Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
BMC Plant Biol ; 24(1): 165, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431542

RESUMEN

BACKGROUND: Glycyrrhiza uralensis Fisch., a valuable medicinal plant, shows contrasting salt tolerance between seedlings and perennial individuals, and salt tolerance at seedling stage is very weak. Understanding this difference is crucial for optimizing cultivation practices and maximizing the plant's economic potential. Salt stress resistance at the seedling stage is the key to the cultivation of the plant using salinized land. This study investigated the physiological mechanism of the application of glycine betaine (0, 10, 20, 40, 80 mM) to seedling stages of G. uralensis under salt stress (160 mM NaCl). RESULTS: G. uralensis seedlings' growth was severely inhibited under NaCl stress conditions, but the addition of GB effectively mitigated its effects, with 20 mM GB had showing most significant alleviating effect. The application of 20 mM GB under NaCl stress conditions significantly increased total root length (80.38%), total root surface area (93.28%), and total root volume (175.61%), and significantly increased the GB content in its roots, stems, and leaves by 36.88%, 107.05%, and 21.63%, respectively. The activity of betaine aldehyde dehydrogenase 2 (BADH2) was increased by 74.10%, 249.38%, and 150.60%, respectively. The 20 mM GB-addition treatment significantly increased content of osmoregulatory substances (the contents of soluble protein, soluble sugar and proline increased by 7.05%, 70.52% and 661.06% in roots, and also increased by 30.74%, 47.11% and 26.88% in leaves, respectively.). Furthermore, it markedly enhanced the activity of antioxidant enzymes and the content of antioxidants (SOD, CAT, POD, APX and activities and ASA contents were elevated by 59.55%, 413.07%, 225.91%, 300.00% and 73.33% in the root, and increased by 877.51%, 359.89%, 199.15%, 144.35%, and 108.11% in leaves, respectively.), and obviously promoted salt secretion capacity of the leaves, which especially promoted the secretion of Na+ (1.37 times). CONCLUSIONS: In summary, the exogenous addition of GB significantly enhances the salt tolerance of G. uralensis seedlings, promoting osmoregulatory substances, antioxidant enzyme activities, excess salt discharge especially the significant promotion of the secretion of Na+Future studies should aim to elucidate the molecular mechanisms that operate when GB regulates saline stress tolerance.


Asunto(s)
Antioxidantes , Glycyrrhiza uralensis , Humanos , Antioxidantes/metabolismo , Betaína/farmacología , Betaína/metabolismo , Tolerancia a la Sal/fisiología , Cloruro de Sodio/farmacología , Plantones/metabolismo
2.
J Ethnopharmacol ; 328: 118101, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38527575

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: This research substantiates the traditional use of Glycyrrhiza uralensis Fisch. for liver health, with scientific evidence of the non-toxic and lipid-lowering properties of licorice sprout extracts. The sprouts' rich mineral and amino acid content, along with their strong antioxidant activity, reinforce their value in traditional medicine. These findings bridge ancient herbal practices with modern science, highlighting licorice's potential in contemporary therapeutic applications. AIM OF THE STUDY: The study aimed to investigate the dietary and medicinal potential of G. uralensis sprouts by assessing their safety, nutritional content, and antioxidant properties using both plant and animal models. Specifically, the study sought to determine the effects of different sizes of licorice sprouts on lipid metabolism in human liver cancer cells and their overall impact on rat health indicators. MATERIALS AND METHODS: The study examined the effects of aqueous and organic extracts from G. uralensis sprouts of varying lengths on the cytotoxicity, lipid metabolism, and antioxidant activity in HepG2 cells, alongside in vivo impacts on Sprague-Dawley rats, using MTT, ICP, and HPLC. It aimed to assess the potential health benefits of licorice sprouts by analyzing their protective effects against oxidative stress and their nutritional content. RESULTS: Licorice sprout extracts from G. uralensis demonstrated no cytotoxicity in HepG2 cells, significantly reduced lipid levels, and enhanced antioxidant activities, with the longest sprouts (7 cm) showing higher mineral, sugar, and arginine content as well as increased glycyrrhizin and liquiritigenin. In vivo studies with Sprague-Dawley rats revealed weight gain and improved antioxidant enzyme activities in blood plasma and liver tissues after consuming the extracts, highlighting the sprouts' dietary and therapeutic potential. CONCLUSIONS: This study is the first to demonstrate that G. uralensis sprouts, particularly those 7 cm in length, have no cytotoxic effects, reduce lipids, and have high mineral and antioxidant contents, offering promising dietary and therapeutic benefits.


Asunto(s)
Glycyrrhiza uralensis , Glycyrrhiza , Ratas , Humanos , Animales , Glycyrrhiza uralensis/química , Glycyrrhiza/química , Antioxidantes/farmacología , Antioxidantes/análisis , Ratas Sprague-Dawley , Raíces de Plantas/química , Extractos Vegetales/química , Minerales/análisis , Lípidos
3.
Stud Health Technol Inform ; 308: 396-403, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38007765

RESUMEN

Primary splenic angiosarcoma is a very rare disease that causes the development of malignant tumors in the vascular endothelium of the splenic sinuses. Moreover, the disease maintains a very low survival rate for patients to live over 5 years, which is relatively low when compared to another splenic cancer, splenic lymphomas. The treatment options for splenic angiosarcoma narrow down to surgical removal or radiation combined with chemotherapy, but both cost a lot, so discovering potential alternative treatments may eventually increase the possible survival rate. Ginseng and Zhi Gan Cao are both common herbs in Traditional Chinese Medicine (TCM); however, the price of Ginseng is much higher than that of Zhi Gan Cao. A possible reason could be the frequent studies and researches over Ginseng's active ingredient, ginsenoside rh2 or rg3 as they are both potent cancer treatments. The reason to study Zhi Gan Cao and predict its possible potential in cancer treatment is due to the similarity between its active ingredient and the active ingredient in Ginseng, namely, ginsenoside rh2 and licorice saponins. Both TCM contain the active ingredient, triterpenoid saponin, as their main composition, and the further text will predict the possible research and results that may be taken in vitro to reveal the question of whether licorice saponin has the potential to become a major treatment for splenic angiosarcoma or not.


Asunto(s)
Glycyrrhiza uralensis , Hemangiosarcoma , Saponinas , Neoplasias del Bazo , Humanos , Medicina Tradicional China , Neoplasias del Bazo/tratamiento farmacológico , Hemangiosarcoma/tratamiento farmacológico , Factores de Crecimiento Endotelial Vascular
4.
J Agric Food Chem ; 71(42): 15485-15496, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37828905

RESUMEN

Soil salinity is a severe abiotic stress that reduces crop productivity. Recently, there has been growing interest in the application of microbes, mainly plant-growth-promoting bacteria (PGPB), as inoculants for saline land restoration and plant salinity tolerance. Herein, the effects of the plant endophyte G2 on regulating soil N cycle, plant N uptake and assimilate pathways, proline and glycine betaine biosynthesis, and catabolic pathways were investigated in Glycyrrhiza uralensis exposed to salinity. The results indicated that G2 improved the efficiency of N absorption and assimilation of plants by facilitating soil N cycling. Then, G2 promoted the synthesis substrates of proline and glycine betaine and accelerated its synthesis rate, which increased the relative water content and reduced the electrolyte leakage, eventually protecting the membrane system caused by salt stress in G. uralensis. These findings will provide a new idea from soil to plant systems in a salinity environment.


Asunto(s)
Glycyrrhiza uralensis , Glycyrrhiza uralensis/metabolismo , Prolina/metabolismo , Bacillus cereus , Betaína/farmacología , Estrés Salino
5.
Toxicol Sci ; 196(1): 16-24, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37535691

RESUMEN

Glycyrrhiza uralensis Fisch. ex DC, one of the 3 pharmacopeial species of licorice and widely used in dietary supplements, can inhibit certain cytochrome P450 (CYP) enzymes. Thereby, G. uralensis preparations have the potential to cause pharmacokinetic drug interactions when consumed along with prescription medicines. One compound (1.34 mg dry weight) responsible for inhibiting CYP2B6, CYP2C8, and CYP2C9 was isolated using bioactivity-guided fractionation from 250 g dried roots, stolons, and rhizomes. The enzyme kinetics and mechanisms of inhibition were determined using human liver microsomes, recombinant enzymes, and UHPLC-MS/MS-based assays. Identified as licoisoflavone B, this compound displayed reversible inhibition of CYP2C8 with an IC50 value of 7.4 ± 1.1 µM and reversible inhibition of CYP2C9 with an IC50 value of 4.9 ± 0.4 µM. The enzyme kinetics indicated that the mechanism of inhibition was competitive for recombinant CYP2C8, with a Ki value of 7.0 ± 0.7 µM, and mixed-type inhibition for recombinant CYP2C9, with a Ki value of 1.2 ± 0.2 µM. Licoisoflavone B moderately inhibited CYP2B6 through a combination of irreversible and reversible mechanisms with an IC50 value of 16.0 ± 3.9 µM.


Asunto(s)
Glycyrrhiza uralensis , Humanos , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2B6 , Espectrometría de Masas en Tándem , Citocromo P-450 CYP2C9 , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450 , Microsomas Hepáticos
6.
Nutrients ; 15(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37432237

RESUMEN

Atopic dermatitis is a chronic skin disease that affects millions of people all over the world. The objective of this study was to evaluate the inhibitory effects of the roots of Glycyrrhiza uralensis (GU) and Donkey Hide Gelatin (DHG) water extracts on DNCB-induced NC/Nga mice and TNF-α/IFN-γ treated keratinocytes or LPS-stimulated macrophages. The combined treatment using the water extracts of GU and DHG improved the skin symptom evaluation score and skin histology, with increased expression of the skin barrier proteins Claudin 1 and Sirt 1 in lesion areas. The IFN-γ activity was promoted in PBMCs, ALN, and dorsal skin tissue, while the absolute cell number was reduced for T cells so that the production and expression of serum IgE and cytokines were suppressed. In TNF-α/IFN-γ induced HaCaT cells, IL-6, IL-8, MDC, and RANTES were all inhibited by GU and DHG water extracts, while ICAM-1 and COX-2 levels were similarly downregulated. In addition, GU and DHG water extracts decreased LPS-mediated nitric oxide, IL-6, TNF-α, and PGE2 in RAW 264.7 cells, and the expression of iNOS and COX-2 also decreased. Notably, the DHG:GU ratio of 4:1 was shown to have the best effects of all ratios. In conclusion, GU and DHG have anti-skin inflammatory potentials that can be used as alternative ingredients in the formula of functional foods for people with atopic dermatitis.


Asunto(s)
Dermatitis Atópica , Glycyrrhiza uralensis , Animales , Ratones , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dinitroclorobenceno , Gelatina , Ciclooxigenasa 2 , Interleucina-6 , Lipopolisacáridos , Factor de Necrosis Tumoral alfa , Alimentos Funcionales
7.
J Ethnopharmacol ; 309: 116320, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-36828197

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cardiovascular complications are highly prevalent in patients with diabetes. Zhi-Gan-Cao-Tang (ZGCT), a famous traditional Chinese medicine (TCM) prescription, can be used for the treatment of diabetes with cardiovascular disease complications. ZGCT is composed of nine Chinese herbs: the radix and rhizoma of Glycyrrhiza uralensis Fisch. (Gancao in Chinese, 12 g), the radix of Rehmannia glutinosa Libosch. (Dihuang in Chinese, 50 g), the radix and rhizoma of Panax ginseng C. A. Mey. (Renshen in Chinese, 6 g), the radix of Ophiopogon japonicus (L. f.) Ker-Gawl. (Maidong in Chinese, 10 g), the fructus of Ziziphus jujuba Mill. (Dazao in Chinese, 18 g), the fructus of Cannabis sativa L. (Maren in Chinese, 10 g), Donkey-hide gelatine (Ejiao in Chinese, 6 g), the ramulus of Cinnamomum cassia Presl (Guizhi in Chinese, 9 g), and the fresh rhizoma of Zingiber officinale Rosc. (Shengjiang in Chinese, 9 g). Many of these Chinese herbs are also used in other systems of medicine (Japan, India, European, etc.). However, the effects and effective constituents of ZGCT against diabetic cardiovascular disease remain unclear. AIM OF THE STUDY: This study aimed to investigate the protective effect of ZGCT against diabetic myocardial infarction (DMI) injury in vivo and in vitro and to identify the effective constituents of ZGCT. MATERIALS AND METHODS: The in vivo effect on DMI injury was evaluated in a DMI mouse model. The in vitro effect and effective constituent screening experiments were conducted in an H9c2 cardiomyocyte injury model induced by high glucose and hypoxia. RESULTS: It was found that ZGCT significantly reduced myocardial infarction size and serum lactate dehydrogenase (LDH) levels in DMI mice. Myocardial histopathological experiments showed that ZGCT alleviated the disordered arrangement and fracture of muscle fibers and cell disappearance and reduced inflammatory cell infiltration. Cellular experiments showed that ZGCT inhibited cardiomyocyte apoptosis by decreasing the expression of the proapoptotic factor Bax. In addition, it inhibited inflammatory reactions by suppressing the activation of the IκBα/NF-κB pathway and the expression of iNOS. Eight constituents from six Chinese herbs in the recipe of ZGCT were found to enhance the viability of injured cardiomyocytes, and six effective constituents played protective roles through anti-apoptotic and/or anti-inflammatory activities. In addition, one of the effective constituents, glycyrrhizic acid, was verified in vivo to have cardioprotective effect on DMI mice. CONCLUSIONS: The TCM prescription ZGCT protects against DMI by inhibiting cardiomyocyte apoptosis and reducing inflammatory reactions. Eight effective constituents of ZGCT were identified. This study provides a scientific basis for the clinical application of ZGCT and is valuable for quality marker research on this prescription.


Asunto(s)
Antineoplásicos , Diabetes Mellitus , Medicamentos Herbarios Chinos , Glycyrrhiza uralensis , Infarto del Miocardio , Ratones , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China , Diabetes Mellitus/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/prevención & control
8.
Ecotoxicol Environ Saf ; 247: 114264, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334340

RESUMEN

Salt stress severely affects the growth and productivity of Glycyrrhiza uralensis. Our previous research found that the endophyte Bacillus cereus G2 alleviated the osmotic and oxidative stress in G. uralensis exposed to salinity. However, the mechanism is still unclear. Here, a pot experiment was conducted to analyse the change in parameters related to osmotic adjustment and antioxidant metabolism by G2 in salt-stressed G. uralensis at the physio-biochemistry and transcriptome levels. The results showed that G2 significantly increased proline content by 48 %, glycine betaine content by 75 % due to activated expression of BADH1, and soluble sugar content by 77 % due to upregulated expression of α-glucosidase and SS, which might help to decrease the cell osmotic potential, enable the cell to absorb water, and stabilize the cell's protein and membrane structure, thereby alleviating osmotic stress. Regarding antioxidant metabolism, G2 significantly decreased malondialdehyde (MDA) content by 27 %, which might be ascribed to the increase in superoxide dismutase (SOD) activity that facilitated the decrease in the superoxide radical (O2‾) production rate; it also increased the activities of catalase (CAT), ascorbate peroxidase (APX) and glutathione peroxidase (GPX), which helped stabilize the normal level of hydrogen peroxide (H2O2). G2 also increased glutathione (GSH) content by 65 % due to increased glutathione reductase (GR) activity and GSH/GSSG ratio, but G2 decreased oxidized glutathione (GSSG) content by 13 % due to decreased activity of dehydroascorbate reductase (DHAR), which could provide sufficient substrates for the ascorbate-glutathione (AsA-GSH) cycle to eliminate excess H2O2 that was not cleared in a timely manner by the antioxidant enzyme system. Taken together, G2 alleviated osmotic stress by increasing proline, soluble sugar, and glycine betaine contents and alleviated oxidative stress by the synergistic effect of antioxidant enzymes and the AsA-GSH cycle. Therefore, the results may be useful for explaining the mechanism by which endophyte inoculation regulates the salt tolerance of crops.


Asunto(s)
Glycyrrhiza uralensis , Plantones , Bacillus cereus , Transcriptoma , Antioxidantes , Disulfuro de Glutatión , Peróxido de Hidrógeno , Betaína/farmacología , Estrés Salino , Estrés Oxidativo , Glutatión , Azúcares , Prolina
9.
Poult Sci ; 101(10): 102068, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36087472

RESUMEN

Glycyrrhiza uralensis Fisch, also called Gan Cao, is a commonly prescribed herb in traditional Chinese medicine. Gan Cao is associated with immune-modulation and antitumor potential though its mechanism of action is not well-known. To explore the effects of different dietary levels of Gan Cao polysaccharide (GCP) on broilers, a total of 400 Avian broiler chickens were randomly divided into 4 groups with 10 replicates of 10 broilers each. The broilers in the control group were fed a basal diet, while those in the experimental groups were fed the basal diet supplemented with 0.5%, 1.0%, and 1.5% GCP, respectively, for 42 d. The results showed a significant increase in the growth performance in the GCP groups. The antibody titer of NDV and the phagocytosis index was higher in the birds with GCP treatment than in the control group, with the 1% GCP addition displaying the highest titer. The Lactobacillus and Bifidobacteria count in the cecum content of the birds in the 1% GCP group was higher compared to the other groups. In conclusion, dietary supplementation with GCP had a substantial impact on the growth performance, immune response, and microflora population in the cecum of the birds, especially at a level of 1% addition.


Asunto(s)
Microbioma Gastrointestinal , Glycyrrhiza uralensis , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Pollos/fisiología , Dieta/veterinaria , Carbohidratos de la Dieta/farmacología , Suplementos Dietéticos/análisis , Inmunidad , Polisacáridos/farmacología
10.
Drug Deliv ; 29(1): 2743-2750, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35999702

RESUMEN

Liposomes have been widely used for targeted drug delivery, but the disadvantages caused by cholesterol limit the application of conventional liposomes in cancer treatment. The compatibility basis of couplet medicines and the compatibility principle of the traditional Chinese medicine principle of 'monarch, minister, assistant and guide' are the important theoretical basis of Chinese medicine in the treatment of tumor and the important method to solve the problem of high toxicity. In this study, the active ingredients of the couplet medicines Platycodon grandiflorum and Glycyrrhiza uralensis were innovatively utilized, and glycyrrhizic acid (GA) was encapsulated in liposomes constructed by mixing saponin and lecithin, and cholesterol was replaced by platycodin and ginsenoside to construct saponin liposomes (RP-lipo) for the drug delivery system of Chinese medicine. Compared with conventional liposomes, PR-lipo@GA has no significant difference in morphological characteristics and drug release behavior, and also shows stronger targeting of lung cancer cells and anti-tumor ability in vitro, which may be related to the pharmacological properties of saponins themselves. Thus, PR-lipo@GA not only innovatively challenges the status of cholesterol as a liposome component, but also provides another innovative potential system with multiple functions for the clinical application of TCM couplet medicines.


Asunto(s)
Glycyrrhiza uralensis , Neoplasias Pulmonares , Platycodon , Saponinas , Ácido Glicirrínico/farmacología , Humanos , Liposomas , Neoplasias Pulmonares/tratamiento farmacológico , Raíces de Plantas , Saponinas/farmacología
11.
Phytomedicine ; 105: 154371, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35964456

RESUMEN

BACKGROUND: Benign prostatic hyperplasia (BPH) is an age-related disease in adult men. There are two pharmacological treatments for BPH. However, these synthetic materials have various risks, many studies are being conducted to develop new drugs from natural sources. PURPOSE: In this study, we proposed a beneficial effect of Glycyrrhiza uralensis Fischer on the development and progression of BPH, focusing on the androgen receptor (AR) and 5α-reductase 2 (5AR2) signaling axis. METHODS: To explain the therapeutic efficacy of a water extract of G. uralensis (GUWE) for BPH, we used testosterone propionate (TP)-induced BPH rat models and TP-treated RWPE-1 human prostate epithelial cells. RESULTS: In the TP-induced BPH rat models, GUWE reduced the enlarged prostate weight, prostate index, prostate epithelial thickness, and serum DHT levels. In addition, the protein levels of AR and 5AR2 in prostate tissues were significantly decreased by GUWE treatment. Furthermore, GUWE induced apoptosis signaling through an increase of Bcl-2 associated X protein (Bax), caspase 3, and Poly (ADP-ribose) polymerase (PARP) and a decrease of B-cell lymphoma-extra-large (Bcl-xL) in prostate tissues of TP-induced BPH rats. These findings were also confirmed in TP-treated RWPE-1 cells. Fi treatment markedly decreased the sperm count in the epididymis of BPH rats, but GUWE treatment did not affect the sperm count, suggesting less toxicity. CONCLUSION: These findings suggested that GUWE reduces the development of BPH by inhibiting AR-5AR2 and activating the apoptosis signaling pathway. Furthermore, unlike finasteride, GUWE did not affect sperm count. Therefore, we suggest that GUWE has a potential as a safer alternative option for BPH treatment.


Asunto(s)
Glycyrrhiza uralensis , Hiperplasia Prostática , Propionato de Testosterona , Animales , Apoptosis , Colestenona 5 alfa-Reductasa , Humanos , Masculino , Extractos Vegetales , Ratas , Ratas Sprague-Dawley , Semillas , Testosterona
12.
Phytochemistry ; 201: 113284, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35714736

RESUMEN

In this work, a bioassay-guided fractionation strategy was used to isolate 26 phenolic compounds from the ethyl acetate partition of an ethanol extract of the aerial parts of Glycyrrhiza uralensis Fisch. ex DC. Among them, 8 prenylated phenolic compounds (glycyuralins Q-X) were described for the first time. The two enantiomers of glycyuralin Q were purified and their absolute configurations were established by ECD spectral calculations. (1″R, 2″S)-glycyuralin Q and (1″S, 2″R)-glycyuralin Q showed significant inhibitory activities against SARS-CoV-2 virus proteases 3CLpro with IC50 values of 1.5 ± 1.0 and 4.0 ± 0.3 µM, and PLpro with IC50 values of 2.4 ± 0.2 and 1.9 ± 0.1 µM, respectively. Four compounds showed potent cytotoxic activities against A549, Huh-7, and HepG2 human cancer cells with IC50 values ranging from 0.5 to 2.5 µM.


Asunto(s)
COVID-19 , Glycyrrhiza uralensis , Glycyrrhiza , Humanos , Fenoles/farmacología , Componentes Aéreos de las Plantas , SARS-CoV-2
13.
Poult Sci ; 101(7): 101905, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35576745

RESUMEN

This study was conducted to investigate the effects of dietary supplementation of polysaccharides derived from Astragalus membranaceus and Glycyrrhiza uralensis on growth performance, intestinal health, and gut microbiota composition in broilers. A total of 480 one-day-old male Arbor Acres broilers were randomly divided into 4 treatments with 6 replicates comprising 20 broilers each. Treatments included: basal diet without antibiotics (CON); basal diet supplemented with 500 mg/kg terramycin calcium (ANT); basal diet supplemented with 300 mg/kg Astragalus membranaceus polysaccharides (APS); and basal diet supplemented with 150 mg/kg Glycyrrhiza uralensis polysaccharides (GPS). The results showed that ANT, AP,S and GPS supplementation significantly increased average daily gain (ADG) and decreased feed conversion ratio (FCR) of broilers from 1 to 42 d of age. At 42 d, serum immunoglobulin A (IgA), immunoglobulin M (IgM) and immunoglobulin G (IgG) levels of the APS and GPS group were notably higher than those of the CON group, while serum levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) as well as diamine oxidase (DAO) activity in the APS and GPS group were obviously decreased. Moreover, diets supplemented with APS and GPS could significantly increase villus height (VH) and the ratio of villus height to crypt depth (VH/CD) and remarkably upregulated occludin, claudin-1 and mucin-2 (MUC2) mRNA expression in duodenum, jejunum, and ileum of broilers. In addition, 16S rRNA gene sequencing revealed that APS and GPS supplementation altered cecal microbial diversity and composition in broilers. Higher Shannon index was observed in the APS and GPS group compared with the CON group, while GPS supplementation could also increase Chao1 index and Observed species. The result of Principal coordinate analysis (PCoA) showed that microbial community in the CON, ANT, APS, and GPS group clustered separately. Notably, both APS and GPS supplementation significantly decreased the abundance of Bacteroidetes, Bacteroides, Faecalibacterium, Desulfovibrio, and Butyricicoccus, while increased the abundance of Firmicutes, Prevotella, Parabacteroides, Ruminococcus, and Alistipes. The correlation analysis showed that the changes in cecal microbial composition induced by dietary APS and GPS supplementation were closely associated with the alteration of the phenotype of broilers including ADG, FCR, TNF-α, IL-1ß, IL-6, IgA, IgG, DAO, Occludin, Claudin-1, ZO-1, and MUC2. In conclusion, polysaccharides derived from Astragalus membranaceus and Glycyrrhiza uralensis could improve growth performance of broilers by enhancing intestinal health and modulating gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Glycyrrhiza uralensis , Alimentación Animal/análisis , Animales , Astragalus propinquus , Pollos , Claudina-1 , Dieta/veterinaria , Suplementos Dietéticos/análisis , Glycyrrhiza uralensis/metabolismo , Inmunoglobulina A , Inmunoglobulina G , Interleucina-6 , Masculino , Ocludina/metabolismo , Polisacáridos/farmacología , ARN Ribosómico 16S , Factor de Necrosis Tumoral alfa
14.
Curr Issues Mol Biol ; 43(2): 1171-1187, 2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34563052

RESUMEN

Melanin is a brown or black pigment that protects skin from ultraviolet radiation and reactive oxygen species (ROS). However, overproduction of melanin is associated with lentigines, melasma, freckles and skin cancer. Licorice has shown antioxidant, anti-tumor, anti-platelet, anti-inflammatory and immunomodulatory activities and is used as a natural treatment for skin whitening. We aimed to confirm the potential of Wongam, a new cultivar of licorice developed by the Rural Development Administration (RDA), as a whitening agent in cosmetics. In addition, we verified the effect of heat treatment on the bioactivity of licorice by comparing antioxidant and anti-melanogenic activities of licorice extract before and after heating (130 °C). The heat-treated licorice extract (WH-130) showed higher radical-scavenging activities in the ABTS+ (2,2'-azino-bis-(3-ethylbenzothiazolin-6-sulfonic acid) diammonium salt) and DPPH (2,2-diphenyl-1-picrylhydrazyl) assays. In addition, WH-130 inhibited melanogenesis more effectively due to downregulation of tyrosinase in B16F10 melanoma cells than non-heated licorice extract. Moreover, heat treatment increased total phenolic content. In particular, isoliquiritigenin, an antioxidant and anti-melanogenic compound of licorice, was produced by heat treatment. In conclusion, WH-130, with increased levels of bioactive phenolics such as isoliquiritigenin, has potential for development into a novel skin whitening material with applications in cosmetics.


Asunto(s)
Antioxidantes/farmacología , Chalconas/metabolismo , Glycyrrhiza uralensis/química , Glycyrrhiza/química , Melaninas/metabolismo , Extractos Vegetales/farmacología , Animales , Antioxidantes/química , Línea Celular Tumoral , Regulación hacia Abajo , Calor , Ratones , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , Extractos Vegetales/química , Rayos Ultravioleta
15.
Front Immunol ; 12: 628358, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025639

RESUMEN

Irinotecan (CPT-11)-induced gastrointestinal toxicity strongly limits its anticancer efficacy. Glycyrrhiza uralensis Fisch., especially flavonoids, has strong anti-inflammatory and immunomodulatory activities. Herein, we investigate the protective effect of the total flavonoids of G. uralensis (TFGU) on CPT-11-induced colitis mice from the perspective of gut microbiota and fecal metabolism. The body weight and colon length of mice were measured. Our results showed that oral administration of TFGU significantly attenuated the loss of body weight and the shortening of colon length induced by CPT-11. The elevated disease activity index and histological score of colon as well as the up-regulated mRNA and protein levels of TNF-α, IL-1ß, and IL-6 in the colonic tissue of CPT-11-treated mice were significantly decreased by TFGU. Meanwhile, TFGU restored the perturbed gut microbial structure and function in CPT-11-treated mice to near normal level. TFGU also effectively reversed the CPT-11-induced fecal metabolic disorders in mice, mainly call backing the hypoxanthine and uric acid in purine metabolism. Spearman's correlation analysis further revealed that Lactobacillus abundance negatively correlated with fecal uric acid concentration, suggesting the pivotal role of gut microbiota in CPT-11-induced colitis. Since uric acid is a ligand of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, TFGU was further validated to inhibit the activation of NLRP3 inflammasome by CPT-11. Our findings suggest TFGU can correct the overall gut microbial dysbiosis and fecal metabolic disorders in the CPT-11-induced colitis mice, underscoring the potential of using dietary G. uralensis as a chemotherapeutic adjuvant.


Asunto(s)
Antiinflamatorios/farmacología , Bacterias/efectos de los fármacos , Colitis/prevención & control , Colon/efectos de los fármacos , Heces/microbiología , Flavonoides/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Glycyrrhiza uralensis , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/aislamiento & purificación , Bacterias/metabolismo , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/microbiología , Colon/metabolismo , Colon/microbiología , Colon/patología , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Disbiosis , Flavonoides/aislamiento & purificación , Glycyrrhiza uralensis/química , Inflamasomas/metabolismo , Mediadores de Inflamación/metabolismo , Irinotecán , Masculino , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Extractos Vegetales/aislamiento & purificación
16.
Plant Physiol Biochem ; 163: 358-366, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33915442

RESUMEN

The amount of solar ultraviolet-B (UV-B) radiation reaching the Earth's surface is increasing due to stratospheric ozone dynamics and global climate change. Increased UV-B radiation poses a major threat to ecosystems. Although many studies have focused on the potential effects of enhanced UV-B radiation on plants, the dynamic changes of defense response in plants under continuous UV-B radiation remains enigmatic. In this study, we investigated the effect of UV-B radiation at 0.024 W/m2 on the UVR8-and reactive oxygen species (ROS-) signaling pathways, antioxidant system, and wax synthesis of G. uralensis. These parameters were investigated at different UV-B radiation stages (2 h, 6 h, 12 h, 24 h, 48 h, and 96 h). The results revealed that the uvr8 expression level was significantly repressed after 2 h of UV-B radiation, partly because G. uralensis rapidly acclimated to UV-B. Significant H2O2 accumulation occurred after 12 h UV-B radiation, resulting in activation of the ROS signaling pathway and the antioxidant system. After 24 h of UV-B radiation, wax synthesis was enhanced alongside a decrease in the capacity of the main antioxidant system. The dynamic and ordered changes in these pathways reveal how different strategies function in G. uralensis at different times during adaption to enhanced UV-B radiation. This study will help us better understand dynamic changes of defense response in plant under enhanced UV-B radiation, further providing fundamental knowledge to develop plant resistance gene resources.


Asunto(s)
Glycyrrhiza uralensis , Ecosistema , Peróxido de Hidrógeno , Hojas de la Planta , Transcriptoma , Rayos Ultravioleta
17.
Plant Sci ; 302: 110712, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33288019

RESUMEN

Actin remodelling by a membrane-associated oxidative process can sense perturbations of membrane integrity and activate defence. In the current work, we show that glycyrrhizin, a muscle relaxant used in Traditional Chinese Medicine, can activate oxidative burst and actin remodelling in tobacco BY-2 cells, which could be suppressed by diphenylene iodonium, an inhibitor of NADPH oxidases. Glycyrrhizin caused a dose-dependent delay of proliferation, and induced cell death, which was suppressed by addition of indole-acetic acid, a natural auxin that can mitigate RboH dependent actin remodelling. To test, whether the actin remodelling induced by glycyrrhizin was followed by activation of defence, several events of basal immunity were probed. We found that glycyrrhizin induced a transient extracellular alkalinisation, indicative of calcium influx. Furthermore, transcripts of phytoalexins genes, were activated in cells of the grapevine Vitis rupestris, and this induction was followed by accumulation of the glycosylated stilbene α-piceid. We also observed that glycyrrhizin was able to induce actin bundling in leaves of a transgenic grape, especially in guard cells. We discuss these data in frame of a model, where glycyrrhizin, through stimulation of RboH, can cause actin remodelling, followed by defence responses, such as calcium influx, induction of phytoalexins transcripts, and accumulation of stilbene glycosides.


Asunto(s)
Actinas/metabolismo , Glycyrrhiza uralensis , Ácido Glicirrínico/farmacología , Proteínas de Plantas/metabolismo , Vitis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a la Enfermedad/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glycyrrhiza uralensis/química , Medicina Tradicional China , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Estilbenos/metabolismo , Nicotiana/efectos de los fármacos , Vitis/inmunología , Vitis/metabolismo
18.
Nat Prod Res ; 35(22): 4357-4364, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31999210

RESUMEN

Two new compounds including a new 3-arylcoumarin liquiritcoumarin (1), and a new flavonoid glycoside crotoliquiritin (2), together with twelve known compounds (3-14) were isolated from the radix and rhizome of Glycyrrhiza uralensis. Their structures were elucidated on the basis of extensive spectroscopic data analyses. All of the compounds were evaluated for the cytotoxic activities. Only compound 5 showed moderate effects with IC50 of 11.46 µM for A549 cells and IC50 of 7.38 µM for NCI-H292 cells. Compounds 1 and 2 were demonstrated to be Nrf2 pathway activators by using a stable antioxidant response element (ARE)-dependent reporter gene assay together with immunoblot and immunofluorescence analysis.


Asunto(s)
Glycyrrhiza uralensis , Glycyrrhiza , Flavonoides , Glicósidos , Factor 2 Relacionado con NF-E2 , Raíces de Plantas , Rizoma
19.
J Nat Prod ; 83(4): 814-824, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32196343

RESUMEN

Glycyrrhiza uralensis (liquorice) is a well-known medicinal plant. Its roots and rhizomes are used as the popular Chinese herbal medicine Gan-Cao. An ethanol extract of the aerial parts of G. uralensis showed antidiabetic effects on db/db mice. It decreased the blood glucose level by 30.3% and increased the serum insulin level by 41.8% compared to the control group. Eighty-six phenolic compounds (1-86) were obtained from the aerial parts, including the new prenylated isoflavanones (1-5), isoflavans (6-9), and a 2-phenylbenzofuran (10). The structures were identified by NMR and HRESIMS data analyses, and the absolute configurations were established by comparing the calculated and experimental ECD spectroscopic data. Compounds 2, 6, and 10 inhibited PTP1B with IC50 values of 5.9, 6.7, and 5.3 µM, respectively. Compound 2 and the known compounds glycycoumarin (76) and glyurallin A (79) inhibited α-glucosidase with IC50 values of 20.1, 0.1, and 0.3 µM, respectively. Compound 4 at 10 µM increased the glucose uptake rate to 95% in an insulin resistance HepG2 cell model (p < 0.01).


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Glycyrrhiza uralensis/química , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Fenoles/química , Fenoles/farmacología , Componentes Aéreos de las Plantas/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Animales , Glucemia/análisis , Células Hep G2 , Humanos , Resistencia a la Insulina , Espectroscopía de Resonancia Magnética , Ratones , Estructura Molecular , Espectrometría de Masa por Ionización de Electrospray , alfa-Glucosidasas
20.
J Sep Sci ; 43(8): 1593-1602, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32032980

RESUMEN

Glycyrrhiza uralensis Fisch., known as licorice, is one of the most famous traditional Chinese medicines. In this study, we perform a metabolome analysis using liquid chromatography-tandem mass spectrometry to assign bioactive components in different parts of licorice from different geographical origins in Gansu province of China. Sixteen potential biomarkers of taproots from different geographical origins were annotated, such as glycycoumarin, gancaonin Z, licoricone, and dihydroxy kanzonol H mainly exist in the sample of Jiuquan; neoliquiritin, 6'-acetylliquiritin, licochalcone B, isolicoflavonol, glycyrol, and methylated uralenin mainly exist in Glycyrrhiza uralensis from Lanzhou; gancaonin L, uralenin, and glycybridin I mainly exist in licorice from Wuwei for the first time.


Asunto(s)
Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Glycyrrhiza uralensis/metabolismo , Metabolómica , Óxido Nítrico/antagonistas & inhibidores , Animales , Antiinflamatorios/química , Supervivencia Celular/efectos de los fármacos , China , Cromatografía Liquida , Glycyrrhiza uralensis/química , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Medicina Tradicional China , Ratones , Óxido Nítrico/biosíntesis , Células RAW 264.7 , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA