Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS Pathog ; 17(4): e1009496, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33872335

RESUMEN

LINE-1 (L1) retrotransposons are autonomous transposable elements that can affect gene expression and genome integrity. Potential consequences of exogenous viral infections for L1 activity have not been studied to date. Here, we report that hepatitis C virus (HCV) infection causes a significant increase of endogenous L1-encoded ORF1 protein (L1ORF1p) levels and translocation of L1ORF1p to HCV assembly sites at lipid droplets. HCV replication interferes with retrotransposition of engineered L1 reporter elements, which correlates with HCV RNA-induced formation of stress granules and can be partially rescued by knockdown of the stress granule protein G3BP1. Upon HCV infection, L1ORF1p localizes to stress granules, associates with HCV core in an RNA-dependent manner and translocates to lipid droplets. While HCV infection has a negative effect on L1 mobilization, L1ORF1p neither restricts nor promotes HCV infection. In summary, our data demonstrate that HCV infection causes an increase of endogenous L1 protein levels and that the observed restriction of retrotransposition of engineered L1 reporter elements is caused by sequestration of L1ORF1p in HCV-induced stress granules.


Asunto(s)
Carcinoma Hepatocelular/virología , ADN Helicasas/metabolismo , Hepacivirus/fisiología , Hepatitis C/virología , Neoplasias Hepáticas/virología , Elementos de Nucleótido Esparcido Largo/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Ribonucleoproteínas/metabolismo , Línea Celular Tumoral , Gránulos Citoplasmáticos/virología , ADN Helicasas/genética , Humanos , Gotas Lipídicas/virología , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/genética , Ribonucleoproteínas/genética
2.
EMBO J ; 39(24): e106478, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33200826

RESUMEN

Tightly packed complexes of nucleocapsid protein and genomic RNA form the core of viruses and assemble within viral factories, dynamic compartments formed within the host cells associated with human stress granules. Here, we test the possibility that the multivalent RNA-binding nucleocapsid protein (N) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) condenses with RNA via liquid-liquid phase separation (LLPS) and that N protein can be recruited in phase-separated forms of human RNA-binding proteins associated with SG formation. Robust LLPS with RNA requires two intrinsically disordered regions (IDRs), the N-terminal IDR and central-linker IDR, as well as the folded C-terminal oligomerization domain, while the folded N-terminal domain and the C-terminal IDR are not required. N protein phase separation is induced by addition of non-specific RNA. In addition, N partitions in vitro into phase-separated forms of full-length human hnRNPs (TDP-43, FUS, hnRNPA2) and their low-complexity domains (LCs). These results provide a potential mechanism for the role of N in SARS-CoV-2 viral genome packing and in host-protein co-opting necessary for viral replication and infectivity.


Asunto(s)
COVID-19/virología , Proteínas de la Nucleocápside de Coronavirus/química , SARS-CoV-2/química , COVID-19/patología , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Gránulos Citoplasmáticos/virología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/química , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Interacciones Huésped-Patógeno , Humanos , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/metabolismo , SARS-CoV-2/metabolismo , Ensamble de Virus
3.
Front Immunol ; 11: 577838, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33133097

RESUMEN

Stress granules (SGs) are the sites of mRNA storage and related to the regulation of mRNA translation, which are dynamic structures in response to various environmental stresses and viral infections. Seneca Valley virus (SVV), an oncolytic RNA virus belonging to Picornaviridae family, can cause vesicular disease (VD) indistinguished from foot-and-mouth disease (FMD) and other pig VDs. In this study, we found that SVV induced SG formation in the early stage of infection in a PKR-eIF2α dependent manner, as demonstrated by the recruitment of marker proteins of G3BP1 and eIF4GI. Surprisingly, we found that downregulating SG marker proteins TIA1 or G3BP1, or expressing an eIF2α non-phosphorylatable mutant inhibited SG formation, but this inhibition of transient SG formation had no significant effect on SVV propagation. Depletion of G3BP1 significantly attenuated the activation of NF-κB signaling pathway. In addition, we found that SVV inhibited SG formation at the late stage of infection and 3C protease was essential for the inhibition depending on its enzyme activity. Furthermore, we also found that 3C protease blocked the SG formation by disrupting eIF4GI-G3BP1 interaction. Overall, our results demonstrate that SVV induces transient SG formation in an eIF2α phosphorylation and PKR-dependent manner, and that 3C protease inhibits SG formation by interfering eIF4GI-G3BP1 interaction.


Asunto(s)
Proteasas Virales 3C/metabolismo , Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Picornaviridae/enzimología , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Estrés Fisiológico , Proteasas Virales 3C/genética , Gránulos Citoplasmáticos/virología , ADN Helicasas/genética , Factor 4G Eucariótico de Iniciación/genética , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Fosforilación , Picornaviridae/genética , Picornaviridae/crecimiento & desarrollo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Unión Proteica , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/genética , Transducción de Señal , Replicación Viral , eIF-2 Quinasa/metabolismo
4.
Viruses ; 12(4)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244383

RESUMEN

Macrodomains, enzymes that remove ADP-ribose from proteins, are encoded by several families of RNA viruses and have recently been shown to counter innate immune responses to virus infection. ADP-ribose is covalently attached to target proteins by poly-ADP-ribose polymerases (PARPs), using nicotinamide adenine dinucleotide (NAD+) as a substrate. This modification can have a wide variety of effects on proteins including alteration of enzyme activity, protein-protein interactions, and protein stability. Several PARPs are induced by interferon (IFN) and are known to have antiviral properties, implicating ADP-ribosylation in the host defense response and suggesting that viral macrodomains may counter this response. Recent studies have demonstrated that viral macrodomains do counter the innate immune response by interfering with PARP-mediated antiviral defenses, stress granule formation, and pro-inflammatory cytokine production. Here, we will describe the known functions of the viral macrodomains and review recent literature demonstrating their roles in countering PARP-mediated antiviral responses.


Asunto(s)
ADP-Ribosilación/inmunología , Virus ARN/inmunología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/inmunología , Adenosina Difosfato Ribosa/metabolismo , Gránulos Citoplasmáticos/inmunología , Gránulos Citoplasmáticos/virología , Humanos , Interferones/inmunología , Mutación , Poli(ADP-Ribosa) Polimerasas/inmunología , Dominios Proteicos , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/metabolismo , Infecciones por Virus ARN/virología , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
5.
J Virol ; 94(7)2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31941779

RESUMEN

Stress granules (SGs) are formed in the cytoplasm under environmental stress, including viral infection. Human enterovirus D68 (EV-D68) is a highly pathogenic virus which can cause serious respiratory and neurological diseases. At present, there is no effective drug or vaccine against EV-D68 infection, and the relationship between EV-D68 infection and SGs is poorly understood. This study revealed the biological function of SGs in EV-D68 infection. Our results suggest that EV-D68 infection induced the accumulation of SG marker proteins Ras GTPase-activated protein-binding protein 1 (G3BP1), T cell intracellular antigen 1 (TIA1), and human antigen R (HUR) in the cytoplasm of infected host cells during early infection but inhibited their accumulation during the late stage. Simultaneously, we revealed that EV-D68 infection induces HUR, TIA1, and G3BP1 colocalization, which marks the formation of typical SGs dependent on protein kinase R (PKR) and eIF2α phosphorylation. In addition, we found that TIA1, HUR, and G3BP1 were capable of targeting the 3' untranslated regions (UTRs) of EV-D68 RNA to inhibit viral replication. However, the formation of SGs in response to arsenite (Ars) gradually decreased as the infection progressed, and G3BP1 was cleaved in the late stage as a strategy to antagonize SGs. Our findings have important implications in understanding the mechanism of interaction between EV-D68 and the host while providing a potential target for the development of antiviral drugs.IMPORTANCE EV-D68 is a serious threat to human health, and there are currently no effective treatments or vaccines. SGs play an important role in cellular innate immunity as a target with antiviral effects. This manuscript describes the formation of SGs induced by EV-D68 early infection but inhibited during the late stage of infection. Moreover, TIA1, HUR, and G3BP1 can chelate a specific site of the 3' UTR of EV-D68 to inhibit viral replication, and this interaction is sequence and complex dependent. However, this inhibition can be antagonized by overexpression of the minireplicon. These findings increase our understanding of EV-D68 infection and may help identify new antiviral targets that can inhibit viral replication and limit the pathogenesis of EV-D68.


Asunto(s)
Regiones no Traducidas 3' , Gránulos Citoplasmáticos/virología , Enterovirus Humano D/genética , Replicación Viral , Células A549 , Línea Celular Tumoral , Citoplasma/metabolismo , Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/metabolismo , Proteína 1 Similar a ELAV/metabolismo , Enterovirus Humano D/fisiología , Células HEK293 , Células HeLa , Humanos , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , ARN Interferente Pequeño/metabolismo , ARN Viral/metabolismo , Antígeno Intracelular 1 de las Células T/metabolismo
6.
Cell Rep ; 29(13): 4496-4508.e4, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31875556

RESUMEN

Mutations in the FUS gene cause familial amyotrophic lateral sclerosis (ALS-FUS). In ALS-FUS, FUS-positive inclusions are detected in the cytoplasm of neurons and glia, a condition known as FUS proteinopathy. Mutant FUS incorporates into stress granules (SGs) and can spontaneously form cytoplasmic RNA granules in cultured cells. However, it is unclear what can trigger the persistence of mutant FUS assemblies and lead to inclusion formation. Using CRISPR/Cas9 cell lines and patient fibroblasts, we find that the viral mimic dsRNA poly(I:C) or a SG-inducing virus causes the sustained presence of mutant FUS assemblies. These assemblies sequester the autophagy receptor optineurin and nucleocytoplasmic transport factors. Furthermore, an integral component of the antiviral immune response, type I interferon, promotes FUS protein accumulation by increasing FUS mRNA stability. Finally, mutant FUS-expressing cells are hypersensitive to dsRNA toxicity. Our data suggest that the antiviral immune response is a plausible second hit for FUS proteinopathy.


Asunto(s)
Esclerosis Amiotrófica Lateral/inmunología , Interacciones Huésped-Patógeno/inmunología , Neuronas Motoras/inmunología , Proteína FUS de Unión a ARN/inmunología , Virus Sincitiales Respiratorios/inmunología , Médula Espinal/inmunología , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/inmunología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/virología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/inmunología , Línea Celular , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/inmunología , Gránulos Citoplasmáticos/virología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/inmunología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/inmunología , Cuerpos de Inclusión/virología , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/inmunología , Neuronas Motoras/metabolismo , Neuronas Motoras/virología , Neuroglía/inmunología , Neuroglía/metabolismo , Neuroglía/virología , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/inmunología , Poli I-C/farmacología , Cultivo Primario de Células , Agregado de Proteínas/genética , Agregado de Proteínas/inmunología , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/inmunología , Proteína FUS de Unión a ARN/genética , Virus Sincitiales Respiratorios/patogenicidad , Médula Espinal/metabolismo , Médula Espinal/patología , Médula Espinal/virología
7.
mBio ; 10(3)2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31213553

RESUMEN

The integrated stress response (ISR) is a cellular response system activated upon different types of stresses, including viral infection, to restore cellular homeostasis. However, many viruses manipulate this response for their own advantage. In this study, we investigated the association between murine norovirus (MNV) infection and the ISR and demonstrate that MNV regulates the ISR by activating and recruiting key ISR host factors. We observed that during MNV infection, there is a progressive increase in phosphorylated eukaryotic initiation factor 2α (p-eIF2α), resulting in the suppression of host translation, and yet MNV translation still progresses under these conditions. Interestingly, the shutoff of host translation also impacts the translation of key signaling cytokines such as beta interferon, interleukin-6, and tumor necrosis factor alpha. Our subsequent analyses revealed that the phosphorylation of eIF2α was mediated via protein kinase R (PKR), but further investigation revealed that PKR activation, phosphorylation of eIF2α, and translational arrest were uncoupled during infection. We further observed that stress granules (SGs) are not induced during MNV infection and that MNV can restrict SG nucleation and formation. We observed that MNV recruited the key SG nucleating protein G3BP1 to its replication sites and intriguingly the silencing of G3BP1 negatively impacts MNV replication. Thus, it appears that MNV utilizes G3BP1 to enhance replication but equally to prevent SG formation, suggesting an anti-MNV property of SGs. Overall, this study highlights MNV manipulation of SGs, PKR, and translational control to regulate cytokine translation and to promote viral replication.IMPORTANCE Viruses hijack host machinery and regulate cellular homeostasis to actively replicate their genome, propagate, and cause disease. In retaliation, cells possess various defense mechanisms to detect, destroy, and clear infecting viruses, as well as signal to neighboring cells to inform them of the imminent threat. In this study, we demonstrate that the murine norovirus (MNV) infection stalls host protein translation and the production of antiviral and proinflammatory cytokines. However, virus replication and protein translation still ensue. We show that MNV further prevents the formation of cytoplasmic RNA granules, called stress granules (SGs), by recruiting the key host protein G3BP1 to the MNV replication complex, a recruitment that is crucial to establishing and maintaining virus replication. Thus, MNV promotes immune evasion of the virus by altering protein translation. Together, this evasion strategy delays innate immune responses to MNV infection and accelerates disease onset.


Asunto(s)
Infecciones por Caliciviridae/inmunología , Gránulos Citoplasmáticos/virología , ADN Helicasas/inmunología , Factor 2 Eucariótico de Iniciación/inmunología , Evasión Inmune , Proteínas de Unión a Poli-ADP-Ribosa/inmunología , ARN Helicasas/inmunología , Proteínas con Motivos de Reconocimiento de ARN/inmunología , eIF-2 Quinasa/inmunología , Animales , Gránulos Citoplasmáticos/inmunología , Interacciones Huésped-Patógeno , Inmunidad Innata , Ratones , Fosforilación , Biosíntesis de Proteínas , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
8.
J Virol ; 93(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30867299

RESUMEN

Most viruses have acquired mechanisms to suppress antiviral alpha/beta interferon (IFN-α/ß) and stress responses. Enteroviruses (EVs) actively counteract the induction of IFN-α/ß gene transcription and stress granule (SG) formation, which are increasingly implicated as a platform for antiviral signaling, but the underlying mechanisms remain poorly understood. Both viral proteases (2Apro and 3Cpro) have been implicated in the suppression of these responses, but these conclusions predominantly rely on ectopic overexpression of viral proteases or addition of purified viral proteases to cell lysates. Here, we present a detailed and comprehensive comparison of the effect of individual enterovirus proteases on the formation of SGs and the induction of IFN-α/ß gene expression in infected cells for representative members of the enterovirus species EV-A to EV-D. First, we show that SG formation and IFN-ß induction are suppressed in cells infected with EV-A71, coxsackie B3 virus (CV-B3), CV-A21, and EV-D68. By introducing genes encoding CV-B3 proteases in a recombinant encephalomyocarditis virus (EMCV) that was designed to efficiently activate antiviral responses, we show that CV-B3 2Apro, but not 3Cpro, is the major antagonist that counters SG formation and IFN-ß gene transcription and that 2Apro's proteolytic activity is essential for both functions. 2Apro efficiently suppressed SG formation despite protein kinase R (PKR) activation and α subunit of eukaryotic translation initiation factor 2 phosphorylation, suggesting that 2Apro antagonizes SG assembly or promotes its disassembly. Finally, we show that the ability to suppress SG formation and IFN-ß gene transcription is conserved in the 2Apro of EV-A71, CV-A21, and EV-D68. Collectively, our results indicate that enterovirus 2Apro plays a key role in inhibiting innate antiviral cellular responses.IMPORTANCE Enteroviruses are important pathogens that can cause a variety of diseases in humans, including aseptic meningitis, myocarditis, hand-foot-and-mouth disease, conjunctivitis, and acute flaccid paralysis. Like many other viruses, enteroviruses must counteract antiviral cellular responses to establish an infection. It has been suggested that enterovirus proteases cleave cellular factors to perturb antiviral pathways, but the exact contribution of viral proteases 2Apro and 3Cpro remains elusive. Here, we show that 2Apro, but not 3Cpro, of all four human EV species (EV-A to EV-D) inhibits SG formation and IFN-ß gene transcription. Our observations suggest that enterovirus 2Apro has a conserved function in counteracting antiviral host responses and thereby is the main enterovirus "security protein." Understanding the molecular mechanisms of enterovirus immune evasion strategies may help to develop countermeasures to control infections with these viruses.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Enterovirus Humano A/metabolismo , Péptido Hidrolasas/metabolismo , Antígenos Virales/metabolismo , Antivirales/farmacología , Línea Celular , Cisteína Endopeptidasas/metabolismo , Gránulos Citoplasmáticos/virología , Virus de la Encefalomiocarditis/genética , Enterovirus/metabolismo , Enterovirus Humano A/genética , Enterovirus Humano A/patogenicidad , Enterovirus Humano B/genética , Infecciones por Enterovirus/virología , Células HeLa , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Evasión Inmune/efectos de los fármacos , Interferón Tipo I/metabolismo , Interferón beta/metabolismo , Fosforilación , Proteolisis , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/fisiología , Proteínas Virales/metabolismo
9.
Virus Res ; 255: 55-67, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30006004

RESUMEN

Stress granules (SGs) are host translationally silent ribonucleo-proteins formed in cells in response to multiple types of environmental stress, including viral infection. We previously showed that the nuclear protein, 68-kDa Src-associated in mitosis protein (Sam68), is recruited to cytoplasm and form the Sam68-positive SGs at 6 hpi, but the Sam68-positive SGs disassembled beyond 12 hpi, suggesting that the SGs might be inhibited during the late stage of Enterovirus 71 (EV71) infection. However, the mechanism and function of this process remains poorly understood. Thus in this study, we demonstrated that EV71 initially induced SGs formation at the early stage of EV71 infection, and confirmed that 2Apro of EV71 was the key viral component that triggered SG formation. In contrast, SGs were diminished as EV71 infection proceeding. At the same time, arsenite-induced SGs were also blocked at the late stage of EV71 infection. This disruption of SGs was caused by viral protease 3Cpro-mediated G3BP1 cleavage. Furthermore, we demonstrated that over-expression of G3BP1-SGs negatively impacted viral replication at the cytopathic effect (CPE), protein, RNA, and viral titer levels. Our novel finding may not only help us to better understand the mechanism how EV71 interacts with the SG response, but also provide mechanistic linkage between cellular stress responses and innate immune activation during EV71 infection.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/metabolismo , Enterovirus Humano A/fisiología , Infecciones por Enterovirus/virología , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas Virales/metabolismo , Proteasas Virales 3C , Arsenitos/toxicidad , Cisteína Endopeptidasas/genética , Citoplasma/metabolismo , Gránulos Citoplasmáticos/enzimología , Gránulos Citoplasmáticos/virología , ADN Helicasas/genética , Enterovirus Humano A/metabolismo , Infecciones por Enterovirus/metabolismo , Infecciones por Enterovirus/patología , Expresión Génica , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/genética , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/fisiología , Proteínas Virales/genética , Replicación Viral
10.
PLoS Pathog ; 13(10): e1006677, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29084250

RESUMEN

TIA-1 positive stress granules (SG) represent the storage sites of stalled mRNAs and are often associated with the cellular antiviral response. In this report, we provide evidence that Kaposi's sarcoma-associated herpesvirus (KSHV) overcomes the host antiviral response by inhibition of SG formation via a viral lytic protein ORF57. By immunofluorescence analysis, we found that B lymphocytes with KSHV lytic infection are refractory to SG induction. KSHV ORF57, an essential post-transcriptional regulator of viral gene expression and the production of new viral progeny, inhibits SG formation induced experimentally by arsenite and poly I:C, but not by heat stress. KSHV ORF37 (vSOX) bearing intrinsic endoribonuclease activity also inhibits arsenite-induced SG formation, but KSHV RTA, vIRF-2, ORF45, ORF59 and LANA exert no such function. ORF57 binds both PKR-activating protein (PACT) and protein kinase R (PKR) through their RNA-binding motifs and prevents PACT-PKR interaction in the PKR pathway which inhibits KSHV production. Consistently, knocking down PKR expression significantly promotes KSHV virion production. ORF57 interacts with PKR to inhibit PKR binding dsRNA and its autophosphorylation, leading to inhibition of eIF2α phosphorylation and SG formation. Homologous protein HSV-1 ICP27, but not EBV EB2, resembles KSHV ORF57 in the ability to block the PKR/eIF2α/SG pathway. In addition, KSHV ORF57 inhibits poly I:C-induced TLR3 phosphorylation. Altogether, our data provide the first evidence that KSHV ORF57 plays a role in modulating PKR/eIF2α/SG axis and enhances virus production during virus lytic infection.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Infecciones por Herpesviridae/metabolismo , Herpesvirus Humano 8/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , eIF-2 Quinasa/metabolismo , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/patología , Gránulos Citoplasmáticos/virología , Activación Enzimática/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/patología , Herpesvirus Humano 8/genética , Humanos , Poli I-C/farmacología , Antígeno Intracelular 1 de las Células T/genética , Antígeno Intracelular 1 de las Células T/metabolismo , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética , Virión/genética , Virión/metabolismo , eIF-2 Quinasa/genética
11.
PLoS One ; 11(8): e0161793, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27560627

RESUMEN

Stress granules (SGs) are cytoplasmic granular aggregations that are induced by cellular stress, including viral infection. SGs have opposing antiviral and proviral roles, which depend on virus species. The exact function of SGs during viral infection is not fully understood. Here, we showed that mumps virus (MuV) induced SGs depending on activation of protein kinase R (PKR). MuV infection strongly induced interferon (IFN)-λ1, 2 and 3, and IFN-ß through activation of IFN regulatory factor 3 (IRF3) via retinoic acid inducible gene-I (RIG-I) and the mitochondrial antiviral signaling (MAVS) pathway. MuV-induced IFNs were strongly upregulated in PKR-knockdown cells. MuV-induced SG formation was suppressed by knockdown of PKR and SG marker proteins, Ras-GTPase-activating protein SH3-domain-binding protein 1 and T-cell-restricted intracellular antigen-1, and significantly increased the levels of MuV-induced IFN-λ1. However, viral titer was not altered by suppression of SG formation. PKR was required for induction of SGs by MuV infection and regulated type III IFN (IFN-λ1) mRNA stability. MuV-induced SGs partly suppressed type III IFN production by MuV; however, the limited suppression was not sufficient to inhibit MuV replication in cell culture. Our results provide insight into the relationship between SGs and IFN production induced by MuV infection.


Asunto(s)
Gránulos Citoplasmáticos/virología , Interferones/biosíntesis , Virus de la Parotiditis/fisiología , eIF-2 Quinasa/metabolismo , Animales , Western Blotting , Proteínas Portadoras/genética , Línea Celular , Chlorocebus aethiops , Gránulos Citoplasmáticos/metabolismo , Proteína 58 DEAD Box/metabolismo , ADN Helicasas , Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Factor 3 Regulador del Interferón/metabolismo , Interferones/genética , Microscopía Confocal , Mitocondrias/metabolismo , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Interferencia de ARN , Proteínas con Motivos de Reconocimiento de ARN , Receptores Inmunológicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Estrés Fisiológico/fisiología , Antígeno Intracelular 1 de las Células T , Células Vero , eIF-2 Quinasa/genética
12.
J Virol ; 90(14): 6489-6501, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27147742

RESUMEN

UNLABELLED: In response to stress such as virus infection, cells can stall translation by storing mRNAs away in cellular compartments called stress granules (SGs). This defense mechanism favors cell survival by limiting the use of energy and nutrients until the stress is resolved. In some cases it may also block viral propagation as viruses are dependent on the host cell resources to produce viral proteins. Human norovirus is a member of the Caliciviridae family responsible for gastroenteritis outbreaks worldwide. Previous studies on caliciviruses have identified mechanisms by which they can usurp the host translational machinery, using the viral protein genome-linked VPg, or regulate host protein synthesis through the mitogen-activated protein kinase (MAPK) pathway. Here, we examined the effect of feline calicivirus (FCV) infection on SG accumulation. We show that FCV infection impairs the assembly of SGs despite an increased phosphorylation of eukaryotic initiation factor eIF2α, a hallmark of stress pathway activation. Furthermore, SGs did not accumulate in FCV-infected cells that were stressed with arsenite or hydrogen peroxide. FCV infection resulted in the cleavage of the SG-nucleating protein Ras-GTPase activating SH3 domain-binding protein (G3BP1), which is mediated by the viral 3C-like proteinase NS6(Pro) Using mutational analysis, we identified the FCV-induced cleavage site within G3BP1, which differs from the poliovirus 3C proteinase cleavage site previously identified. Finally, we showed that NS6(Pro)-mediated G3BP1 cleavage impairs SG assembly. In contrast, murine norovirus (MNV) infection did not impact arsenite-induced SG assembly or G3BP1 integrity, suggesting that related caliciviruses have distinct effects on the stress response pathway. IMPORTANCE: Human noroviruses are a major cause of viral gastroenteritis, and it is important to understand how they interact with the infected host cell. Feline calicivirus (FCV) and murine norovirus (MNV) are used as models to understand norovirus biology. Recent studies have suggested that the assembly of stress granules is central in orchestrating stress and antiviral responses to restrict viral replication. Overall, our study provides the first insight on how caliciviruses impair stress granule assembly by targeting the nucleating factor G3BP1 via the viral proteinase NS6(Pro) This work provides new insights into host-pathogen interactions that regulate stress pathways during FCV infection.


Asunto(s)
Infecciones por Caliciviridae/virología , Calicivirus Felino/patogenicidad , Proteínas Portadoras/metabolismo , Gránulos Citoplasmáticos/metabolismo , Interacciones Huésped-Patógeno , Replicación Viral , Proteasas Virales 3C , Animales , Infecciones por Caliciviridae/metabolismo , Infecciones por Caliciviridae/patología , Proteínas Portadoras/genética , Gatos , Cisteína Endopeptidasas/metabolismo , Gránulos Citoplasmáticos/virología , ADN Helicasas , Factor 2 Eucariótico de Iniciación/metabolismo , Células HeLa , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Proteínas Virales/metabolismo
13.
J Biochem ; 159(3): 279-86, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26748340

RESUMEN

Activation of antiviral innate immunity is triggered by cellular pattern recognition receptors. Retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs) detect viral non-self RNA in cytoplasm of virus-infected cells and play a critical role in the clearance of the invaded viruses through production of antiviral cytokines. Among the three known RLRs, RIG-I and melanoma differentiation-associated gene 5 recognize distinct non-self signatures of viral RNA and activate antiviral signaling. Recent reports have clearly described the molecular machinery underlying the activation of RLRs and interactions with the downstream adaptor, mitochondrial antiviral signaling protein (MAVS). RLRs and MAVS are thought to form large multimeric filaments around cytoplasmic organelles depending on the presence of Lys63-linked ubiquitin chains. Furthermore, RLRs have been shown to localize to stress-induced ribonucleoprotein aggregate known as stress granules and utilize them as a platform for recognition/activation of signaling. In this review, we will focus on the current understanding of RLR-mediated signal activation and the interactions with stress-induced RNA granules.


Asunto(s)
Gránulos Citoplasmáticos/inmunología , Infecciones por Virus ADN/inmunología , Inmunidad Innata , Infecciones por Virus ARN/inmunología , ARN Viral/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Gránulos Citoplasmáticos/virología , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/inmunología , ARN Helicasas DEAD-box/metabolismo , Humanos , Helicasa Inducida por Interferón IFIH1 , Ratones , Poliubiquitina/metabolismo , ARN Helicasas/inmunología , ARN Helicasas/metabolismo , Receptores Inmunológicos , Receptores de Reconocimiento de Patrones/metabolismo , Ribonucleoproteínas/metabolismo , Transducción de Señal , Estrés Fisiológico/inmunología
14.
Arch Virol ; 160(12): 2991-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26350772

RESUMEN

Cells reprogram ongoing translation in response to viral infection, resulting in formation of stress granules (SGs), while viruses have evolved a variety of strategies to antagonize the host SG response. Previous literature reported that in BHK-1 cells, infection with dengue virus (DENV) interfered with the SG formation. In the current study, we further investigated SG formation in human epithelial A549 cells by detecting subcellular localization of two SG hallmarks, TIA-1 and G3BP1. In response to DENV type 2 (DENV2) and type 3 (DENV3) infection, G3BP1, but not TIA-1, was recruited into cytoplasmic granules in some cells, and viral protein synthesis was significantly impaired in the G3BP1-granule-containing cells. Knockdown of G3BP1 significantly rescued the dsRNA-mediated suppression of DENV2 replication. Furthermore, our data showed that the phosphorylation of protein kinase regulated by dsRNA (PKR) and eIF2α, as well as accumulation of dsRNA, mainly occurred at the late stage of viral infection. This work revealed that in DENV-infected A549 cells, G3BP1 granules were assembled independently of TIA-1 and had a negative impact on viral replication. This extends our understanding of the antagonistic relationship between the SG response and dengue virus infection.


Asunto(s)
Proteínas Portadoras/metabolismo , Virus del Dengue/fisiología , Dengue/metabolismo , Células Epiteliales/metabolismo , Pulmón/metabolismo , Proteínas Portadoras/genética , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/virología , ADN Helicasas , Dengue/virología , Virus del Dengue/genética , Células Epiteliales/virología , Humanos , Pulmón/virología , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Replicación Viral
15.
Nucleic Acids Res ; 42(20): 12861-75, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25352557

RESUMEN

During the post-transcriptional events of the HIV-2 replication cycle, the full-length unspliced genomic RNA (gRNA) is first used as an mRNA to synthesize Gag and Gag-Pol proteins and then packaged into progeny virions. However, the mechanisms responsible for the coordinate usage of the gRNA during these two mutually exclusive events are poorly understood. Here, we present evidence showing that HIV-2 expression induces stress granule assembly in cultured cells. This contrasts with HIV-1, which interferes with stress granules assembly even upon induced cellular stress. Moreover, we observed that the RNA-binding protein and stress granules assembly factor TIAR associates with the gRNA to form a TIAR-HIV-2 ribonucleoprotein (TH2RNP) complex localizing diffuse in the cytoplasm or aggregated in stress granules. Although the assembly of TH2RNP in stress granules did not require the binding of the Gag protein to the gRNA, we observed that increased levels of Gag promoted both translational arrest and stress granule assembly. Moreover, HIV-2 Gag also localizes to stress granules in the absence of a 'packageable' gRNA. Our results indicate that the HIV-2 gRNA is compartmentalized in stress granules in the absence of active translation prior to being selected for packaging by the Gag polyprotein.


Asunto(s)
Gránulos Citoplasmáticos/virología , VIH-2/genética , ARN Viral/metabolismo , Ensamble de Virus , Gránulos Citoplasmáticos/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Genoma Viral , VIH-2/fisiología , Células HeLa , Humanos , Biosíntesis de Proteínas , ARN Viral/análisis , ARN Viral/biosíntesis , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/metabolismo , Estrés Fisiológico , Replicación Viral , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/biosíntesis , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
16.
Mol Cell Biol ; 34(11): 2003-16, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24662051

RESUMEN

The formation of protein-RNA granules is a part of both natural cellular function (P-bodies and nuclear HNRNPs) and the response to cellular stress (stress granules and ND10 bodies). To better understand the role of stress-induced granules in viral infection, we have studied the ability of cells to restrict poxvirus replication through the formation of antiviral granules (AVGs). Of cells infected with a wild-type poxvirus, a small number spontaneously formed AVGs. In these AVG-positive cells, viral gene expression was inhibited. The addition of compounds that altered RNA helicase activity, induced oxidative stress, or stimulated translation initiation factor phosphorylation significantly increased the number of AVG-positive cells. When AVGs formed, both viral translation and titers were decreased even when host translation persisted. Treatment with the antiviral compound isatin ß-thiosemicarbazone (IBT), a compound that was used to treat smallpox infections, induced AVGs, suggesting a role for these structures in the pharmacological inhibition of poxvirus replication. These findings provide evidence that AVGs are an innate host response that can be exogenously stimulated to combat virus infection. Since small molecules are able to stimulate AVG formation, it is a potential target for new antiviral development.


Asunto(s)
Gránulos Citoplasmáticos/virología , Estrés Fisiológico , Virus Vaccinia/fisiología , Vaccinia/virología , Replicación Viral , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , ADN Helicasas , Factores Eucarióticos de Iniciación/metabolismo , Células HeLa , Humanos , Isatina/análogos & derivados , Isatina/farmacología , Estrés Oxidativo , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa , Biosíntesis de Proteínas/genética , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN , ARN Mensajero/genética , ARN Viral/genética
17.
JAMA Neurol ; 71(4): 487-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24515530

RESUMEN

IMPORTANCE: Progressive multifocal leukoencephalopathy results from lytic infection of the glia by the JC polyomavirus (JCV); JCV granule cell neuronopathy is caused by infection with a mutated form of JCV, leading to a shift in viral tropism from the glia to cerebellar granule cells. This shift results in a clinical syndrome dominated by progressive cerebellar dysfunction that might elude standard diagnostic workup strategies for ataxia. OBSERVATIONS: We present the case report of a patient receiving long-term rituximab therapy who developed progressive cerebellar ataxia and marked isolated cerebellar degeneration. This syndrome resulted from JCV granule cell neuronopathy associated with a novel JCV mutation. CONCLUSIONS AND RELEVANCE: New onset or worsening of isolated cerebellar ataxia in patients being treated with rituximab or natalizumab warrants early assessment for JCV infection.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/efectos adversos , Ataxia Cerebelosa/patología , Ataxia Cerebelosa/virología , Virus JC , Leucoencefalopatía Multifocal Progresiva/patología , Leucoencefalopatía Multifocal Progresiva/virología , Anciano , Anticuerpos Monoclonales de Origen Murino/uso terapéutico , Ataxia Cerebelosa/líquido cefalorraquídeo , Gránulos Citoplasmáticos/patología , Gránulos Citoplasmáticos/virología , Trastornos Neurológicos de la Marcha/patología , Trastornos Neurológicos de la Marcha/terapia , Trastornos Neurológicos de la Marcha/virología , Humanos , Virus JC/genética , Virus JC/aislamiento & purificación , Leucoencefalopatía Multifocal Progresiva/terapia , Masculino , Rituximab , Resultado del Tratamiento
18.
J Virol ; 88(8): 4434-50, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24501406

RESUMEN

UNLABELLED: The Gag protein of the murine retrovirus mouse mammary tumor virus (MMTV) orchestrates the assembly of immature virus particles in the cytoplasm which are subsequently transported to the plasma membrane for release from the cell. The morphogenetic pathway of MMTV assembly is similar to that of Saccharomyces cerevisiae retrotransposons Ty1 and Ty3, which assemble virus-like particles (VLPs) in intracytoplasmic ribonucleoprotein (RNP) complexes. Assembly of Ty1 and Ty3 VLPs depends upon cellular mRNA processing factors, prompting us to examine whether MMTV utilizes a similar set of host proteins to facilitate viral capsid assembly. Our data revealed that MMTV Gag colocalized with YB-1, a translational regulator found in stress granules and P bodies, in intracytoplasmic foci. The association of MMTV Gag and YB-1 in cytoplasmic granules was not disrupted by cycloheximide treatment, suggesting that these sites were not typical stress granules. However, the association of MMTV Gag and YB-1 was RNA dependent, and an MMTV RNA reporter construct colocalized with Gag and YB-1 in cytoplasmic RNP complexes. Knockdown of YB-1 resulted in a significant decrease in MMTV particle production, indicating that YB-1 plays a role in MMTV capsid formation. Analysis by live-cell imaging with fluorescence recovery after photobleaching (FRAP) revealed that the population of Gag proteins localized within YB-1 complexes was relatively immobile, suggesting that Gag forms stable complexes in association with YB-1. Together, our data imply that the formation of intracytoplasmic Gag-RNA complexes is facilitated by YB-1, which promotes MMTV virus assembly. IMPORTANCE: Cellular mRNA processing factors regulate the posttranscriptional fates of mRNAs, affecting localization and utilization of mRNAs under normal conditions and in response to stress. RNA viruses such as retroviruses interact with cellular mRNA processing factors that accumulate in ribonucleoprotein complexes known as P bodies and stress granules. This report shows for the first time that mouse mammary tumor virus (MMTV), a mammalian retrovirus that assembles intracytoplasmic virus particles, commandeers the cellular factor YB-1, a key regulator of translation involved in the cellular stress response. YB-1 is essential for the efficient production of MMTV particles, a process directed by the viral Gag protein. We found that Gag and YB-1 localize together in cytoplasmic granules. Functional studies of Gag/YB-1 granules suggest that they may be sites where virus particles assemble. These studies provide significant insights into the interplay between mRNA processing factors and retroviruses.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Virus del Tumor Mamario del Ratón/fisiología , Infecciones por Retroviridae/veterinaria , Enfermedades de los Roedores/metabolismo , Factores de Transcripción/metabolismo , Ensamble de Virus , Animales , Línea Celular , Gránulos Citoplasmáticos/virología , Productos del Gen gag/genética , Productos del Gen gag/metabolismo , Virus del Tumor Mamario del Ratón/genética , Ratones , Ratones Endogámicos C3H , Biosíntesis de Proteínas , Transporte de Proteínas , Infecciones por Retroviridae/genética , Infecciones por Retroviridae/metabolismo , Infecciones por Retroviridae/virología , Enfermedades de los Roedores/genética , Enfermedades de los Roedores/virología , Factores de Transcripción/genética
19.
Virology ; 448: 133-45, 2014 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-24314644

RESUMEN

At early times in Mammalian Orthoreovirus (MRV) infection, cytoplasmic inclusions termed stress granules (SGs) are formed as a component of the innate immune response, however, at later times they are no longer present despite continued immune signaling. To investigate the roles of MRV proteins in SG modulation we examined non-structural protein µNS localization relative to SGs in infected and transfected cells. Using a series of mutant plasmids, we mapped the necessary µNS residues for SG localization to amino acids 78 and 79. We examined the capacity of a µNS(78-79) mutant to associate with known viral protein binding partners of µNS and found that it loses association with viral core protein λ2. Finally, we show that while this mutant cannot support de novo viral replication, it is able to rescue replication following siRNA knockdown of µNS. These data suggest that µNS association with SGs, λ2, or both play roles in MRV replication.


Asunto(s)
Gránulos Citoplasmáticos/virología , Orthoreovirus Mamífero 3/metabolismo , Infecciones por Reoviridae/virología , Proteínas del Núcleo Viral/metabolismo , Proteínas no Estructurales Virales/administración & dosificación , Proteínas no Estructurales Virales/química , Replicación Viral , Secuencias de Aminoácidos , Animales , Línea Celular , Humanos , Orthoreovirus Mamífero 3/química , Orthoreovirus Mamífero 3/genética , Unión Proteica , Proteínas del Núcleo Viral/genética , Proteínas no Estructurales Virales/genética
20.
Exp Neurol ; 237(1): 134-41, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22750325

RESUMEN

The granule cells (GCs) of the dentate gyrus transiently express markers of the GABAergic phenotype early during development. However, GCs are generated throughout life, posing the question of whether the newborn neurons in the adult rodent recapitulate the development of the neurotransmitter phenotype of GCs generated during embryonic and early postnatal development. In this work we asked whether newborn GCs transiently express a GABAergic phenotype during their development in the adult rat. Using retroviral infection, we labeled dividing cells in the dorsal hippocampus with GFP, identified them as granule cells, and determined their expression of GABAergic markers at different developmental stages. We found that GFP-positive cells express Prox-1 and calbindin, identifying them as GCs. GABA or GAD(67) was expressed in 13% of GFP-positive cells at 7 dpi, in 16% at 10 dpi and in 20% at 15 dpi. At 30 dpi, however, no GFP-positive cell somata containing GABAergic markers were detected, but their mossy fiber boutons did contain GAD(67). Interestingly, developing GCs detected with doublecortin and PSA-NCAM in non-injected adult rats, did not express GABAergic markers, suggesting that retroviral injection/infection stimulates their transient expression. However, in non-injected rats, a number of mossy fiber boutons of newborn granule cells detected with PSA-NCAM did express GAD(67). Our findings reveal that developing GCs born in the adult are able to transiently up-regulate the expression of GABAergic markers to be detected in their soma in response to insults, while they constitutively express GAD(67) in their mossy fibers.


Asunto(s)
Gránulos Citoplasmáticos/fisiología , Regulación de la Expresión Génica/fisiología , Hipocampo/citología , Ácido gamma-Aminobutírico/fisiología , Animales , Animales Recién Nacidos/genética , Biomarcadores/metabolismo , Calbindinas , Diferenciación Celular/genética , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/virología , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Hipocampo/embriología , Hipocampo/virología , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/genética , Virus de la Leucemia Murina de Moloney/genética , Molécula L1 de Adhesión de Célula Nerviosa/genética , Neuropéptidos/genética , Fenotipo , Ratas , Ratas Sprague-Dawley , Retroviridae/genética , Proteína G de Unión al Calcio S100/genética , Ácidos Siálicos/genética , Ácido gamma-Aminobutírico/biosíntesis , Ácido gamma-Aminobutírico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA