Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Mol Biol Rep ; 51(1): 732, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872006

RESUMEN

BACKGROUND: The present study aimed to elucidate the potential anticancer activity and mechanism of P. harmala's alkaloid extract, harmine (HAR), and harmaline (HAL) in HCT-116 colorectal cancer cells. METHODS AND RESULTS: P. harmala's alkaloid was extracted from harmala seeds. HCT-116 cells were treated with P. harmala's alkaloid extract, HAR and HAL. Cytotoxicity was determined by MTT assay, apoptotic activity detected via flow cytometry and acridine orange (AO)/ethidium bromide (EB) dual staining, and cell cycle distribution analyzed with flow cytometry. The mRNA expression of Bcl-2-associated X protein (Bax) and glycogen synthase kinase-3 beta (GSK3ß) was measured by real-time PCR. Furthermore, the expression of Bax, Bcl-2, GSK3ß and p53 proteins, were determined by western blotting. The findings indicated that, P. harmala's alkaloids extract, HAR and HAL were significantly cytotoxic toward HCT116 cells after 24 and 48 h of treatment. We showed that P. harmala's alkaloid extract induce apoptosis and cell cycle arrest at G2 phase in the HCT116 cell line. Downregulation of GSK3ß and Bcl-2 and upregulation of Bax and p53 were observed. CONCLUSION: The findings of this study indicate that the P. harmala's alkaloid extract has anticancer activity and may be further investigated to develop future anticancer chemotherapeutic agents.


Asunto(s)
Apoptosis , Neoplasias del Colon , Glucógeno Sintasa Quinasa 3 beta , Harmina , Peganum , Semillas , Humanos , Peganum/química , Células HCT116 , Apoptosis/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Semillas/química , Harmina/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Extractos Vegetales/farmacología , Extractos Vegetales/química , Alcaloides/farmacología , Harmalina/farmacología , Antineoplásicos Fitogénicos/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proliferación Celular/efectos de los fármacos
2.
J Asian Nat Prod Res ; 26(4): 519-533, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37656039

RESUMEN

Use of small molecules as valuable drugs against diseases is still an indefinable purpose due to the lack of in-detail knowledge regarding proper bio-target identification, specificity aspects, mode-mechanism of binding and proper in vitro study. Harmaline, an important beta-carboline alkaloid, shows effective anti-proliferative action against different types of human cancers and is also found to be a nucleic acid targeting natural molecule. This review sought to address the different signal pathways of apoptosis by harmaline in different cancer cell lines and simultaneously to characterize the structure activity aspects of the alkaloid with different motifs of nucleic acid to show its preference, biological efficacy and genotoxicity. The results open up new insights for the design and development of small molecule-based nucleic acid therapeutic agents.


Asunto(s)
Alcaloides , Antineoplásicos , Neoplasias , Ácidos Nucleicos , Humanos , Harmalina/farmacología , Harmalina/química , Ácidos Nucleicos/química , Ácidos Nucleicos/farmacología , Línea Celular , Apoptosis , Alcaloides/química , Antineoplásicos/farmacología , Antineoplásicos/química
3.
Chem Biodivers ; 21(2): e202301263, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38108650

RESUMEN

his comprehensive review is designed to evaluate the anticancer properties of ß-carbolines derived from medicinal plants, with the ultimate goal of assessing their suitability and potential in cancer treatment, management, and prevention. An exhaustive literature survey was conducted on a wide array of ß-carbolines including, but not limited to, harmaline, harmine, harmicine, harman, harmol, harmalol, pinoline, tetrahydroharmine, tryptoline, cordysinin C, cordysinin D, norharmane, and perlolyrine. Various analytical techniques were employed to identify and screen these compounds, followed by a detailed analysis of their anticancer mechanisms. Natural ß-carbolines such as harmaline and harmine have shown promising inhibitory effects on the growth of cancer cells, as evidenced by multiple in vitro and in vivo studies. Synthetically derived ß-carbolines also displayed noteworthy anticancer, neuroprotective, and cognitive-enhancing effects. The current body of research emphasizes the potential of ß-carbolines as a unique source of bioactive compounds for cancer treatment. The diverse range of ß-carbolines derived from medicinal plants can offer valuable insights into the development of new therapeutic strategies for cancer management and prevention.


Asunto(s)
Alcaloides , Plantas Medicinales , Harmina/farmacología , Harmalina/farmacología , Carbolinas/farmacología , Alcaloides/farmacología
4.
Mol Biol Rep ; 50(5): 4357-4366, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36943605

RESUMEN

BACKGROUND: Harmaline is a ß-carboline alkaloid that can be extracted from the seeds of Peganum harmala. Harmaline has been shown to exhibit a potent cytotoxic effect against tumor cells. In this study, the anti-glioblastoma activity of harmaline was investigated in vitro. METHODS AND RESULTS: Cell viability, apoptosis, and cell cycle arrest were assessed in U-87 cells treated with harmaline at different doses. Reactive oxygen species (ROS) generation and the mRNA expression of apoptosis-associated genes were assessed. The anti-metastatic effect of harmaline on U-87 cells was evaluated by gelatin zymography assay where matrix metalloproteinase [MMP]-2/-9 enzymatic activity was measured, and the scratch assay was used to assess migratory responses. Flow cytometry demonstrated that harmaline could suppress the proliferation and induce sub-G1 cell cycle arrest and apoptotic cell death in glioblastoma cells. Harmaline treatment was also associated with an upregulation of the cell cycle-related genes, p21 and p53, and pro-apoptotic Bax, as well as the induction of ROS. The zymography assay indicated that the essential steps of metastasis were potently suppressed by harmaline through inhibiting the expression of MMP-2 and - 9. In addition, the migration of U-87 cells was significantly reduced after harmaline treatment. CONCLUSION: Our data suggest a basis for further research of harmaline which has potential cytotoxic activities in glioblastoma cells; inducing cell cycle arrest and apoptosis, repression of migration, possibly invasion, and metastasis.


Asunto(s)
Antineoplásicos , Glioblastoma , Humanos , Harmalina/farmacología , Línea Celular Tumoral , Especies Reactivas de Oxígeno/farmacología , Antineoplásicos/farmacología , Glioblastoma/tratamiento farmacológico , Apoptosis , Proliferación Celular
5.
Fitoterapia ; 155: 105054, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34626737

RESUMEN

ß-Carboline alkaloid harmaline (HA) is a candidate drug molecule that has been proven to have broad and significant biological activity. Herein, the effects of HA on the riboflavin (RF)-sensitized photooxidation under aerobic conditions were studied for the first time. The photooxidation reaction of HA catalyzed by RF is triggered by UV light at 365 nm and shows a time-dependent stepwise reaction process. Seven transformed products, including five undescribed compounds, oxoharmalines A-E (1-4 and 7), and two known compounds, N-(2-(6-Methoxy-2-oxoindolin-3-yl)ethyl)acetamide (5) and harmine (6), were isolated and identified from the reaction system, following as the gradual oxidation mechanisms. The rare polymerization and dehydrogenation processes in radical-mediated photocatalytic reactions were involved in the process. The transformed products 2-7 exhibited significant neuroprotective activity in a model of H2O2-introduced injury in SH-SY5Y cells, which suggested that the products of the interaction between HA and vitamins may be beneficial to health.


Asunto(s)
Harmalina/farmacología , Fármacos Neuroprotectores/farmacología , Riboflavina/metabolismo , Carbolinas , Línea Celular Tumoral , Harmina , Humanos , Estructura Molecular , Oxidación-Reducción , Rayos Ultravioleta
6.
Phytother Res ; 35(11): 6377-6388, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34545650

RESUMEN

Harmaline is a naturally occurring ß-carboline alkaloid that is isolated from Peganum harmala. It has shown efficacy in treating Parkinson's disease and has been reported to exhibit antimicrobial and anticancer properties. However, the molecular mechanism of harmaline in the context of esophageal squamous cell carcinoma (ESCC) has not been characterized. Here, we report that harmaline attenuates ESCC growth by directly targeting the mammalian target of rapamycin (mTOR). Harmaline strongly reduced cell proliferation and anchorage-independent cell growth. Additionally, harmaline treatment induced G2/M phase cell-cycle arrest through upregulation of p27. The results of in vitro and cell-based assays showed that harmaline directly inhibited the activity of mTOR kinase and the phosphorylation of its downstream pathway components. Depletion of mTOR using an shRNA-mediated strategy in ESCC cell lines indicated that reduced mTOR protein expression levels are correlated with decreased cell proliferation. Additionally, we observed that the inhibitory effect of harmaline was dependent upon mTOR expression. Notably, oral administration of harmaline suppressed ESCC patient-derived tumor growth in vivo. Taken together, harmaline is a potential mTOR inhibitor that might be used for therapeutically treating ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Neoplasias de Cabeza y Cuello , Peganum , Línea Celular Tumoral , Proliferación Celular , Neoplasias Esofágicas/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Harmalina/farmacología , Humanos , Sirolimus , Serina-Treonina Quinasas TOR
7.
J Neurochem ; 152(1): 136-150, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31264722

RESUMEN

The vast majority of therapeutic approaches tested so far for prion diseases, transmissible neurodegenerative disorders of human and animals, tackled PrPSc , the aggregated and infectious isoform of the cellular prion protein (PrPC ), with largely unsuccessful results. Conversely, targeting PrPC expression, stability or cell surface localization are poorly explored strategies. We recently characterized the mode of action of chlorpromazine, an anti-psychotic drug known to inhibit prion replication and toxicity by inducing the re-localization of PrPC from the plasma membrane. Unfortunately, chlorpromazine possesses pharmacokinetic properties unsuitable for chronic use in vivo, namely low specificity and high toxicity. Here, we employed HEK293 cells stably expressing EGFP-PrP to carry out a semi-automated high content screening (HCS) of a chemical library directed at identifying non-cytotoxic molecules capable of specifically relocalizing PrPC from the plasma membrane as well as inhibiting prion replication in N2a cell cultures. We identified four candidate hits inducing a significant reduction in cell surface PrPC , one of which also inhibited prion propagation and toxicity in cell cultures in a strain-independent fashion. This study defines a new screening method and novel anti-prion compounds supporting the notion that removing PrPC from the cell surface could represent a viable therapeutic strategy for prion diseases.


Asunto(s)
Membrana Celular/química , Proteínas PrPC/análisis , Priones/antagonistas & inhibidores , Animales , Quinasa de la Caseína II/antagonistas & inhibidores , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Colorantes Fluorescentes , Expresión Génica , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Harmalina/análogos & derivados , Harmalina/farmacología , Hematoxilina/análogos & derivados , Hematoxilina/farmacología , Humanos , Ratones , Neuroblastoma , Proteínas PrPC/genética , Priones/biosíntesis , Priones/toxicidad , Quinacrina/farmacología , Tacrolimus/farmacología
8.
Neurol Res ; 41(6): 528-535, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30890034

RESUMEN

OBJECTIVE: Harmaline and other beta-carbolines act as an inverse agonist for GABA-A receptors and cause central nervous system stimulation and anxiety; thus, it may act hypothetically as a potential seizure augmenter. To examine the hypothesis, the effect of harmaline during the seizures induced by amygdala kindling is investigated here. METHODS: Seven groups of male rats were kindled by daily electrical stimulation of the amygdala. After being kindled, Groups I-III, respectively, received 5, 15 and 50 mg/kg harmaline through intraperitoneal injection. The rats in Groups IV and V received vehicle daily (1 ml/kg) and harmaline (5 mg/kg) daily through intraperitoneal injection. Groups VI and VII received artificial cerebrospinal fluid and harmaline (50 mM) through intraventricular injection, respectively. RESULTS: In addition to significant increase of some seizure parameters in the fully kindled groups, harmaline significantly increased cumulative afterdischarge duration (P < 0.05) and decreased stage 1 latency (P < 0.01) in the acquisition groups (Groups V and VII). In Group VII, seizure duration showed a significant increase (P < 0.01) while stage 1 latency and stage 4 latency decreased significantly (P < 0.01). DISCUSSION: According to the results, it is suggested that harmaline may increase neuronal activity and the production of high-frequency action potentials by stimulating NMDA receptors and inhibiting GABA receptors. Overall, drugs and plants containing harmaline may be harmful to epileptic-susceptible people during some traditionally and costume treatments, so these should be avoided.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Harmalina/farmacología , Excitación Neurológica/efectos de los fármacos , Convulsiones/tratamiento farmacológico , Potenciales de Acción/efectos de los fármacos , Amígdala del Cerebelo/fisiología , Animales , Estimulación Eléctrica/métodos , Epilepsia/tratamiento farmacológico , Epilepsia/fisiopatología , Excitación Neurológica/fisiología , Ratas , Receptores de GABA-A/efectos de los fármacos , Convulsiones/etiología
9.
Mini Rev Med Chem ; 18(19): 1624-1639, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29231137

RESUMEN

BACKGROUND: Harmalol, a beta carboline alkaloid, shows remarkable importance in the contemporary biomedical research and drug discovery programs. With time, there is emerging interest in search for better anti-cancer drugs of plant origin with high activity and lower toxicity. Most of the chemotherapeutic agents due to their non-specific target and toxicity on active healthy cells, use is often restricted, necessitating search for newer drugs having greater potentiality. OBJECTIVE: The review highlighted the interaction of harmalol with nucleic acids of different motifs as sole target biomolecules and in vitro cytotoxicity of the alkaloid in human cancer cell lines with special emphasis on its apoptotic induction ability. METHODS: Binding study and in vitro cytotoxicity was performed using several biophysical techniques and biochemical assays, respectively. RESULTS: Data from competition dialysis, UV and fluorescence spectroscopic analysis, circular dichroism, viscometry and isothermal calorimetry shows binding and interaction of harmalol with several natural and synthetic nucleic acids, both DNA and RNA, of different motifs. Furthermore, apoptotic hallmarks like internucleosomal DNA fragmentation, membrane blebbing, cell shrinkage, chromatin condensation, change of mitochondrial membrane potential, comet tail formation and ROS (reactive oxygen species) dependent cytotoxicity being analyzed in the harmalol treated cancer cells. CONCLUSION: These results stating the therapeutic role of harmalol, will lead to the interesting knowledge on the cytotoxicity, mode, mechanism, specificity of binding and correlation between structural aspects and energetics enabling a complete set of guidelines for design of new drugs.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Harmalina/análogos & derivados , Ácidos Nucleicos/efectos de los fármacos , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Fenómenos Biofísicos , Calorimetría , Línea Celular Tumoral , Dicroismo Circular , Fragmentación del ADN/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Harmalina/química , Harmalina/farmacología , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ácidos Nucleicos/química , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Viscosidad
10.
J Mol Recognit ; 31(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29243872

RESUMEN

The work focuses towards interaction of harmaline, with nucleic acids of different motifs by multispectroscopic and calorimetric techniques. Findings of this study suggest that binding constant varied in the order single-stranded (ss) poly(A) > double-stranded calf thymus (CT) DNA > double-stranded poly(G)·poly(C) > clover leaf tRNAPhe . Prominent structural changes of ss poly(A), CT DNA, and poly(G)· poly(C) with concomitant induction of optical activity in the bound achiral alkaloid molecule was observed, while with tRNAPhe , very weak induced circular dichroism perturbation was seen. The interaction was predominantly exothermic, enthalpy driven, and entropy favored with CT DNA and poly(G)·poly(C), while it was entropy driven with poly(A) and tRNAPhe . Intercalated state of harmaline inside poly(A), CT DNA, and poly(G)·poly(C) was shown by viscometry, ferrocyanide quenching, and molecular docking. All these findings unequivocally pointed out preference of harmaline towards ss poly(A) inducing self-structure formation. Furthermore, harmaline administration caused a significant decrease in proliferation of HeLa and HepG2 cells with GI50 of 28µM and 11.2µM, respectively. Nucleic acid fragmentation, cellular ultramorphological changes, decreased mitochondrial membrane potential, upregulation of p53 and caspase 3, generation of reactive oxygen species, and a significant increase in the G2 /M population made HepG2 more prone to apoptosis than are HeLa cells.


Asunto(s)
Antineoplásicos/farmacología , ADN/metabolismo , Harmalina/farmacología , ARN de Transferencia/metabolismo , Syzygium/genética , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , ADN/química , Harmalina/química , Células HeLa , Células Hep G2 , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Hojas de la Planta/genética , ARN de Planta/química , ARN de Planta/metabolismo , ARN de Transferencia/química
11.
Chem Biol Interact ; 258: 142-52, 2016 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-27590872

RESUMEN

Harmalol administration caused remarkable reduction in proliferation of HepG2 cells with GI50 of 14.2 µM, without showing much cytotoxicity in embryonic liver cell line, WRL-68. Data from circular dichroism (CD) and differential scanning calorimetric (DSC) analysis of harmalol-CT DNA complex shows conformational changes with prominent CD perturbation and stabilization of CT DNA by 8 °C. Binding constant and stoichiometry was calculated using the above biophysical techniques. The Scatchard plot constructed from CD data showed cooperative binding, from which the cooperative binding affinity (K'ω) of 4.65 ± 0.7 × 10(5) M(-1), and n value of 4.16 were deduced. The binding parameter obtained from DSC melting data was in good agreement with the above CD data. Furthermore, dose dependent apoptotic induction ability of harmalol was studied in HepG2 cells using different biochemical assays. Generation of ROS, DNA damage, changes in cellular external and ultramorphology, alteration of membrane, formation of comet tail, decreased mitochondrial membrane potential and a significant increase in Sub Go/G1 population made the cancer cell, HepG2, prone to apoptosis. Up regulation of p53 and caspase 3 further indicated the apoptotic role of harmalol.


Asunto(s)
Apoptosis/efectos de los fármacos , Fenómenos Biofísicos/efectos de los fármacos , ADN/metabolismo , Harmalina/análogos & derivados , Acetilcisteína/farmacología , Anexina A5/metabolismo , Biomarcadores/metabolismo , Caspasa 3/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Ensayo Cometa , ADN/química , Daño del ADN , Fragmentación del ADN/efectos de los fármacos , Citometría de Flujo , Fluoresceína-5-Isotiocianato/metabolismo , Harmalina/química , Harmalina/metabolismo , Harmalina/farmacología , Células Hep G2 , Humanos , Inmunohistoquímica , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Conformación de Ácido Nucleico , Propidio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Temperatura de Transición , Proteína p53 Supresora de Tumor/metabolismo
12.
Pak J Pharm Sci ; 29(4): 1317-20, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27393444

RESUMEN

Harmine, Harmaline, Nicotine and its various complexes synthesized have been characterized by physical, spectral and analytical methods and curtained for in-vitro antimicrobial activity against different bacterial and fungal species at two different concentrations i.e.100µ/100µl and 200µ/100µl dose level respectively. Analysis showed that Nicotine, Zinc-Nico, Cd-Nico, Hg-Nico, Ni-Nico, Cu-Nico, Co-Nico, Harmine, and Harmaline having conc. of 100ug/ 100ul had antibacterial activity on zero, 5, 4, 10, zero, 5, 7, zero, zero strain of bacteria having an average of zero (SD=0.0000), 15.2000 (SD=1.30384), 18.2500 (SD=3.30404), 20.2000 (SD=1.39841), zero (SD=0.0000), 14.6000 (SD=0.89443), 15.8571 (SD=1.34519), zero (SD=0.0000), zero (SD=0.0000) respectively. Zinc (II) chloride, Cadmium (II) Iodide, Mercury (II) chloride, Nickel (II) chloride, Copper (II) chloride, Cobalt (II) chloride, Mercury (II) chloride, Mercury (II) harmine, Mercury (II) harmaline at 100ug/100ul is valid for 7, 8, 9, 2, 7, 8, 9, 10, 8 strains of bacteria with an average of 7.1429 (SD=1.06904), 10.0000 (SD=5.01427), 14.8889 (SD=6.00925), 6.0000 (SD=0.0000), 8.5714 (SD=4.27618), 8.2500 (SD=0.88641), 14.8889 (SD=6.00925), 18.6000 (SD=2.45855), 18.5000 (SD=1.85164) respectively. The above given compounds at the conc. of 200 µ/100ul is valid for 10, 9, 10, 8, 8, 10, 10, 10, 10 strains of bacteria with an average of 8.1 (SD=1.66333), 11.7778 (SD=5.28625), 16.1000 (SD=6.36745), 6.5000 (SD=0.92582), 9.7500 (SD=4.43203), 9.9000 (SD=2.76687), 16.1000 (SD=6.36745), 22.0000 (SD=2.44949), 20.4000 (SD=2.75681) respectively. The above given compounds at conc. of 200 µ/100ul showed antibacterial action on 3, 8, 8, 10, 3, 9, 8, zero, 3 strains of bacteria with an average of 14(SD=0.000), 16.8750 (SD=1.35620), 18.2500 (SD=3.45378), 22.7000 (SD=1.82878), 14.3333 (SD=0.57735), 16.7778 (SD=1.71594), zero (SD=0.000), 12.0000 (SD=1.00000) respectively. Hence according to the average value of the zone of inhibition, maximum antibacterial activity at 100-200ug/100ul is of Hg-Nico and Mercury salt; Mercury (II) harmine having an average of 20.2000 (SD=1.39841)-22.7000 (SD=1.82878) and 18.6000 (SD=2.45855)-22.0000 (SD=2.44949). Minimum antibacterial activity at 100-200ug/100ul is Nicotine100, Nicotine-Nico100, Harmine 100,Harmaline 100, Harmine 200 having zero average (SD=0.000).


Asunto(s)
Antiinfecciosos/farmacología , Harmalina/farmacología , Harmina/farmacología , Nicotina/farmacología
13.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 38(1): 65-72, Jan.-Mar. 2016. tab, graf
Artículo en Inglés | LILACS | ID: lil-776489

RESUMEN

Objective: To conduct a systematic literature review of animal and human studies reporting anxiolytic or antidepressive effects of ayahuasca or some of its isolated alkaloids (dimethyltryptamine, harmine, tetrahydroharmine, and harmaline). Methods: Papers published until 3 April 2015 were retrieved from the PubMed, LILACS and SciELO databases following a comprehensive search strategy and using a predetermined set of criteria for article selection. Results: Five hundred and fourteen studies were identified, of which 21 met the established criteria. Studies in animals have shown anxiolytic and antidepressive effects of ayahuasca, harmine, and harmaline, and experimental studies in humans and mental health assessments of experienced ayahuasca consumers also suggest that ayahuasca is associated with reductions in anxiety and depressive symptoms. A pilot study reported rapid antidepressive effects of a single ayahuasca dose in six patients with recurrent depression. Conclusion: Considering the need for new drugs that produce fewer adverse effects and are more effective in reducing anxiety and depression symptomatology, the described effects of ayahuasca and its alkaloids should be further investigated.


Asunto(s)
Humanos , Animales , Ratas , Ansiolíticos/farmacología , Banisteriopsis , Antidepresivos/farmacología , Ansiedad/tratamiento farmacológico , Ansiolíticos/uso terapéutico , N,N-Dimetiltriptamina/farmacología , Trastorno Depresivo/tratamiento farmacológico , Harmalina/farmacología , Harmina/farmacología , Ratones , Antidepresivos/uso terapéutico
14.
Sci Rep ; 5: 18613, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26678950

RESUMEN

Harmaline (HAR), a natural occurrence ß-carboline alkaloid, was isolated from the seeds of Peganum harmala and exhibited potent antitumor effect. In this study, the anti-gastric tumor effects of HAR were firstly investigated in vitro and in vivo. The results strongly showed that HAR could inhibit tumor cell proliferation and induce G2/M cell cycle arrest accompanied by an increase in apoptotic cell death in SGC-7901 cancer cells. HAR could up-regulate the expressions of cell cycle-related proteins of p-Cdc2, p21, p-p53, Cyclin B and down-regulate the expression of p-Cdc25C. In addition, HAR could up-regulate the expressions of Fas/FasL, activated Caspase-8 and Caspase-3. Moreover, blocking Fas/FasL signaling could markedly inhibit the apoptosis caused by HAR, suggesting that Fas/FasL mediated pathways were involved in HAR-induced apoptosis. Interestingly, HAR could also exert on antitumor activity with a dose of 15 mg/kg/day in vivo, which was also related with cell cycle arrest. These new findings provided a framework for further exploration of HAR which possess the potential antitumor activity by inducing cell cycle arrest and apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteína Ligando Fas/metabolismo , Harmalina/farmacología , Regulación hacia Arriba , Receptor fas/metabolismo , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Harmalina/química , Harmalina/uso terapéutico , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Peganum/química , Peganum/metabolismo , Semillas/química , Semillas/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
15.
Zhong Yao Cai ; 38(11): 2353-7, 2015 Nov.
Artículo en Chino | MEDLINE | ID: mdl-27356391

RESUMEN

OBJECTIVE: To investigate the effects of total alkaloids of harmaline on learning and memory in vascular dementia rats, and its mechanism. METHODS: The model rats of vascular dementia were established with bilateral carotid artery ligation. After 30 days, the model rats were randomly divided into six groups: sham group, model group, nicergoline tablets 7 mg/kg group, and 25, 12.5 and 6.25 mg/kg dose groups of total alkaloids of harmaline, the rats were given medicine for 30 days. Learning and memory abilities were tested by Morris water maze, histomorphology in hippocampal CA1 area were observed by HE staining, BAX and BCL-2 protein expression in hippocampal CA1 area were detected by immunohistochemistry. RESULTS: Compared with model group, 25 mg/kg group of total alkaloids of harmaline shortened the incubation period in the third and fourth day significantly, 12.5 mg/kg group of total alkaloids of harmaline shortened the incubation period in the fourth day. 25 and 12.5 mg/kg groups of total alkaloids of harmaline significantly increased the times crossing the target. Total alkaloids of harmaline improved the neurons pathological changes of rat in the hippocampus CA1 area, 25 and 12.5 mg/kg of total alkaloids of harmaline downregulated the expression of apoptosis proteins BAX, upregulated the protein expression of BCL-2. CONCLUSION: Total alkaloids of harmaline can improve the learning and memory abilities in vascular dementia rats, which probably is related to inhibiting apoptosis of hippocampus cell.


Asunto(s)
Demencia Vascular/tratamiento farmacológico , Harmalina/farmacología , Aprendizaje/efectos de los fármacos , Memoria/efectos de los fármacos , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Proteína X Asociada a bcl-2/metabolismo
16.
Eur J Pharmacol ; 721(1-3): 391-4, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23707188

RESUMEN

Peganum harmala (L) is a perennial plant which is native of eastern Iranian and west of India but also found in different regions of western USA. A number of ß-carboline compounds with therapeutic importance and different pharmacological effects, are present in this plant. Among other alkaloids, such as, harmine, harmalol and vasicine, isolated from various parts of the plant, harmaline is considered as most valuable with reference to its medicinal importance. Harmaline has been extensively studied in last decade and known to exert multiple pharmacological effects including antileishmanial, antimicrobial, antiplatelet, antiplasmodial, antitumoral, hypothermic and vasorelaxant activity. The proposed work is intended to highlight the recent pharmacological aspects of ß-carboline alkaloid "harmaline".


Asunto(s)
Descubrimiento de Drogas/métodos , Harmalina , Animales , Harmalina/química , Harmalina/farmacología , Humanos
17.
Biomed Res Int ; 2013: 258095, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23509697

RESUMEN

We previously demonstrated that Peganum harmala L. extract and its main active constituents, harmine and harmaline inhibit the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated induction of the carcinogen-activating enzyme, Cyp1a1, in vitro. However, the effect of both alkaloids on Cyp1a1 in vivo has not been investigated. Therefore, the aim of this study is to examine the effect of harmine and harmaline on TCDD-mediated induction of Cyp1a1 in mice livers and lungs. C57BL/6 male mice were distributed into four groups (n = 6). First group received vehicle, while the second group received TCDD (i.p.). The third and fourth groups received either harmine or harmaline (i.p.) × 3 times along with TCDD one time with the mid dose of harmine and harmaline. All mice were sacrificed after 14 h from TCDD injection, and livers and lungs were isolated. The effect of harmine and harmaline on TCDD-mediated induction of Cyp1a1 mRNA, protein, and activity levels was determined using real-time PCR, Western blot analysis, and 7-ethoxyresurofin as a substrate, respectively. Our results showed that harmine and harmaline significantly decreased the TCDD-mediated induction of Cyp1a1 in both the livers and lungs. We concluded that harmine and harmaline are promising candidate to inhibit TCDD-mediated induction of Cyp1a1 in mice hepatic and extrahepatic tissues.


Asunto(s)
Citocromo P-450 CYP1A1/metabolismo , Harmalina/farmacología , Harmina/farmacología , Hígado/efectos de los fármacos , Pulmón/efectos de los fármacos , Dibenzodioxinas Policloradas/farmacología , Animales , Contaminantes Ambientales , Regulación Enzimológica de la Expresión Génica , Hígado/metabolismo , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microsomas/efectos de los fármacos
18.
Food Chem Toxicol ; 50(2): 353-62, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22037238

RESUMEN

Dioxins are known to cause several human cancers through activation of the aryl hydrocarbon receptor (AhR). Harmaline and harmalol are dihydro-ß-carboline compounds present in several medicinal plants such as Peganum harmala. We have previously demonstrated the ability of P. harmala extract to inhibit TCDD-mediated induction of Cyp1a1 in murine hepatoma Hepa 1c1c7 cells. Therefore, the aim of this study is to examine the effect of harmaline and its main metabolite, harmalol, on dioxin-mediated induction of CYP1A1 in human hepatoma HepG2 cells. Our results showed that harmaline and harmalol at concentrations of (0.5-12.5µM) significantly inhibited the dioxin-induced CYP1A1 at mRNA, protein and activity levels in a concentration-dependent manner. The role of AhR was determined by the inhibition of the TCDD-mediated induction of AhR-dependent luciferase activity and the AhR/ARNT/XRE formation by both harmaline and harmalol. In addition, harmaline significantly displaced [(3)H]TCDD in the competitive ligand binding assay. At posttranslational level, both harmaline and harmalol decreased the protein stability of CYP1A1, suggesting that posttranslational modifications are involved. Moreover, the posttranslational modifications of harmaline and harmalol involve ubiquitin-proteasomal pathway and direct inhibitory effects of both compounds on CYP1A1 enzyme. These data suggest that harmaline and harmalol are promising agents for preventing dioxin-mediated effects.


Asunto(s)
Citocromo P-450 CYP1A1/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Harmalina/análogos & derivados , Harmalina/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Citocromo P-450 CYP1A1/genética , Dioxinas/toxicidad , Células Hep G2 , Humanos , Estructura Molecular , Dibenzodioxinas Policloradas/análogos & derivados , Receptores de Hidrocarburo de Aril
19.
Gen Physiol Biophys ; 30 Spec No: S54-60, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21869452

RESUMEN

A spontaneous mutant of Methanothermobacter thermautotrophicus resistant to the Na(+)/H(+) antiporter inhibitor harmaline was isolated. The Na(+)/H(+) exchange activity in the mutant cells was remarkably decreased in comparison with wild-type cells. Na(+)/H(+) antiport activity of wild-type cells grown in the high Na(+) concentration (125 mmol/l) was significantly increased as compared to the cells grown under low Na(+) concentration (6.25 mmol/l) conditions. In contrast, harmaline resistant mutant showed almost the same Na(+)/H(+) antiport activity under both these conditions. While harmaline profoundly inhibited methanogenesis in the wild-type, increased methanogenesis was observed both in the presence and absence of harmaline in the mutant strain. ATP synthesis driven by methanogenic electron transport was significantly enhanced in the mutant cells. The experimental data revealed the differential expression of A flavoprotein and molybdenum-containing formylmethanofuran dehydrogenase 1 subunit C in harmaline-resistant mutant. The overexpression of these proteins might contribute to harmaline resistance. Taken together the results indicate that harmaline resistance in this mutant has arisen as a consequence of mutation(s) in antiporter gene(s) or protein(s) linked to antiporter activity. Moreover this work provides the evidence that Na(+)/H(+) exchanger deficiency in harmaline-resistant mutant can induce overexpression of several proteins participating in methanogenesis.


Asunto(s)
Resistencia a Medicamentos/genética , Harmalina/farmacología , Methanobacteriaceae/efectos de los fármacos , Methanobacteriaceae/genética , Mutación , Intercambiadores de Sodio-Hidrógeno/metabolismo , Adenosina Trifosfato/biosíntesis , Resistencia a Medicamentos/efectos de los fármacos , Regulación de la Expresión Génica Arqueal/efectos de los fármacos , Metano/biosíntesis , Methanobacteriaceae/crecimiento & desarrollo , Methanobacteriaceae/metabolismo , Potasio/metabolismo , Salicilanilidas/farmacología , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores
20.
BMB Rep ; 43(12): 824-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21189160

RESUMEN

Melanin synthesis is regulated by melanocyte specific enzymes and related transcription factors. ß-carboline alkaloids including harmaline and harmalol are widely distributed in the environment including several plant families and alcoholic beverages. Presently, melanin content and tyrosinase activity were increased in melanoma cells by harmaline and harmalol in concentration- and time-dependent manners. Increased protein levels of tyrosinase, tyrosinase-related protein-1 (TRP-1), and TRP-2 were also evident. In addition, immunofluorescence and Western blot analyses revealed harmaline and harmalol increased cAMP response element binding protein phosphorylation and microphthalmia-associated transcription factor expression. In addition to studying the signaling that leads to melanogenesis, roles of the p38 MAPK pathways by the harmaline and harmalol were investigated. Harmaline and harmalol induced time-dependent phosphorylation of p38 MAPK. Harmaline and harmalol stimulated melanin synthesis and tyrosinase activity, as well as expression of tyrosinase and TRP-1 and TRP-2 indicating that these harmaline and harmalol induce melanogenesis through p38 MAPK signaling.


Asunto(s)
Harmalina/análogos & derivados , Harmalina/farmacología , Melaninas/biosíntesis , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , Animales , Diferenciación Celular , Oxidorreductasas Intramoleculares/metabolismo , Melanoma Experimental , Ratones , Monofenol Monooxigenasa/metabolismo , Oxidorreductasas/metabolismo , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA