential of -1.5 V for 180 s). Finally, a wireless electrostimulation platform using this NP/fiber system was set up to promote in vitro human prostate cancer cell death. We found a decrease of 67 % decrease in cancer cell viability. Overall, our results show the developed NP/fiber system has the potential to effectively deliver CUR in a highly controlled way to breast and prostate cancer in vitro models. We also show the potential of using wireless electrostimulation of drug-loaded NPs for cancer treatment, while using safe voltages for the human body. We believe our work is a stepping stone for the design and development of biomaterial-based future smarter and more effective delivery systems for anti-cancer therapy.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Glicerol/análogos & derivados , Nanopartículas , Poliésteres , Polímeros , Tecnología Inalámbrica , Humanos , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Nanopartículas/química , Polímeros/química , Poliésteres/química , Curcumina/administración & dosificación , Curcumina/química , Glicerol/química , Masculino , Neoplasias de la Próstata/terapia , Antineoplásicos/administración & dosificación , Decanoatos/química , Nanofibras/química , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Línea Celular Tumoral , Estimulación Eléctrica/instrumentación , Estimulación Eléctrica/métodos
8.
Int J Biol Macromol ; 264(Pt 2): 130698, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458296

RESUMEN

In the pursuit of eco-friendly and sustainable materials, polyglycerol diacid polymers hold immense promise for drug delivery compared to those derived from fossil fuels. Harnessing this potential, we aimed to prepare nanoparticles (NPs) derived from sustainable polymers, loaded with ferulic acid (FA), a natural polyphenolic compound known for its shielding effect against liver-damaging agents, including carbon tetrachloride (CCl4). Glycerol was esterified with renewable monomers, such as succinic acid, adipic acid, and/or FA, resulting in the creation of a novel class of polyglycerol diacid polymers. Characterization via Fourier-transform infrared spectroscopy and nuclear magnetic resonance confirmed the successful synthesis of these polymers with <7 % residual monomers. FA-loaded NPs were fabricated using the newly synthesized polymers. To further augment their potential, the NPs were coated with chitosan. The chitosan-coated NPs boasted an optimal PS of 290 ± 5.03 nm, showing superior physical stability, and a commendable EE% of 58.79 ± 0.43%w/v. The cytotoxicity was examined on fibroblast cells using the SRB assay. In-vivo experiments employing a CCl4-induced liver injury model yielded compelling evidence of the heightened hepatoprotective effects conferred by chitosan-coated particles. This demonstrates the benefits of incorporating sustainable polymers into innovative composites for efficient drug delivery, indicating their potential for creating versatile platforms for various therapeutic applications.


Asunto(s)
Quitosano , Ácidos Cumáricos , Nanopartículas , Glicerol/química , Quitosano/química , Polímeros/química , Nanopartículas/química , Portadores de Fármacos/química , Tamaño de la Partícula
9.
Food Chem ; 443: 138596, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301566

RESUMEN

Enzymatic glycerolysis is a biotechnological process for structuring vegetable oils. This study investigates the kinetics of glycerolysis of peanut oil and explores the potential of the resulting structured oil to enhance the physical stability of water-in-oil emulsions. Using a 1:1 glycerol-to-oil molar ratio and 4 % lipase B from Candida antarctica as a catalyst, the reaction was conducted at 65 °C with stirring at 400 rpm. Acylglyceride fractions changes were quantified through NMR and DSC. Fat crystal formation was observed using scanning electron microscopy. The results revealed a first-order decay pattern, converting triglycerides into monoacylglycerides and diacylglycerides in less than 16 h. Subsequently, water-in-oil emulsions prepared with glycerolized oil showed augmented stability through multiple light scattering techniques and visual assessment. The structured oils effectively delayed phase separation, highlighting the potential of glycerolysis in developing vegetable oil-based emulsions with improved functional properties and reduced saturated fatty acid content.


Asunto(s)
Aceites de Plantas , Agua , Aceites de Plantas/química , Emulsiones , Aceites , Glicerol/química , Ácidos Grasos/química
10.
Respir Res ; 25(1): 75, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317149

RESUMEN

BACKGROUND: Electronic cigarettes (EC) have gained popularity, especially among young people, with the introduction of fourth-generation devices based on e-liquids containing nicotine salts that promise a smoother vaping experience than freebase nicotine. However, the toxicological effects of nicotine salts are still largely unknown, and the chemical diversity of e-liquids limits the comparison between different studies to determine the contribution of each compound to the cytotoxicity of EC aerosols. Therefore, the aim of this study was to evaluate the toxicological profile of controlled composition e-liquid aerosols to accurately determine the effects of each ingredient based on exposure at the air-liquid interface. METHODS: Human lung epithelial cells (A549) were exposed to undiluted aerosols of controlled composition e-liquids containing various ratios of propylene glycol (PG)/vegetable glycerin (VG) solvents, freebase nicotine, organic acids, nicotine salts, and flavoured commercial e-liquids. Exposure of 20 puffs was performed at the air-liquid interface following a standard vaping regimen. Toxicological outcomes, including cytotoxicity, inflammation, and oxidative stress, were assessed 24 h after exposure. RESULTS: PG/VG aerosols elicited a strong cytotoxic response characterised by a 50% decrease in cell viability and a 200% increase in lactate dehydrogenase (LDH) production, but had no effects on inflammation and oxidative stress. These effects occurred only at a ratio of 70/30 PG/VG, suggesting that PG is the major contributor to aerosol cytotoxicity. Both freebase nicotine and organic acids had no greater effect on cell viability and LDH release than at a 70/30 PG/VG ratio, but significantly increased inflammation and oxidative stress. Interestingly, the protonated form of nicotine in salt showed a stronger proinflammatory effect than the freebase nicotine form, while benzoic acid-based nicotine salts also induced significant oxidative stress. Flavoured commercial e-liquids was found to be cytotoxic at a threshold dose of ≈ 330 µg/cm². CONCLUSION: Our results showed that aerosols of e-liquids consisting only of PG/VG solvents can cause severe cytotoxicity depending on the concentration of PG, while nicotine salts elicit a stronger pro-inflammatory response than freebase nicotine. Overall, aerosols from fourth-generation devices can cause different toxicological effects, the nature of which depends on the chemical composition of the e-liquid.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Humanos , Adolescente , Nicotina/toxicidad , Vapeo/efectos adversos , Sales (Química) , Solventes , Propilenglicol/toxicidad , Propilenglicol/química , Glicerol/química , Glicerol/farmacología , Aerosoles , Aromatizantes , Inflamación
11.
Chembiochem ; 25(6): e202300839, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38265820

RESUMEN

Switching from oil-based to bio-based feedstocks to ensure the green transition to a sustainable and circular future is one of the most pressing challenges faced by many industries worldwide. For the cosmetics and personal and house care industries there is a strong drive to accelerate this transition from the customers that starts favoring the purchase of naturally derived and bio-degradable products over the traditionally available products. In this work we developed a series of fully biobased macromolecules constituted of a glycerol-based oligoester backbone. Based on the subsequent derivatization with fatty acids or peptides, the resulting products may find application as emulsifiers, wetting agents, and potential vectors for the delivery of bioactive peptides. All steps of the resulting macromolecules were conducted following the green chemistry principles with no toxic or environmentally damaging compounds that were used in the overall production process.


Asunto(s)
Glicerol , Polímeros , Glicerol/química , Polímeros/química , Péptidos , Ácidos Grasos/química
12.
Chem Res Toxicol ; 37(2): 227-233, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38241642

RESUMEN

Electronic nicotine delivery systems (ENDS) are battery-powered devices introduced to the market as safer alternatives to combustible cigarettes. Upon heating the electronic liquid (e-liquid), aerosols are released, including several toxicants, such as volatile organic compounds (VOCs). Benzene has been given great attention as a major component of the VOCs group as it increases cancer risk upon inhalation. In this study, several basic e-liquids were tested for benzene emissions. The Aerosol Lab Vaping Instrument was used to generate aerosols from ENDS composed of different e-liquid combinations: vegetable glycerin (VG), propylene glycol (PG), nicotine (nic), and benzoic acid (BA). The tested mixtures included PG, PG + nic + BA, VG, VG + nic + BA, 30/70 PG/VG, and 30/70 PG/VG + nic + BA. A carboxen polydimethylsiloxane fiber for a solid-phase microextraction was placed in a gas cell to trap benzene emitted from a Sub-Ohm Minibox C device. Benzene was adsorbed on the fiber during the puffing process and for an extra 15 min until it reached equilibrium, and then it was determined using gas chromatography-mass spectrometry. Benzene was quantified in VG but not in PG or the 30/70 PG/VG mixtures. However, benzene concentration increased in all tested mixtures upon the addition of nicotine benzoate salt. Interestingly, benzene was emitted at the highest concentration when BA was added to PG. However, lower concentrations were found in the 30/70 PG/VG and VG mixtures with BA. Both VG and BA are sources of benzene. Enhanced emissions, however, are mostly noticeable when BA is mixed with PG and not VG.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Nicotina , Nicotina/análisis , Benceno/análisis , Propilenglicol/química , Glicerol/química , Aerosoles , Verduras , Ácido Benzoico
13.
J Oleo Sci ; 72(9): 819-829, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37574284

RESUMEN

Oleofoams have garnered significant attention in many personal care applications because of their favorable physicochemical properties, including texture and detergency. To explore the potential use of mixtures of high-melting-point fat crystals (tribehenoyl-glycerol [BBB]) and edible oils as low-cost and stable aeration systems, we created oleofoams composed of olive oil and BBB. By whipping the BBB/olive oil oleogels after rapid cooling and subsequent heating, we successfully prepared oleofoams without emulsifier additives. Mixtures of the BBB/olive oil formed oleofoams at BBB concentrations of 4.0-20.0 wt.%. The resultant oleofoams maintained their overrun rates and did not coalesce, even with additional whipping after the overrun rate was maximized. More closely packed bubbles, concentrated bubble size distributions, and stronger interfacial elasticity were attributed to the increasing BBB concentrations, and the thermal results revealed that further heating was required to damage the foam structure. The characteristics of these new oleofoams are closely related to their BBB concentrations, and the observed effects are attributed to the network structure of the thickened crystal layer and enhanced gelling in the oil phase.


Asunto(s)
Glicerol , Coloides/química , Glicerol/química , Aceite de Oliva/química , Reología
14.
Chem Res Toxicol ; 36(7): 1021-1027, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37406365

RESUMEN

Recently, many electronic cigarettes (ECIGs) manufacturers have begun offering e-liquids, known as "nicotine salts". These salts that have started gaining big popularity among users can be formed by adding weak acid to e-liquid mixtures consisting of propylene glycol (PG), vegetable glycerin (VG), flavors, and nicotine. The latter can exist in two forms: monoprotonated (mp) and freebase (fb) based on the pH of the matrix. Over the years, the determination of the fraction of fb was found important to policymakers as the prevalence of this form in ECIGs has been associated with the harshness sensory of inhalable aerosols. Liquid-liquid extraction (LLE), 1H NMR, and Henderson-Hasselback have been developed to deduce the fraction of fb; however, these methods were found to be time-consuming and have shown some challenges mainly due to the presence of a non-aqueous matrix consisting of PG and VG. This paper presents a quick non-aqueous pH measurement-based method that allows a quick determination of the fraction fb by just measuring the pH and the dielectric constant of the e-liquid. Then, by inputting these values into an established mathematical relationship, the fraction fb can be deduced. The relationship between pH, dielectric constant, and fb relies on knowing the values of the acidity dissociation constants of nicotine, which were determined for the first time in various PG/VG mixtures using a non-aqueous potentiometric titration. To validate the proposed method, the fraction fb was determined for commercials and lab-made nicotine salts utilizing the pH and LLE methods. The variation between the two methods was (<8.0%) for commercial e-liquids and lab-made nicotine salts containing lactic acid and salicylic acid. A larger discrepancy of up to 22% was observed for lab-made nicotine salts containing benzoic acid, which can be attributed to the stronger affinity of benzoic acid to toluene in the LLE method.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Nicotina , Nicotina/química , Sales (Química) , Propilenglicol/química , Glicerol/química , Verduras
15.
Molecules ; 28(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37298901

RESUMEN

Refill liquids for electronic cigarettes are an important area of research due to the health safety and quality control of such products. A method was developed for the determination of glycerol, propylene glycol, and nicotine in refill liquids using liquid chromatography, coupled with tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring (MRM) mode with electrospray ionisation (ESI). Sample preparation was based on a simple dilute-and-shoot approach, with recoveries ranging from 96 to 112% with coefficients of variation < 6.4%. Linearity, limits of detection and quantification (LOD, LOQ), repeatability, and accuracy were determined for the proposed method. The proposed sample preparation and the developed chromatographic method using hydrophilic interaction liquid chromatography (HILIC) were successfully applied for the determination of glycerol, propylene glycol, and nicotine in refill liquid samples. For the first time, the developed method using HILIC-MS/MS has been applied for the determination of the main components of refill liquids in a single analysis. The proposed procedure is rapid and straightforward and is suitable for quick determination of glycerol, propylene glycol, and nicotine. The nicotine concentrations corresponded to the labelling of samples (it varied from

Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Nicotina , Nicotina/análisis , Glicerol/química , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Propilenglicol
16.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36983077

RESUMEN

The natural polyphenolic compound Rottlerin (RoT) showed anticancer properties in a variety of human cancers through the inhibition of several target molecules implicated in tumorigenesis, revealing its potential as an anticancer agent. Aquaporins (AQPs) are found overexpressed in different types of cancers and have recently emerged as promising pharmacological targets. Increasing evidence suggests that the water/glycerol channel aquaporin-3 (AQP3) plays a key role in cancer and metastasis. Here, we report the ability of RoT to inhibit human AQP3 activity with an IC50 in the micromolar range (22.8 ± 5.82 µM for water and 6.7 ± 2.97 µM for glycerol permeability inhibition). Moreover, we have used molecular docking and molecular dynamics simulations to understand the structural determinants of RoT that explain its ability to inhibit AQP3. Our results show that RoT blocks AQP3-glycerol permeation by establishing strong and stable interactions at the extracellular region of AQP3 pores interacting with residues essential for glycerol permeation. Altogether, our multidisciplinary approach unveiled RoT as an anticancer drug against tumors where AQP3 is highly expressed providing new information to aquaporin research that may boost future drug design.


Asunto(s)
Acuaporina 3 , Acuaporinas , Humanos , Acuaporina 3/química , Simulación del Acoplamiento Molecular , Glicerol/química , Acuaporinas/química , Agua/metabolismo
17.
Food Chem Toxicol ; 175: 113708, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36889430

RESUMEN

Homemade e-liquids and power-adjustable vaping devices may carry higher risks than commercial formulations and fixed-power devices. This study used human macrophage-like and bronchial epithelial (NHBE) cell cultures to investigate toxicity of homemade e-liquids containing propylene glycol and vegetable glycerin (PG/VG), nicotine, vitamin E acetate (VEA), medium-chain fatty acids (MCFAs), phytol, and cannabidiol (CBD). SmallAir™ organotypic epithelial cultures were exposed to aerosols generated at different power settings (10-50 W). Carbonyl levels were measured, and endpoints reflecting epithelial function (ciliary beating frequency [CBF]), integrity (transepithelial electrical resistance [TEER]), and structure (histology) were investigated. Treatment with nicotine or VEA alone or with PG/VG did not impact cell viability. CBD, phytol, and lauric acid caused cytotoxicity in both culture systems and increased lipid-laden macrophages. Exposure of SmallAir™ organotypic cultures to CBD-containing aerosols resulted in tissue injury and loss of CBF and TEER, while PG/VG alone or with nicotine or VEA did not. Aerosols generated with higher power settings had higher carbonyl concentrations. In conclusion, the presence and concentration of certain chemicals and device power may induce cytotoxicity in vitro. These results raise concerns that power-adjustable devices may generate toxic compounds and suggest that toxicity assessments should be conducted for both e-liquid formulations and their aerosols.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Humanos , Nicotina/toxicidad , Nicotina/química , Bronquios , Verduras , Aerosoles/toxicidad , Glicerol/química , Propilenglicol/química
18.
Molecules ; 28(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36838889

RESUMEN

The use of e-cigarettes (ECs) has become increasingly popular worldwide, even though scientific results have not established their safety. Diacetyl (DA) and acetylpropionyl (AP), which can be present in ECs, are linked with lung diseases. Ethyl maltol (EM)-the most commonly used flavoring agent-can be present in toxic concentrations. Until now, there is no methodology for the determination of nicotine, propylene glycol (PG), vegetable glycerin (VG), EM, DA, and acetylpropionyl in e-liquids that can be used as a quality control procedure. Herein, gas chromatography coupled with mass spectrometry (GC-MS) was applied for the development of analytical methodologies for these substances. Two GC-MS methodologies were developed and fully validated, fulfilling the standards for the integration in a routine quality control procedure by manufacturers. As proof of applicability, the methodology was applied for the analysis of several e-liquids. Differences were observed between the labeled and the experimental levels of PG, VG, and nicotine. Three samples contained EM at higher concentrations compared to the other samples, while only one contained DA. These validated methodologies can be used for the quality control analysis of EC liquid samples regarding nicotine, PG, and VG amounts, as well as for the measurement of the EM.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Nicotina , Nicotina/análisis , Cromatografía de Gases y Espectrometría de Masas , Verduras , Diacetil , Propilenglicol/química , Glicerol/química
19.
Chem Res Toxicol ; 36(1): 14-22, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36597559

RESUMEN

A range of flavoring molecules are used in electronic cigarette liquids (e-liquids), some of which have been shown to form cyclic acetal adducts with e-liquid solvent components propylene glycol (PG) and vegetable glycerine (VG). The objective of this study was to identify the range of flavoring molecules which form adducts in e-liquid products. Common e-liquid flavoring molecules (N = 36) from a range of chemical class groups were exposed to PG, VG, or methanol and analyzed by GC-MS over a time frame of 4 weeks to identify possible reaction products. Adduct formation was observed, with 14 of the flavoring molecules reacting with methanol, 10 reacting with PG, and 10 reacting with VG. Furfural PG and VG acetals, valeraldehyde PG and VG acetals, veretraldehyde PG and VG acetals, p-anisaldehyde PG and VG acetals, and piperonal VG acetal were confirmed for the first time. Adducts formed by reaction with ketone-containing flavoring molecules were also observed for the first time. The presence of these acetals was confirmed in 32% of commercial e-liquid products analyzed (N = 142). This study has established a range of flavoring molecules which are able to react with solvent components PG and VG in e-liquids under standard storage conditions. These newly identified adducts need to be further assessed to determine their toxicological safety.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Nicotina/química , Acetales , Metanol , Solventes , Propilenglicol/química , Glicerol/química , Aromatizantes/química , Verduras/química
20.
Sci Rep ; 12(1): 18571, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329089

RESUMEN

The size and chemical content of particles in electronic cigarette vapors (e-vapors) dictate their fate in the human body. Understanding how particles in e-vapors are formed and their size is critical to identifying and mitigating the adverse consequences of vaping. Thermal decomposition and reactions of the refill liquid (e-liquid) components play a key role in new particles formation. Here we report the evolution of particle number concentration in e-vapors over time for variable mixtures of refill e-liquids and operating conditions. Particle with aerodynamic diameter < 300 nm accounted for up to 17% (or 780 µg/m3) of e-vapors particles. Two events of increasing particle number concentration were observed, 2-3 s after puff completion and a second 4-5 s later. The intensity of each event varied by the abundance of propylene glycol, glycerol, and flavorings in e-liquids. Propylene glycol and glycerol were associated with the first event. Flavorings containing aromatic and aliphatic unsaturated functional groups were strongly associated with the second event and to a lesser extent with the first one. The results indicate that particles in e-vapors may be formed through the heteromolecular condensation of propylene glycol, glycerol, and flavorings, including both parent chemicals and/or their thermal decomposition products.


Asunto(s)
Cigarrillo Electrónico a Vapor , Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Humanos , Glicerol/química , Propilenglicol/química , Aromatizantes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA