Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Int J Food Microbiol ; 418: 110731, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38733637

RESUMEN

Alicyclobacillus spp. is the cause of great concern for the food industry due to their spores' resistance (thermal and chemical) and the spoilage potential of some species. Despite this, not all Alicyclobacillus strains can spoil fruit juices. Thus, this study aimed to identify Alicyclobacillus spp. strains isolated from fruit-based products produced in Argentina, Brazil, and Italy by DNA sequencing. All Alicyclobacillus isolates were tested for guaiacol production by the peroxidase method. Positive strains for guaiacol production were individually inoculated at concentration of 103 CFU/mL in 10 mL of orange (pH 3.90) and apple (pH 3.50) juices adjusted to 11°Brix, following incubation at 45 °C for at least 5 days to induce the production of the following spoilage compounds: Guaiacol, 2,6-dichlorophenol (2,6-DCP) and 2,6-dibromophenol (2,6-DBP). The techniques of micro-solid phase extraction by headspace (HS-SPME) and gas-chromatography with mass spectrometry (GC-MS) were used to identify and quantify the spoilage compounds. All GC-MS data was analyzed by principal component analysis (PCA). The effects of different thermal shock conditions on the recovery of Alicyclobacillus spores inoculated in orange and apple juice (11°Brix) were also tested. A total of 484 strains were isolated from 48 brands, and the species A. acidocaldarius and A. acidoterrestris were the most found among all samples analyzed. In some samples from Argentina, the species A. vulcanalis and A. mali were also identified. The incidence of these two main species of Alicyclobacillus in this study was mainly in products from pear (n = 108; 22.3 %), peach (n = 99; 20.5 %), apple (n = 86; 17.8 %), and tomato (n = 63; 13 %). The results indicated that from the total isolates from Argentina (n = 414), Brazil (n = 54) and Italy (n = 16) were able to produce guaiacol: 107 (25.8 %), 33 (61.1 %) and 13 (81.2 %) isolates from each country, respectively. The PCA score plot indicated that the Argentina and Brazil isolates correlate with higher production of guaiacol and 2,6-DCP/2,6-DBP, respectively. Heatmaps of cell survival after heat shock demonstrated that strains with different levels of guaiacol production present different resistances according to spoilage ability. None of the Alicyclobacillus isolates survived heat shocks at 120 °C for 3 min. This work provides insights into the incidence, spoilage potential, and thermal shock resistance of Alicyclobacillus strains isolated from fruit-based products.


Asunto(s)
Alicyclobacillus , Jugos de Frutas y Vegetales , Frutas , Cromatografía de Gases y Espectrometría de Masas , Guayacol , Esporas Bacterianas , Alicyclobacillus/aislamiento & purificación , Alicyclobacillus/genética , Alicyclobacillus/clasificación , Alicyclobacillus/crecimiento & desarrollo , Jugos de Frutas y Vegetales/microbiología , Guayacol/análogos & derivados , Guayacol/metabolismo , Guayacol/farmacología , Frutas/microbiología , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/aislamiento & purificación , Microbiología de Alimentos , Contaminación de Alimentos/análisis , Brasil , Microextracción en Fase Sólida , Argentina , Malus/microbiología , Italia , Calor , Citrus sinensis/microbiología
2.
J Ethnopharmacol ; 328: 118123, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38554854

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium, recognized as "Shihu" in traditional Chinese medicine, holds a rich history of medicinal utilization documented in the Chinese Pharmacopoeia. Ancient texts like "Shen Nong Ben Cao Jing" extol Dendrobium's virtues as a superior herbal medicine fortifying "Yin" and invigorating the five viscera. Dendrobium is extensively employed for the treatment of gastrointestinal inflammatory disorders, showcasing significant therapeutic efficacy, particularly against ulcerative colitis (UC), within the realm of Chinese ethnopharmacology. Dendrobium plays crucial pharmacological roles due to its rich content of polysaccharides, alkaloids, phenanthrenes, and bibenzyls. Gigantol, a prominent bibenzyl compound, stands out as one of the most vital active constituents within Dendrobium, the gigantol content of Dendrobium leaves can reach approximately 4.79 µg/g. Its significance lies in being recognized as a noteworthy anti-inflammatory compound derived from Dendrobium. AIM OF THE STUDY: Given the pivotal role of gigantol as a primary active substance in Dendrobium, the therapeutic potential of gigantol for gastrointestinal diseases remains enigmatic. Our present investigation aimed to evaluate the therapeutic effects of gigantol on dextran sulfate sodium (DSS)-induced colitis and reveal its potential mechanism in countering UC activity. MATERIALS AND METHODS: The protective efficacy of gigantol against colitis was assessed by examining the histopathological changes and conducting biochemical analyses of colon from DSS-challenged mice. Assessments focused on gigantol's impact on improving the intestinal epithelial barrier and its anti-inflammatory effects in colonic tissues of colitis mice. Investigative techniques included the exploration of the macrophage inflammatory signaling pathway via qPCR and Western blot analyses. In vitro studies scrutinized macrophage adhesion, migration, and chemotaxis utilizing transwell and Zigmond chambers. Furthermore, F-actin and Rac1 activation assays detailed cellular cytoskeletal remodeling. The potential therapeutic target of gigantol was identified and validated through protein binding analysis, competitive enzyme-linked immunosorbent assay (ELISA), cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) assay. The binding sites between gigantol and its target were predicted via molecular docking. RESULTS: Gigantol ameliorated symptoms of DSS-induced colitis, rectified damage to the intestinal barrier, and suppressed the production of pro-inflammatory cytokines in colonic tissues. Intriguingly, gigantol significantly curtailed NF-κB signaling activation in the colons of DSS-induced colitis mice. Notably, gigantol impaired the ß2 integrin-dependent adhesion and migratory capacity of RAW264.7 cells. Moreover, gigantol notably influenced the cytoskeleton remodeling of RAW264.7 cells by suppressing Vav1 phosphorylation and Rac1 activation. Mechanistically, gigantol interacted with ß2 integrin, subsequently diminishing binding affinity with intercellular adhesion molecule-1 (ICAM-1). CONCLUSIONS: In conclusion, these findings elucidate that gigantol ameliorates DSS-induced colitis by antagonizing ß2 integrin-mediated macrophage adhesion, migration, and chemotaxis, thus it may impede macrophage recruitment and infiltration into colonic tissues. This study suggests that gigantol shows promise as a viable candidate for clinical colitis therapy.


Asunto(s)
Bibencilos , Colitis Ulcerosa , Colitis , Guayacol/análogos & derivados , Ratones , Animales , Antígenos CD18/metabolismo , Antígenos CD18/uso terapéutico , Colon , Quimiotaxis , Simulación del Acoplamiento Molecular , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Bibencilos/farmacología , Antiinflamatorios/efectos adversos , Macrófagos/metabolismo , Sulfato de Dextran/toxicidad , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , FN-kappa B/metabolismo
3.
Cell Biochem Funct ; 42(2): e3950, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38348768

RESUMEN

Melanoma, an invasive class of skin cancer, originates from mutations in melanocytes, the pigment-producing cells. Globally, approximately 132,000 new cases are reported each year, and in South Africa, the incidence stands at 2.7 per 100,000 people, signifying a worrisome surge in melanoma rates. Therefore, there is a need to explore treatment modalities that will target melanoma's signalling pathways. Melanoma metastasis is aided by ligand activity of transforming growth factor-beta 1 (TGF-ß1), vascular endothelial growth factor-C (VEGF-C) and C-X-C chemokine ligand 12 (CXCL12) which bind to their receptors and promote tumour cell survival, lymphangiogenesis and chemotaxis. (3-(4-dimethylaminonaphthelen-1-ylmethylene)-1,3-dihydroindol-2-one) MAZ-51 is an indolinone-based molecule that inhibits VEGF-C induced phosphorylation of vascular endothelial growth factor receptor 3 (VEGFR-3). Despite the successful use of conventional cancer therapies, patients endure adverse side effects and cancer drug resistance. Moreover, conventional therapies are toxic to the environment and caregivers. The use of medicinal plants and their phytochemical constituents in cancer treatment strategies has become more widespread because of the rise in drug resistance and the development of unfavourable side effects. Zingerone, a phytochemical derived from ginger exhibits various pharmacological properties positioning it as a promising candidate for cancer treatment. This review provides an overview of melanoma biology and the intracellular signalling pathways promoting cell survival, proliferation and adhesion. There is a need to align health and environmental objectives within sustainable development goals 3 (good health and well-being), 13 (climate action) and 15 (life on land) to promote early detection of skin cancer, enhance sun-safe practices, mitigation of environmental factors and advancing the preservation of biodiversity, including medicinal plants. Thus, this review discusses the impact of cytostatic cancer drugs on patients and the environment and examines the potential use of phytochemicals as adjuvant therapy.


Asunto(s)
Guayacol/análogos & derivados , Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular , Ligandos , Desarrollo Sostenible , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Fitoquímicos
4.
Chem Biodivers ; 21(2): e202301930, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38216544

RESUMEN

The aim of this study was to screen sixteen meso-1 semi-synthetic derivatives bearing ether, esther, carbamate, phosphate or aminoether functional groups against five cancer cell lines: MCF-7 (breast), A549 (lung), HepG2 (liver), HeLa (cervix), and DU145 (prostate) at 25 µM using the MTT assay. Results from the screening showed that two derivatives had the lowest percentage of cell viability at 25 µM, the aminoether derivative meso-11 and the esther derivative meso-20 against A549 (44.15±0.78 %) and MCF-7 (41.60±0.92 %), respectively. Then, it was determined the IC50 value of each compound against their most sensitive cancer cell line. Results showed that aminoether derivative meso-11 showed potent cytotoxicity against A549 (IC50 =17.11±2.11 µM), whereas it resulted more cytotoxic against the LL-47 lung normal cell line (IC50 =9.49±1.19 µM) having a Selective Index (SI) of 0.55. On the other hand, the esther derivative meso-20 exhibited potent activity against MCF-7 (IC50 =18.20±1.98 µM), whereas it displayed moderate cytotoxicity against the MCF-10 breast normal cell line (IC50 =41.22±2.17 µM) with a SI of 2.2. Finally, studies on the mechanism of action of meso-20 indicated disruption of MCF-7 plasma membrane in vitro and the AMPK activation in silico.


Asunto(s)
Antineoplásicos , Guayacol/análogos & derivados , Lignanos , Masculino , Humanos , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/farmacología , Lignanos/farmacología , Proliferación Celular , Estructura Molecular , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Células MCF-7
5.
Immunopharmacol Immunotoxicol ; 46(1): 33-39, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37681978

RESUMEN

OBJECTIVE: As a frequent complication of diabetes mellitus (DM), diabetic retinopathy (DR) is now one of the major causes of blindness. Recent reports have shown that retinal pigment epithelial cell (RPEC) damage plays an essential part in DR development and progression. This work intended to explore the potential effects of Gigantol on high glucose (HG)-stimulated RPEC damage and identify potential mechanisms. METHODS: Cell viability, cell damage, and cell apoptosis were evaluated by CCK-8, lactate dehydrogenase (LDH) and flow cytometry assays. The levels of oxidative stress biomarkers and pro-inflammatory cytokines were assessed using corresponding commercial kits and ELISA. Additionally, the levels of MTDH and NF-kB signaling pathway-related proteins were detected by western blotting. RESULTS: Gigantol dose-dependently enhanced cell viability and decreased apoptosis in HG-challenged ARPE-19 cells. Also, Gigantol notably relieved oxidative stress and inflammatory responses in ARPE-19 cells under HG conditions. Gigantol dose-dependently suppressed MTDH expression. In addition, MTDH restoration partially counteracted the protective effects of Gigantol on ARPE-19 cells subject to HG treatment. Mechanically, Gigantol inactivated the NF-kB signaling pathway, which was partly restored after MTDH overexpression. CONCLUSION: Our findings suggested that Gigantol protected against HG-induced RPEC damage by inactivating the NF-kB signaling via MTDH inhibition, offering a potent therapeutic drug for DR treatment.


Asunto(s)
Bibencilos , Retinopatía Diabética , Guayacol/análogos & derivados , FN-kappa B , Humanos , FN-kappa B/metabolismo , Glucosa/toxicidad , Glucosa/metabolismo , Transducción de Señal , Estrés Oxidativo , Apoptosis , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/metabolismo , Células Epiteliales , Pigmentos Retinianos/metabolismo , Pigmentos Retinianos/farmacología , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo
6.
J Agric Food Chem ; 70(39): 12577-12586, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36130944

RESUMEN

We previously found that sulfur fumigation, a commonly used controversial method for the post-harvest handling of ginger, induces the generation of a compound in ginger, which was speculated to be a sulfur-containing derivative of 6-shogaol based on its mass data. However, the chemical and biological properties of the compound remain unknown. As a follow-up study, here we report the chemical structure, systemic exposure, and anticancer activity of the compound. Chromatographic separation, nuclear magnetic resonance analysis, and chemical synthesis structurally elucidated the compound as 6-gingesulfonic acid. Pharmacokinetics in rats found that 6-gingesulfonic acid was more slowly absorbed and eliminated, with more prototypes existing in the blood than 6-shogaol. Metabolism profiling indicated that the two compounds produced qualitatively and quantitatively different metabolites. It was further found that 6-gingesulfonic acid exerted significantly weaker antiproliferative activity on tumor cells than 6-shogaol. The data provide chemical and biological evidence that sulfur fumigation may impair the healthcare functions of ginger.


Asunto(s)
Zingiber officinale , Animales , Catecoles/química , Estudios de Seguimiento , Fumigación , Zingiber officinale/química , Guayacol/análogos & derivados , Ratas , Ácidos Sulfónicos , Azufre
7.
J Proteomics ; 269: 104723, 2022 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-36096434

RESUMEN

Ginger extract has been reported to possess antioxidant properties. However, components isolated from ginger have been rarely reported to inhibit oxidation. Herein, the antioxidant properties of ginger and purified components derived from it (6-gingerol, zingerone, rutin, quercetin, and kaempferol) were confirmed by using HPLC and were further used to investigate its effect on lamb meat. Myofibrillar proteins isolated (MPI) from lamb meat were incubated with ginger and its constituents under induced Fenton oxidation (1.0 mmol/L FeCl3, 0.1 mmol/L Asc, and 20 mmol/L H2O2) for 1, 3,5, and 7 h. Incubating meat protein isolate in the absence of ginger extract or its components resulted in a substantial drop in sulfhydryl groups, an increase in protein carbonyl content, and a corresponding increase in TBARS content. However, ginger extract and its constituents demonstrated antioxidant properties, which might be attributed to their hydroxyl groups and suitable solubilizing side chains. Overall, ginger extract exhibited the highest antioxidant capabilities of all treated samples, suggesting that ginger extracts may be used as a natural antioxidant in meat and lipid/protein-containing processed products. SIGNIFICANCE OF THE STUDY: Ginger extract is also frequently used as a herbal medicine due to its anti-inflammatory, anti-cancer, and antibacterial qualities. Nonvolatile pungent chemicals found in ginger, such as gingerol, shogaols, paradols, and zingerone, as well as kaempferol, rutin, and other phenolic compounds, have been confirmed in ginger extract and have been shown to have antioxidant action driven by free radical elimination. Despite these findings, ginger extract and its pure constituent components have seldom been shown to have the ability to slow protein and lipid oxidation in meat and meat-related products. The effect of ginger extracts on the oxidative stability of myofibriller protein isolate has never been investigated. Exploiting the phenolic content of ginger extract may result in a discovery that would have a huge influence on both the ginger and meat industries as well as other food processing sectors. The first aim of our study was to confirm the presence of six selected phenolic compounds (rutin, kaempferol, 6-gingerol, zingerone, naringenin, and quercetin) in ginger as reported by literature, and the second objective was to determine the efficacy of ginger extracts and its purified constituents on myofibrillar protein isolate treated under induced Fenton oxidation.


Asunto(s)
Quempferoles , Zingiber officinale , Animales , Antibacterianos , Antiinflamatorios/química , Antioxidantes/metabolismo , Antioxidantes/farmacología , Catecoles , Alcoholes Grasos/química , Alcoholes Grasos/farmacología , Zingiber officinale/química , Zingiber officinale/metabolismo , Guayacol/análogos & derivados , Peróxido de Hidrógeno/metabolismo , Proteínas de la Carne , Fenoles , Extractos Vegetales/química , Extractos Vegetales/farmacología , Carbonilación Proteica , Quercetina , Rutina , Ovinos , Sustancias Reactivas al Ácido Tiobarbitúrico
8.
Clin Exp Pharmacol Physiol ; 49(10): 1050-1058, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35639082

RESUMEN

Zingerone is a non-volatile compound found mainly in dried ginger. Zingerone increases the expression of osteogenic markers and has antioxidant effects. A previous study showed that zingerone accelerated osteoblast differentiation by suppressing the expression of Smad7, a member of the inhibitory Smad (I-Smad) family. However, it is not known if zingerone can induce osteoblast differentiation by regulating Smad1/5/9, a member of the receptor-regulated Smad (R-Smad) family. In addition, osteoblast differentiation induced by Smad1/5/9 mediated increases in the expression of heme oxygenase 1 (HO-1) has not been reported. This study investigated the effects of zingerone on osteoblast differentiation and confirmed the relationship between Smad1/5/9 and HO-1. Zingerone increased the expression of osteogenic genes including runt-related transcription factor 2 (Runx2), distal-less homeobox (Dlx5) and osteocalcin (OC) and also promoted Smad1/5/9 phosphorylation. Interestingly, HO-1 expression was also elevated by zingerone, and an inhibitor of HO-1 (Sn[IV] protoporphyrin IX dichloride [SnPP]) suppressed the zingerone-induced increase in HO-1 expression and expression of osteogenic marker genes such as Dlx5, Runx2 and OC. Protein phosphatase 2A Cα (PP2A Cα, an inhibitor of Smad1/5/9) suppressed the zingerone-induced increase in HO-1 expression and expression of osteogenic marker genes. The zingerone-induced increase in HO-1 luciferase activity was suppressed by PP2A Cα. Taken together; our data demonstrate that zingerone promotes osteoblast differentiation by increasing Smad1/5/9 mediated HO-1 expression.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Osteoblastos , Animales , Proteína Morfogenética Ósea 2/metabolismo , Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/farmacología , Guayacol/análogos & derivados , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Ratones , Osteocalcina , Osteogénesis , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteína Smad1/metabolismo , Factores de Transcripción/metabolismo
9.
J Med Food ; 25(6): 576-587, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35639359

RESUMEN

Ginger contains zingerone, an active constituent possessing antioxidant and neuroprotective properties. The present study was designed to explore the efficacy of the bioactive compound, zingerone, for treating behavioral and biochemical alterations in rats exposed to chronic restraint stress (CRS). Female Wistar rats were administered zingerone (25, 50, and 100 mg/kg p.o.) once daily for a period of 28 days while being exposed to CRS (6 h/day). Our results indicated that the stressed animals depicted depression-like behavior (reduced sucrose preference and increased immobility time) associated with increased lipid peroxidation (LPO) (cortex), decreased catalase (CAT) (hippocampus and cortex), and increased superoxide dismutase (SOD) (hippocampus and cortex). In addition, metabolic alterations were characterized by hyperglycemia and increased glycosylated hemoglobin in the CRS rats. However, no alterations were observed for learning and memory and in the levels of reduced glutathione. Repeated zingerone administration significantly reversed depression-like behavior elicited by CRS in rats. Furthermore, a significant antioxidant effect was exhibited by zingerone, as shown by decreased LPO and enhanced activity of SOD and CAT in chronically stressed rats. The findings of our study demonstrated that zingerone possesses protective actions against chronic stress-induced depressive-like behavioral, biochemical, and metabolic alterations and that its underlying mechanism may be attributed to its antioxidant properties. The results also signify its pharmacological and possible nutritional importance.


Asunto(s)
Antioxidantes , Depresión , Animales , Antioxidantes/farmacología , Depresión/tratamiento farmacológico , Depresión/etiología , Femenino , Guayacol/análogos & derivados , Peroxidación de Lípido , Estrés Oxidativo , Ratas , Ratas Wistar , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Superóxido Dismutasa/metabolismo
10.
Int J Mol Sci ; 23(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35328544

RESUMEN

Zingerone (ZO), a nontoxic methoxyphenol, has been demonstrated to exert various important biological effects. However, its action on varying types of ionic currents and how they concert in neuronal cells remain incompletely understood. With the aid of patch clamp technology, we investigated the effects of ZO on the amplitude, gating, and hysteresis of plasmalemmal ionic currents from both pituitary tumor (GH3) cells and hippocampal (mHippoE-14) neurons. The exposure of the GH3 cells to ZO differentially diminished the peak and late components of the INa. Using a double ramp pulse, the amplitude of the INa(P) was measured, and the appearance of a hysteresis loop was observed. Moreover, ZO reversed the tefluthrin-mediated augmentation of the hysteretic strength of the INa(P) and led to a reduction in the ICa,L. As a double ramp pulse was applied, two types of voltage-dependent hysteresis loops were identified in the ICa,L, and the replacement with BaCl2-attenuated hysteresis of the ICa,L enhanced the ICa,L amplitude along with the current amplitude (i.e., the IBa). The hysteretic magnitude of the ICa,L activated by the double pulse was attenuated by ZO. The peak and late INa in the hippocampal mHippoE-14 neurons was also differentially inhibited by ZO. In addition to acting on the production of reactive oxygen species, ZO produced effects on multiple ionic currents demonstrated herein that, considered together, may significantly impact the functional activities of neuronal cells.


Asunto(s)
Neoplasias Hipofisarias , Sodio , Potenciales de Acción , Guayacol/análogos & derivados , Humanos , Transporte Iónico , Neuronas , Neoplasias Hipofisarias/patología , Sodio/farmacología
11.
Front Biosci (Landmark Ed) ; 27(1): 25, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35090330

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a common clinical malignant disease and the second leading cause of cancer-related death worldwide. Dendrobium is a commonly applied nourishing drug in traditional Chinese medicine. Gigantol is a phenolic compound extracted from Dendrobium. The compound has attracted attention for its anticancer effects. However, the mechanism of gigantol in HCC has not been extensively explored. METHODS: Potential targets of gigantol were predicted by SwissTargetPrediction. HCC-related genes were obtained from the GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenetics and Pharmacogenomics Knowledge Base (PharmGKB), Therapeutic Target Database (TTD) and DrugBank databases. The "gigantol-target-disease" network was constructed using Cytoscape software. Protein interaction network analysis was performed using STRING software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were executed utilizing the R package to explore the possible regulatory mechanisms of gigantol in HCC. To authenticate the role of gigantol in HCC, Cell Counting Kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, wound healing assay, Matrigel invasion assay and Western blot were performed. RESULTS: Three core genes were screened from 32 closely linked genes. Pathway analysis yielded many signaling pathways associated with cancer. The CCK-8 assay and EdU assay indicated that gigantol suppressed the growth of HCC cells. The wound healing assay and Matrigel invasion assay showed the inhibition of migration and metastasis of HCC cells by gigantol. We verified from molecular docking and protein level that gigantol can exert regulatory effects through three targets, ESR1, XIAP and HSP90AA1. Furthermore, Western blot results tentatively revealed that gigantol may inhibit HCC progression through the HSP90/Akt/CDK1 pathway. CONCLUSIONS: Our results confirms anti-HCC proliferation activity of gigantol through PI3K pathway described in existing literature by different experimental approaches. Furthermore, it has discovered other proteins regulated by the drug that was not previously reported in the literature.These findings provide potential molecular and cellular evidence that gigantol may be a promising antitumor agent.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Bibencilos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Proliferación Celular , Guayacol/análogos & derivados , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas/metabolismo
12.
Environ Toxicol Pharmacol ; 91: 103817, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35091105

RESUMEN

Diclofenac (DIC)-induced acute kidney injury (AKI) causes high morbidity and mortality. With the absence of satisfactory treatment, we investigated the protective effects of 6-Paradol (PDL) against DIC-induced AKI, with focus on renal autophagy and NLRP3 inflammasome pathways . PDL has anti-inflammatory, antioxidant and AMPK-activation properties. PDL was administered to DIC-challenged rats. Nephrotoxicity, oxidative stress, inflammatory, and autophagy markers and histopathological examinations were evaluated. Compared to DIC, PDL restored serum nephrotoxicity, renal oxidative stress and pro-inflammatory markers. PDL almost restored renal architecture, upregulated renal Nrf2 pathway via enhancing Nrf2 mRNA expression and HO-1 levels. PDL suppressed renal NF-κB mRNA expression, and NLRP3 inflammasome pathway expression. Moreover, PDL enhanced renal autophagy through upregulating LC3B, AMPK and SIRT-1, and suppressed mTOR, p-AKT mRNA expressions and phosphorylated-p62 levels. Our study confirmed that autophagy suppression mediates DIC-induced AKI via AMPK/mTOR/AKT and NLRP3-inflammasome pathways. Also, PDL's nephroprotective effects could provide a promising therapeutic approach against DIC-induced AKI.


Asunto(s)
Lesión Renal Aguda , Inflamasomas , Proteínas Quinasas Activadas por AMP/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Animales , Autofagia , Diclofenaco , Guayacol/análogos & derivados , Inflamasomas/metabolismo , Cetonas , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
13.
Nutr Cancer ; 74(8): 3007-3014, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35040364

RESUMEN

Despite being the most common primary malignant tumor of the central nervous system, the prognosis of glioblastoma (GBM) is still remarkably poor. Paradol is a flavor phenolic constituent found in pepper and ginger, with anti-tumor, anti-inflammatory, and antioxidant activities. However, the effects of paradol on GBM cells remain unknown. In this study, we investigated the cytotoxicity of paradol on U-87 and U-251 GBM cells. Cell viability and Transwell assays revealed that paradol treatment markedly inhibited the viability and migration of GBM cells. Flow cytometry analysis showed G0/G1 cell cycle arrest, which was verified by the downregulation of CCNA and CCNB expression using western blotting. Paradol-induced cell apoptosis was confirmed by annexin V-FITC/PI staining and nuclear morphology. Furthermore, the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) was determined by western blotting. Collectively, our data revealed that paradol inhibited cell viability and migration of GBM cells by inducing G0/G1 phase arrest and apoptosis, and activating ERK and p38 MAPK signaling.


Asunto(s)
Apoptosis , Puntos de Control del Ciclo Celular , Glioblastoma , Guayacol , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Puntos de Control de la Fase G1 del Ciclo Celular , Glioblastoma/patología , Guayacol/análogos & derivados , Guayacol/farmacología , Humanos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Chem Phys Lipids ; 243: 105173, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34995561

RESUMEN

The present work monitors structural changes in anionic membranes (DPPG; 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol)) caused by the native antimicrobial peptide (AMP) Hylin a1 (Hya1; IFGAILPLALGALKNLIK-NH2) and its synthetic analogue K0Hya1 (KIFGAILPLALGALKNLIK-NH2), with an extra positive residue of lysine at the N-terminus of the peptide chain. Anionic membranes were used to mimic anionic lipids in bacteria membranes. Differential scanning calorimetry (DSC) evinced that both peptides strongly disrupt the lipid bilayers. However, whereas the native peptide (+3) induces a space-average and/or time-average disruption on DPPG bilayers, the more charged, K0Hya1 (+4), appears to be strongly attached to the membrane, clearly giving rise to the coexistence of two different lipid regions, one depleted of peptide and another one peptide-disrupted. The membrane fluorescent probe Laurdan indicates that, in average, the peptides increase the bilayer packing of fluid DPPG (above the lipid gel-fluid transition temperature) and/or decrease its polarity. Spin labels, incorporated into DPPG membrane, confirm, and extend the results obtained with Laurdan, indicating that the peptides increase the lipid packing both in gel and fluid DPPG bilayers. Therefore, our results confirm that Laurdan is often unable to monitor structural modifications induced on gel membranes by exogenous molecules. Through the measurement of the leakage of entrapped carboxyfluorescein (CF), a fluorescent dye, in DPPG large unilamellar vesicles it was possible to show that both peptides induce pore formation in DPPG bilayers. Furthermore, CF experiments show that Hylin peptides are strongly bound to DPPG bilayers in the gel phase, not being able to migrate to other DPPG vesicles. Here we discuss the complementarity of different techniques in monitoring structural alterations caused on lipid bilayers by Hylin peptides, and how it could be used to help in the understanding of the action of other exogenous molecules on biological membranes.


Asunto(s)
Membrana Dobles de Lípidos , Fosfatidilgliceroles , Péptidos Antimicrobianos , Guayacol/análogos & derivados , Cetonas , Membrana Dobles de Lípidos/química , Péptidos/química , Fosfatidilgliceroles/química
15.
Drug Chem Toxicol ; 45(3): 1054-1065, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-32781857

RESUMEN

The clinical use of drugs used in the treatment of diseases is limited due to the toxic side effects, and many studies have been conducted to benefit from herbal adjuvant therapies recently to eliminate these effects. In this study, the protective effect of zingerone against liver and kidney damage generated in rats through methotrexate (MTX). Histopathological investigations were performed to determine tissue damage caused by MTX and the healing effect of zingone and liver function markers such as serum alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), and renal function markers such as urea, creatine, and aquaporin-1 (AQP-1) were measured. The effects of MTX and protective properties of zingerone on oxidative stress were investigated through the measurement of malondialdehyde and reduced glutathione (GSH) levels, catalase (CAT), and glutathione peroxidase (GPx) enzyme activities. The anti-inflammatory effect of zingerone was determined by measuring the cytokine levels causing inflammation such as nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß), and its effects on apoptosis were determined by immunohistochemical analysis of caspase-3 and B-cell lymphoma-2 (Bcl-2) expression levels. According to the results obtained within the scope of the study, it was determined that zingerone treatment prevented the increase in MTX-induced liver and kidney function markers, showed healing effects on antioxidant parameters degraded in both tissues, and decreased the inflammation parameters. It was determined that it also prevented apoptosis and possessed a protective effect on disrupted tissue architecture by decreasing the increased caspase-3 expression and increasing the decreased Bcl-2 level.


Asunto(s)
Metotrexato , Estrés Oxidativo , Animales , Antioxidantes/metabolismo , Apoptosis , Caspasa 3/metabolismo , Guayacol/análogos & derivados , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Riñón , Hígado , Metotrexato/toxicidad , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas
16.
J Biochem Mol Toxicol ; 36(1): e22944, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34729850

RESUMEN

Cervical cancer is one of the leading malignant cancers that is the fourth prominent cause of malignancy-related mortality in women globally. There is a predominant validation to a beneficial target in Wnt/ß-catenin signaling in cervical carcinogenesis as they are very much deregulated in cancer. Previous studies reported Gigantol (GG) showed suppressive properties on the Wnt/ß-catenin pathway in other tumor cells, but no evidence is available regarding GG suppressing Wnt/ß-catenin signaling cervical tumor cells. Hence, the current research was planned to examine the suppressive effects of GG on HeLa cells and investigate the mechanism of action. HeLa cells were treated by GG in various doses and then appraising cell viability, oxidant/antioxidant levels, ∆Ñ°M status, reactive oxygen species (ROS) generation, apoptosis, and cell proliferation via Wnt/ß-catenin signaling. We observed that GG noticeably inhibits cell proliferation, increased ROS generation, lipid peroxidation, mitochondrial membrane depolarization (∆Ñ°M), and increased apoptotic morphological changes of nuclear fragmentation and condensation. Moreover, GG effectively enhances proapoptotic, decreased ∆Ñ°M and antioxidant amounts, and mitigated Wnt/ß-catenin signaling. Concisely, these findings proved that activating apoptosis and suppression of cell proliferation in GG treated HeLa cells was documented by the alleviation of Wnt/ß-catenin signaling. Therefore, this study suggested that GG might develop a therapeutic effect against cervical carcinogenesis.


Asunto(s)
Apoptosis/efectos de los fármacos , Bibencilos/farmacología , Proliferación Celular/efectos de los fármacos , Guayacol/análogos & derivados , Estrés Oxidativo/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo , Guayacol/farmacología , Células HeLa , Humanos
17.
J Recept Signal Transduct Res ; 42(4): 409-417, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34645355

RESUMEN

PURPOSE: Previous studies have proved that zingerone was a therapeutic agent for many tumors. Metadherin (MTDH) acts as an oncogene and is involved in tumorigenesis. The purpose of this study was to explore the underlying mechanism of zingerone that regulates MTDH to affect hepatocellular carcinoma (HCC) progression. METHODS: CCK-8 assay was performed to detect HCC cell proliferation. The invasion and migration abilities of HCC cells were evaluated using Transwell assay. The mRNA and protein levels in cells and tissues were measured using qRT-PCR and Western blot assays. Moreover, we established the HCC xenografts nude mice to evaluate the effect of zingerone on tumor growth. RESULTS: We found that zingerone treatment significantly inhibited HCC cell malignant phenotype and tumor growth. Moreover, MTDH was highly expressed in HCC tissues and cell lines and was positively associated with poor overall survival of patients with HCC. Knockdown of MTDH notably suppressed the proliferation, invasion, and migration capacities of HCC cells. Mechanistically, inhibition of MTDH by zingerone impeded the malignant biological behavior of HCC cells by inactivating the PI3K/Akt pathway. CONCLUSION: These results suggested that zingerone served as an effective therapeutic agent in HCC via blocking the MTDH-mediated PI3K/Akt pathway.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Guayacol/análogos & derivados , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal
18.
Nutr Cancer ; 74(6): 2174-2183, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34533076

RESUMEN

Mesothelioma is a highly lethal cancer developing in the lung, heart, and abdominal membranes. Zingerone, a capsaicin-like bioactive compound, has been shown to have anticancer properties. Transient Receptor Potential Vanilloid 1 (TRPV1) is an ion channel involving in the cytotoxicity of capsaicin. In the present study, we aimed at determining the cytotoxicity of zingerone on a mesothelioma cell line and to evaluate the role of TRPV1 in this effect. For this purpose, H2452 was used as the mesothelioma cell line and MTS was performed to calculate zingerone cytotoxicity. Moreover, TRPV1 was inhibited by capsazepeine while TRPV1 production was reduced through shRNA treatment. Besides, wound healing and clonogenic assays were performed to measure the migration and colony forming abilities, respectively. As a result, IC50 value of zingerone was calculated as 11.49 mM. Capsazepine treatment or lowered TRPV1 gene expression did not appear to affect zingerone cytotoxicity (p > 0.05) even though the migration rate and colony forming abilities of the zingerone treated cells decreased significantly compared to the control (p < 0.05). Therefore, we concluded that zingerone was less cytotoxic to H2452 cells than the most cancer types and TRPV1 did not seem to have a role in its cytotoxicity.


Asunto(s)
Capsaicina , Mesotelioma , Capsaicina/farmacología , Guayacol/análogos & derivados , Guayacol/farmacología , Humanos , Mesotelioma/tratamiento farmacológico , Canales Catiónicos TRPV/genética
19.
Molecules ; 26(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34833909

RESUMEN

Osteoporosis is characterized by the deterioration of bone structures and decreased bone mass, leading to an increased risk of fracture. Estrogen deficiency in postmenopausal women and aging are major factors of osteoporosis and are some of the reasons for reduced quality of life. In this study, we investigated the effects of n-trans-hibiscusamide (NHA) and its derivative 4-O-(E)-feruloyl-N-(E)-hibiscusamide (HAD) on receptor activator of nuclear factor kappa-Β (NF-κB) ligand (RANKL)-induced osteoclast differentiation and an ovariectomized osteoporosis mouse model. NHA and HAD significantly inhibited the differentiation of osteoclasts from bone marrow-derived macrophages (BMMs) and the expression of osteoclast differentiation-related genes. At the molecular level, NHA and HAD significantly downregulated the phosphorylation of mitogen-activated protein kinase (MAPK) signaling molecules. However, Akt and NF-κB phosphorylation was inhibited only after NHA or HAD treatment. In the ovariectomy (OVX)-induced osteoporosis model, both NHA and HAD effectively improved trabecular bone structure. C-terminal telopeptide (CTX), a bone resorption marker, and RANKL, an osteoclast stimulation factor, were significantly reduced by NHA and HAD. The tartrate-resistant acid phosphatase (TRAP)-stained area, which indicates the osteoclast area, was also decreased by these compounds. These results show the potential of NHA and HAD as therapeutic agents for osteoporosis.


Asunto(s)
Acrilamidas/farmacología , Guayacol/análogos & derivados , Osteoporosis/tratamiento farmacológico , Animales , Biomarcadores/metabolismo , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/etiología , Resorción Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Femenino , Expresión Génica/efectos de los fármacos , Guayacol/farmacología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/patología , Osteoporosis/etiología , Osteoporosis/metabolismo , Ovariectomía/efectos adversos , Ligando RANK/metabolismo , Transducción de Señal/efectos de los fármacos
20.
Biomed Pharmacother ; 144: 112379, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34794239

RESUMEN

Cancer multi-drug resistance (MDR) caused by P-glycoprotein (P-gp) efflux is a critical unresolved clinical concern. The present study analyzed the effect of cinnamophilin on P-gp inhibition and MDR reversion. The effect of cinnamophilin on P-gp was investigated through drug efflux assay, ATPase assay, MDR1 shift assay, and molecular docking. The cancer MDR-reversing ability and mechanisms were analyzed through cytotoxicity and combination index (CI), cell cycle, and apoptosis experiments. P-gp efflux function was significantly inhibited by cinnamophilin without influencing the drug's expression or conformation. Cinnamophilin uncompetitively inhibited the efflux of doxorubicin and rhodamine 123 and exhibited a distinct binding behavior compared with verapamil, the P-gp standard inhibitor. The half maximal inhibitory concentration of cinnamophilin for doxorubicin and rhodamine 123 efflux was 12.47 and 11.59 µM, respectively. In regard to P-gp energy consumption, verapamil-stimulated ATPase activity was further enhanced by cinnamophilin at concentrations of 0.1, 1, 10, and 20 µM. In terms of MDR reversion, cinnamophilin demonstrated synergistic cytotoxic effects when combined with docetaxel, vincristine, or paclitaxel. The CI was < 0.7 in all experimental combination treatments. The present study showed that cinnamophilin possesses P-gp-modulating effects and cancer MDR resensitizing ability.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/efectos de los fármacos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Guayacol/análogos & derivados , Lignanos/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Antibióticos Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Sitios de Unión/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Doxorrubicina/farmacocinética , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Sinergismo Farmacológico , Guayacol/farmacología , Humanos , Simulación del Acoplamiento Molecular , Rodamina 123 , Verapamilo/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA