Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 964
Filtrar
1.
Biomolecules ; 14(8)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39199374

RESUMEN

Hepatitis C virus (HCV) is a hepatotropic virus that can be transmitted through unsafe medical procedures, such as injections, transfusions, and dental treatment. The infection may be self-limiting or manifest as a chronic form that induces liver fibrosis, cirrhosis, or progression into hepatocellular carcinoma (HCC). Epigenetic mechanisms are major regulators of gene expression. These mechanisms involve DNA methylation, histone modifications, and the activity of non-coding RNAs, which can enhance or suppress gene expression. Abnormal activity or the dysregulated expression of epigenetic molecules plays an important role in the pathogenesis of various pathological disorders, including inflammatory diseases and malignancies. In this review, we summarise the current evidence on epigenetic mechanisms involved in HCV infection and progression to HCC.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Hepacivirus , Hepatitis C , Humanos , Hepacivirus/genética , Hepacivirus/patogenicidad , Hepatitis C/genética , Hepatitis C/virología , Metilación de ADN/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virología , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/etiología , Animales
2.
Nat Commun ; 15(1): 7486, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209804

RESUMEN

Chronic liver disease and cancer are global health challenges. The role of the circadian clock as a regulator of liver physiology and disease is well established in rodents, however, the identity and epigenetic regulation of rhythmically expressed genes in human disease is less well studied. Here we unravel the rhythmic transcriptome and epigenome of human hepatocytes using male human liver chimeric mice. We identify a large number of rhythmically expressed protein coding genes in human hepatocytes of male chimeric mice, which includes key transcription factors, chromatin modifiers, and critical enzymes. We show that hepatitis C virus (HCV) infection, a major cause of liver disease and cancer, perturbs the transcriptome by altering the rhythmicity of the expression of more than 1000 genes, and affects the epigenome, leading to an activation of critical pathways mediating metabolic alterations, fibrosis, and cancer. HCV-perturbed rhythmic pathways remain dysregulated in patients with advanced liver disease. Collectively, these data support a role for virus-induced perturbation of the hepatic rhythmic transcriptome and pathways in cancer development and may provide opportunities for cancer prevention and biomarkers to predict HCC risk.


Asunto(s)
Ritmo Circadiano , Hepacivirus , Hepatitis C , Hepatocitos , Hígado , Transcriptoma , Humanos , Hígado/metabolismo , Hígado/virología , Animales , Masculino , Hepatocitos/metabolismo , Hepatocitos/virología , Ratones , Hepacivirus/genética , Hepacivirus/fisiología , Hepatitis C/genética , Hepatitis C/metabolismo , Hepatitis C/virología , Ritmo Circadiano/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , Neoplasias Hepáticas/metabolismo , Relojes Circadianos/genética , Epigénesis Genética
3.
Sci Rep ; 14(1): 15145, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956134

RESUMEN

Hepatitis C virus (HCV) is a plus-stranded RNA virus that often chronically infects liver hepatocytes and causes liver cirrhosis and cancer. These viruses replicate their genomes employing error-prone replicases. Thereby, they routinely generate a large 'cloud' of RNA genomes (quasispecies) which-by trial and error-comprehensively explore the sequence space available for functional RNA genomes that maintain the ability for efficient replication and immune escape. In this context, it is important to identify which RNA secondary structures in the sequence space of the HCV genome are conserved, likely due to functional requirements. Here, we provide the first genome-wide multiple sequence alignment (MSA) with the prediction of RNA secondary structures throughout all representative full-length HCV genomes. We selected 57 representative genomes by clustering all complete HCV genomes from the BV-BRC database based on k-mer distributions and dimension reduction and adding RefSeq sequences. We include annotations of previously recognized features for easy comparison to other studies. Our results indicate that mainly the core coding region, the C-terminal NS5A region, and the NS5B region contain secondary structure elements that are conserved beyond coding sequence requirements, indicating functionality on the RNA level. In contrast, the genome regions in between contain less highly conserved structures. The results provide a complete description of all conserved RNA secondary structures and make clear that functionally important RNA secondary structures are present in certain HCV genome regions but are largely absent from other regions. Full-genome alignments of all branches of Hepacivirus C are provided in the supplement.


Asunto(s)
Secuencia Conservada , Genoma Viral , Hepacivirus , Conformación de Ácido Nucleico , ARN Viral , Hepacivirus/genética , ARN Viral/genética , ARN Viral/química , Humanos , Alineación de Secuencia , Hepatitis C/virología , Hepatitis C/genética
4.
Cytokine ; 182: 156714, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39068734

RESUMEN

Liver cirrhosis is a condition with high mortality that poses a significant health and economic burden worldwide. The clinical characteristics of liver cirrhosis are complex and varied. Therefore, the evaluation of immune infiltration-involved genes incirrhosis has become mandatory in liver disease research, not only to identify the potential biomarkers but also to provide important insights into the underlying mechanisms of the disease. In this study, we aimed to investigate the expression profile of cytokine genes in peripheral blood mononuclear cells (PBMCs) of HCV patients and identify the gene expression signature associated with advanced cirrhosis. A cross-sectional study of 90 HCV genotype 4 patients, including no fibrosis patients (F0, n = 24), fibrotic patients (F1-F3, n = 36), and cirrhotic patients (F4, n = 30) has been conducted. The expression of cytokine genes was analyzed by quantitative real-time PCR in the subjects' PBMCs, and the serum level of TGFß2 was measured by ELISA. Our findings showed that the expression level of the TGIF1 transcript was lower in cirrhotic and fibrotic patients compared to no fibrosis patients (p = 0.046 and 0.022, respectively). Also, there was an upregulation of the TGFß1 gene in cirrhotic patients relative to fibrotic patients (p = 0.015). Additionally, the cirrhotic patients had higher expression levels of the TGF-ß2 transcript and elevated levels of the TGF-ß2 protein than patients with no cirrhosis or fibrosis. According to the ROC analysis, TGFß1, TGIF1 transcripts, and TGFß2 protein have a good discriminatory performance in distinguishing between cirrhotic, fibrotic, and non-fibrotic patients. Our results suggested that the expression of TGIF1, TGF-ß1, and TGF-ß2 genes in PBMCs may provide a valuable tool for identifying patients with advanced cirrhosis and that TGF-ß and TGIF1 may be potential biomarkers for cirrhosis. These findings may have implications for the diagnosis and treatment of cirrhosis in HCV patients.


Asunto(s)
Biomarcadores , Leucocitos Mononucleares , Cirrosis Hepática , Humanos , Cirrosis Hepática/genética , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/sangre , Cirrosis Hepática/virología , Masculino , Femenino , Biomarcadores/sangre , Biomarcadores/metabolismo , Persona de Mediana Edad , Leucocitos Mononucleares/metabolismo , Estudios Transversales , Hepatitis C/genética , Hepatitis C/complicaciones , Hepatitis C/diagnóstico , Hepacivirus , Adulto , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/sangre , Citocinas/sangre , Citocinas/genética , Regulación de la Expresión Génica
5.
Int J Immunopathol Pharmacol ; 38: 3946320241265263, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38898405

RESUMEN

Background: Hepatocellular carcinoma (HCC) is the most common and fatal primary liver cancer. Genetic variants of DNA repair systems can reduce DNA repair capability and increase HCC risk. Objectives: This study aimed to examine, in Egyptian hepatitis C virus (HCV) patients, the relationship between the X-ray repair cross-complementing group 1 (XRCC1) rs1799782 single nucleotide polymorphism (SNP) and HCC susceptibility. Methods: We included 100 adult HCV-positive patients with HCC and 100 adult HCV-positive patients with liver cirrhosis as pathological controls. XRCC1 rs1799782 SNP genotyping was done in both groups using quantitative real-time PCR (qPCR). The distribution of genotypes in patients and controls was compared using several inheritance models. Results: We found that the CT genotype, when analyzed under both the co-dominant (OR (95 % CI): 2.147 (1.184-3.893), p = .012) and the over-dominant (OR (95 % CI): 2.055 (1.153-3.660), p = .015) models, as well as the combined CT and TT genotypes under the dominant model (OR (95 % CI) of 1.991 (1.133-3.497), p = .017), were associated with increased susceptibility to HCC. The frequency of the T allele was higher among HCC participants (32%) compared to those with cirrhosis (23.5%) and carrying the T allele increased the risk of HCC by 1.532 times, however, these associations did not reach statistical significance (p-values >0.05). Moreover, the variant T allele was associated with worse clinical manifestations and laboratory results among the HCC group, but AFP levels were not affected significantly. Conclusions: Egyptians with XRCC1 rs1799782 SNP may have a higher risk of HCV-related HCC. More extensive multi-center prospective investigations must confirm this association.


Asunto(s)
Carcinoma Hepatocelular , Predisposición Genética a la Enfermedad , Neoplasias Hepáticas , Polimorfismo de Nucleótido Simple , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virología , Carcinoma Hepatocelular/epidemiología , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , Neoplasias Hepáticas/epidemiología , Masculino , Estudios de Casos y Controles , Egipto , Femenino , Persona de Mediana Edad , Proyectos Piloto , Adulto , Hepatitis C/complicaciones , Hepatitis C/genética , Factores de Riesgo , Genotipo
6.
PLoS One ; 19(5): e0303314, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739668

RESUMEN

BACKGROUND: Globally, hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death due to a lack of early predictive and/or diagnostic tools. Thus, research for a new biomarker is important. LncRNAs play a functional role in target gene regulation and their deregulation is associated with several pathological conditions including HCC. OBJECTIVE: This study aimed to explore the diagnostic potential of two LncRNAs MALAT1 and CASC2 in HCC compared to the routinely used diagnostic biomarker. MATERIALS AND METHODS: The current study is a case-control study carried out at Fayoum University Hospital and conducted on 89 individuals. The study included three groups of 36 HCC patients on top of HCV(HCC/HCV), 33 HCV patients, and 20 healthy volunteers as a control group. All study subjects were subjected to radiological examinations. The determination of CBC was performed by the automated counter and liver function tests by the enzymatic method were performed. In addition, HCV RNA quantification and the expression level of two LncRNAs (MALAT1 and CASC2) were performed by qRT-PCR. RESULTS: The results revealed a statistically significant difference between study groups regarding liver function tests with a higher mean in HCC/HCV group. Also, serum MALAT1 significantly up-regulated in HCV (11.2±2.8) and HCC/HCV (4.56±1.4) compared to the control group. Besides, serum CASC2 levels in the HCV group were significantly upregulated (14.9±3.6), while, downregulated in the HCC group (0.16± 0.03). Furthermore, The ROC analysis for diagnostic efficacy parameters indicated that CASC2 has higher accuracy (94.6%) and sensitivity (97.2%) for HCC diagnosis than AFP with an accuracy of (90.9%), sensitivity (69.4%), and MALAT1 showed an accuracy of (56.9%), sensitivity (72.2%). CONCLUSION: Our study results indicated that CASC2 is a promising biomarker and is considered better and could help in HCC diagnosis on top of HCV than MALAT1 and the routine biomarker AFP.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Proteínas Supresoras de Tumor , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/sangre , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/virología , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , Masculino , Femenino , Persona de Mediana Edad , Estudios de Casos y Controles , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Proteínas Supresoras de Tumor/genética , Hepatitis C/complicaciones , Hepatitis C/virología , Hepatitis C/diagnóstico , Hepatitis C/genética , Hepacivirus/genética , Anciano , Regulación Neoplásica de la Expresión Génica , Adulto , Curva ROC , Relevancia Clínica
7.
Exp Mol Med ; 56(5): 1080-1106, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38689093

RESUMEN

Recent progress in the investigation of microRNA (miRNA) biogenesis and the miRNA processing machinery has revealed previously unknown roles of posttranscriptional regulation in gene expression. The molecular mechanistic interplay between miRNAs and their regulatory factors, RNA-binding proteins (RBPs) and exoribonucleases, has been revealed to play a critical role in tumorigenesis. Moreover, recent studies have shown that the proliferation of hepatocellular carcinoma (HCC)-causing hepatitis C virus (HCV) is also characterized by close crosstalk of a multitude of host RBPs and exoribonucleases with miR-122 and its RNA genome, suggesting the importance of the mechanistic interplay among these factors during the proliferation of HCV. This review primarily aims to comprehensively describe the well-established roles and discuss the recently discovered understanding of miRNA regulators, RBPs and exoribonucleases, in relation to various cancers and the proliferation of a representative cancer-causing RNA virus, HCV. These have also opened the door to the emerging potential for treating cancers as well as HCV infection by targeting miRNAs or their respective cellular modulators.


Asunto(s)
Exorribonucleasas , Regulación Neoplásica de la Expresión Génica , Hepacivirus , MicroARNs , Neoplasias , Proteínas de Unión al ARN , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Neoplasias/genética , Neoplasias/metabolismo , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Animales , Hepacivirus/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Hepatitis C/metabolismo , Hepatitis C/genética , Hepatitis C/virología
8.
J Biol Chem ; 300(5): 107286, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636657

RESUMEN

Hepatitis C virus (HCV) infection is tightly connected to the lipid metabolism with lipid droplets (LDs) serving as assembly sites for progeny virions. A previous LD proteome analysis identified annexin A3 (ANXA3) as an important HCV host factor that is enriched at LDs in infected cells and required for HCV morphogenesis. To further characterize ANXA3 function in HCV, we performed proximity labeling using ANXA3-BioID2 as bait in HCV-infected cells. Two of the top proteins identified proximal to ANXA3 during HCV infection were the La-related protein 1 (LARP1) and the ADP ribosylation factor-like protein 8B (ARL8B), both of which have been previously described to act in HCV particle production. In follow-up experiments, ARL8B functioned as a pro-viral HCV host factor without localizing to LDs and thus likely independent of ANXA3. In contrast, LARP1 interacts with HCV core protein in an RNA-dependent manner and is translocated to LDs by core protein. Knockdown of LARP1 decreased HCV spreading without altering HCV RNA replication or viral titers. Unexpectedly, entry of HCV particles and E1/E2-pseudotyped lentiviral particles was reduced by LARP1 depletion, whereas particle production was not altered. Using a recombinant vesicular stomatitis virus (VSV)ΔG entry assay, we showed that LARP1 depletion also decreased entry of VSV with VSV, MERS, and CHIKV glycoproteins. Therefore, our data expand the role of LARP1 as an HCV host factor that is most prominently involved in the early steps of infection, likely contributing to endocytosis of viral particles through the pleiotropic effect LARP1 has on the cellular translatome.


Asunto(s)
Anexina A3 , Hepacivirus , Hepatitis C , Antígeno SS-B , Internalización del Virus , Humanos , Anexina A3/metabolismo , Anexina A3/genética , Autoantígenos/metabolismo , Autoantígenos/genética , Células HEK293 , Hepacivirus/metabolismo , Hepacivirus/fisiología , Hepatitis C/metabolismo , Hepatitis C/virología , Hepatitis C/genética , Interacciones Huésped-Patógeno , Gotas Lipídicas/metabolismo , Gotas Lipídicas/virología , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Proteínas del Núcleo Viral/metabolismo , Proteínas del Núcleo Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética
9.
Viral Immunol ; 37(3): 159-166, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38588555

RESUMEN

The high global prevalence of hepatitis B and hepatitis C and the poor prognosis of hepatitis B and hepatitis C-associated hepatocellular carcinoma (HCC), necessitates the early diagnosis and treatment of the disease. Recent studies show that cell-to-cell communication via extracellular vesicles (EVs) is involved in the HCC progression. The objective of the following study was to explore the role of EVs in the progression of viral-induced HCC and investigate their potential for the early diagnosis of cancer. First, the mRNA derived from EVs of HCC patients was compared to the mRNA derived from EVs from the healthy controls. Expression analysis of ANGPTL3, SH3BGRL3, and IFITM3 genes from the EVs was done. Afterward, to confirm whether hepatocytes can uptake EVs, HuH7 cells were exposed to EVs, and the expression analysis of downstream target genes (AKT, TNF-α, and MMP-9) in Huh7 cells was done. Transcriptional analysis showed that in the EVs from HCC patients, the expression levels of ANGPTL3, SH3BGRL3, and IFITM3 were significantly increased by 2.62-, 4.3-, and 9.03-folds, respectively. The downstream targets, AKT, TNF-α, and MMP-9, also showed a considerable change of 4.1-, 1.46-, and 5.05-folds, respectively, in Huh7 cells exposed to HCC EVs. In conclusion, the following study corroborates the role of EVs in HCC progression. Furthermore, the significant alteration in mRNA levels of the selected genes demonstrates their potential to be used as possible biomarkers for the early diagnosis of HCC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Carcinoma Hepatocelular , Vesículas Extracelulares , Hepatitis B , Hepatitis C , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas Proto-Oncogénicas c-akt , Factor de Necrosis Tumoral alfa/metabolismo , Hepatitis C/genética , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , ARN Mensajero/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína 3 Similar a la Angiopoyetina
10.
Medicina (Kaunas) ; 60(3)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38541094

RESUMEN

Background and Objectives: A polymorphism in the promoter region of the IL-6 gene would influence the level of IL-6 expression in patients with HCV, resulting in a pro-inflammatory response. Few studies have shown the association between -174G>C (rs1800795) and -1363G>T (rs2069827) polymorphisms and HCV infection, and their results have been contradictory. There are no data published in our population to study such an IL-6 stimulus against HCV infection and its impact on RNA secondary structure. Therefore, we isolated human subjects from the province of Punjab, Pakistan. The objective was to screen for IL-6 gene promoter polymorphisms -174G/C and -1363G/T and those correlated with serum concentrations of IL-6 in patients with HCV and compared with a control. Materials and Methods: In conventional PCR, measurement of serum IL-6 by CLIA and statistical analysis were performed to observe the genotype association studies. By integrating bioinformatics and computational tools, our study aimed to provide a comprehensive understanding of how variations in the promoter region of IL-6 may have functional implications on gene expression. Results: The -174G>C and -1363G>T genotypes in the promoter region of patients with HCV were in strong allelic association (Δ = 0.97, p < 0.001). Interestingly, the bioinformatics analysis was well aligned with our experimental data. Conclusions: Based on the data, it can be inferred that IL-6 gene promoter polymorphisms are important in the dysregulation of IL-6 levels in patients with HCV.


Asunto(s)
Hepatitis C , Interleucina-6 , Humanos , Predisposición Genética a la Enfermedad , Genotipo , Hepacivirus/genética , Hepatitis C/genética , Interleucina-6/genética , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética
11.
Br J Haematol ; 204(6): 2242-2253, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38442902

RESUMEN

Hepatitis C virus (HCV)-associated diffuse large B-cell lymphoma (DLBCL) displays peculiar clinicopathological characteristics, but its molecular landscape is not fully elucidated. In this study, we investigated the clinicopathological and molecular features of 54 patients with HCV-associated DLBCL. The median age was 71 years. An underlying marginal zone lymphoma component was detected in 14.8% of cases. FISH analysis showed rearrangements involving BCL6 in 50.9% of cases, MYC in 11.3% and BCL2 in 3.7%. Lymph2Cx-based assay was successful in 38 cases, recognizing 16 cases (42.1%) as ABC and 16 cases as GCB subtypes, while six resulted unclassified. ABC cases exhibited a higher lymphoma-related mortality (LRM). Next-generation sequencing analysis showed mutations in 158/184 evaluated genes. The most frequently mutated genes were KMT2D (42.6%), SETD1B (33.3%), RERE (29.4%), FAS and PIM1 (27.8%) and TBL1XR1 (25.9%). A mutation in the NOTCH pathway was detected in 25.9% of cases and was associated with worst LRM. Cluster analysis by LymphGen classified 29/54 cases within definite groups, including BN2 in 14 (48.2%), ST2 in seven (24.2%) and MCD and EZB in four each (13.8%). Overall, these results indicate a preferential marginal zone origin for a consistent subgroup of HCV-associated DLBCL cases and suggest potential implications for molecularly targeted therapies.


Asunto(s)
Hepatitis C , Linfoma de Células B Grandes Difuso , Mutación , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/virología , Masculino , Anciano , Femenino , Persona de Mediana Edad , Hepatitis C/complicaciones , Hepatitis C/genética , Anciano de 80 o más Años , Hepacivirus/genética , Adulto , Secuenciación de Nucleótidos de Alto Rendimiento
12.
J Transl Med ; 22(1): 116, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287425

RESUMEN

BACKGROUND: Liver fibrosis contributes to significant morbidity and mortality in Western nations, primarily attributed to chronic hepatitis C virus (HCV) infection. Hypoxia and immune status have been reported to be significantly correlated with the progression of liver fibrosis. The current research aimed to investigate the gene signature related to the hypoxia-immune-related microenvironment and identify potential targets for liver fibrosis. METHOD: Sequencing data obtained from GEO were employed to assess the hypoxia and immune status of the discovery set utilizing UMAP and ESTIMATE methods. The prognostic genes were screened utilizing the LASSO model. The infiltration level of 22 types of immune cells was quantified utilizing CIBERSORT, and a prognosis-predictive model was established based on the selected genes. The model was also verified using qRT-PCR with surgical resection samples and liver failure samples RNA-sequencing data. RESULTS: Elevated hypoxia and immune status were linked to an unfavorable prognosis in HCV-induced early-stage liver fibrosis. Increased plasma and resting NK cell infiltration were identified as a risk factor for liver fibrosis progression. Additionally, CYP1A2, CBS, GSTZ1, FOXA1, WDR72 and UHMK1 were determined as hypoxia-immune-related protective genes. The combined model effectively predicted patient prognosis. Furthermore, the preliminary validation of clinical samples supported most of the conclusions drawn from this study. CONCLUSION: The prognosis-predictive model developed using six hypoxia-immune-related genes effectively predicts the prognosis and progression of liver fibrosis. The current study opens new avenues for the future prediction and treatment of liver fibrosis.


Asunto(s)
Hepatitis C Crónica , Hepatitis C , Humanos , Hepatitis C Crónica/complicaciones , Hepatitis C Crónica/genética , Hepatitis C/complicaciones , Hepatitis C/genética , Hepacivirus/genética , Cirrosis Hepática/genética , Hipoxia/complicaciones , Hipoxia/genética , Pronóstico , Microambiente Tumoral , Glutatión Transferasa
13.
Sci Rep ; 14(1): 937, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38195767

RESUMEN

Notwithstanding recent advances in direct antiviral specialists (DAAs) for hepatitis C infection (HCV), it is yet a pervasive overall issue in patients with rheumatoid arthritis (RA). Exosomal microRNAs (miRNAs) is associated with HCV infection. However, it remains unknown how miRNAs respond following biologic disease-modifying antirheumatic drug (bDMARD) and targeted synthetic DMARD (tsDMARD) treatment in HCV patients with RA. We prospectively recruited RA patients taking anti-tumor necrosis factor-α (TNF-α) inhibitors rituximab (RTX) and tofacitinib. The serum hepatitis C viral load was measured using real-time quantitative reverse transcriptase PCR before and 6 months after bDMARD and tsDMARD therapy. HCV RNA replication activity was measured using an HCV-tricistronic replicon reporter system, and quantitative analysis of hsa-mir-122-5p and hsa-mir-155-5p in patients was performed using quantitative PCR. HCV RNA replication in hepatocytes was not affected by tofacitinib or TNF-α inhibitor treatment. Hsa-mir-155-5p and hsa-mir-122-5p were significantly expanded in RA patients with HCV as compared with those without HCV. We observed a dramatic increase in hsa-mir-122-5p and a decrease in hsa-mir-155-5p expression levels in patients taking RTX in comparison with other treatments. Finally, a reduction in hsa-mir-122-5p and an increase in hsa-mir-155-5p were observed in a time-dependent manner after tofacitinib and DAA therapy in RA-HCV patients. These results showed that hsa-mir-155-5p and hsa-mir-122-5p were significantly increased in RA-HCV patients as compared with those without HCV after taking tofacitinib. Hsa-mir-155-5p and hsa-mir-122-5p may be potential biomarkers for treatment efficacy in RA patients with HCV.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Hepatitis C Crónica , Hepatitis C , MicroARNs , Humanos , MicroARNs/genética , Antivirales/farmacología , Antivirales/uso terapéutico , Factor de Necrosis Tumoral alfa , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/genética , Hepacivirus/genética , Hepatitis C/tratamiento farmacológico , Hepatitis C/genética , Replicación Viral , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Rituximab , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Biomarcadores
14.
Life Sci ; 338: 122412, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38191051

RESUMEN

AIMS: Hepatitis C virus (HCV) relies on the viral and host factors to complete its life cycle. It has evolved to profit from Akt activation at some stage in its life cycle through various mechanisms, notably by activating lipogenesis, which is crucial for infectious virions production. MATERIALS AND METHODS: By employing an Akt-specific inhibitor, the impact of Akt on intracellular and extracellular infectivity was investigated. To ascertain the role of Akt in the HCV life cycle, the two-part cell culture-derived HCV infection protocol utilizing Akt1 small interfering RNAs (siRNAs) was implemented. The impact of Akt1 on intracellular HCV transition was determined using membrane flotation assay and proximity ligation assay coupled with Anti-Rab7 immunoprecipitation and immunofluorescence. KEY FINDINGS: Akt1 silencing reduced infectious virions release to a degree comparable to that of ApoE, a host component involved in the HCV assembly and release, suggesting Akt1 was critical in the late stage of the HCV life cycle. Extracellular infectivity of HCV was inhibited by brefeldin A, and the inhibitory effect was augmented by Akt1 silencing and partially restored by ectopic Akt1 expression. Immunofluorescence revealed that Akt1 inhibition suppressed the interaction between HCV core protein and lipid droplet. Akt1 silencing impeded the transition of HCV from the endoplasmic reticulum to the endosome and hence inhibited the secretion of HCV infectious virions from the late endosome. SIGNIFICANCE: Our study demonstrates that Akt1 has an impact on the lipogenesis pathway and plays a critical role in the assembly and secretion of infectious HCV.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Retículo Endoplásmico/metabolismo , Endosomas , Hepacivirus/metabolismo , Hepatitis C/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/metabolismo , Virión , Ensamble de Virus/fisiología
15.
FEBS J ; 291(6): 1119-1130, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37863517

RESUMEN

During the replication of viral genomes, RNA viruses produce double-stranded RNA (dsRNA), through the activity of their RNA-dependent RNA polymerases (RdRps) as viral replication intermediates. Recognition of viral dsRNA by host pattern recognition receptors - such as retinoic acid-induced gene-I (RIG-I)-like receptors and Toll-like receptor 3 - triggers the production of interferon (IFN)-ß via the activation of IFN regulatory factor (IRF)-3. It has been proposed that, during the replication of viral genomes, each of RIG-I and melanoma differentiation-associated gene 5 (MDA5) form homodimers for the efficient activation of a downstream signalling pathway in host cells. We previously reported that, in the non-neoplastic human hepatocyte line PH5CH8, the RdRp NS5B derived from hepatitis C virus (HCV) could induce IFN-ß expression by its RdRp activity without the actual replication of viral genomes. However, the exact mechanism by which HCV NS5B produced IFN-ß remained unknown. In the present study, we first showed that NS5B derived from another Flaviviridae family member, GB virus B (GBV-B), also possessed the ability to induce IFN-ß in PH5CH8 cells. Similarly, HCV NS5B, but not its G317V mutant, which lacks RdRp activity, induced the dimerization of MDA5 and subsequently the activation of IRF-3. Interestingly, immunofluorescence analysis showed that HCV NS5B produced dsRNA. Like HCV NS5B, GBV-B NS5B also triggered the production of dsRNA and subsequently the dimerization of MDA5. Taken together, our results show that HCV NS5B triggers an MDA5-mediated innate immune response by producing dsRNA without the replication of viral genomes in human hepatocytes.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Genoma Viral , Hepacivirus/genética , Hepatitis C/genética , Inmunidad Innata , ARN Bicatenario , ARN Polimerasa Dependiente del ARN/genética , Replicación Viral
16.
Methods Mol Biol ; 2733: 175-183, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38064033

RESUMEN

The reverse genetics system commonly used for the production of hepatitis C virus (HCV), which is a major causative agent of liver diseases, involves introduction of the viral genomic RNA synthesized in vitro into human hepatoma cells by electroporation. As an alternative methodology, we describe a cell culture system based on transfection with an expression plasmid containing a full-length HCV cDNA clone flanked by RNA polymerase I promoter and terminator sequences to generate infectious virus particles from transfected cells.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C , Humanos , Hepacivirus/genética , Hepacivirus/metabolismo , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Genética Inversa , Hepatitis C/genética , Carcinoma Hepatocelular/genética , Transfección , ADN Complementario/genética , ARN Viral/genética
17.
Free Radic Biol Med ; 212: 199-206, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38103659

RESUMEN

Hepatitis C virus (HCV) infection is a major cause of chronic liver disease, leading to liver steatosis, fibrosis, and hepatocellular carcinoma (HCC). Despite the accumulation of clinical data showing the impact of amino acid substitutions at positions 70 (R70Q/H) and/or 91 (L91M) in the HCV core protein in progressive liver diseases, including HCC, the underlying mechanisms have not been elucidated. We analyzed 72 liver biopsy specimens from patients with chronic HCV genotype 1b (HCV-1b) infection prior to antiviral treatment. Levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and nuclear factor erythroid 2-related factor 2 (NRF2) in the nucleus were quantified using liver tissue immunohistochemistry. The effects of amino acid substitutions in the HCV core region on hepatocellular oxidative stress were investigated using wild-type or double-mutant (R70Q/H+L91M) HCV-1b core transfection and stable expression in human hepatoma HuH-7 cells. Overall, 24, 19, 11, and 18 patients had the wild-type, R70Q/H, L91M, and R70Q/H+L91M genotypes, respectively, in the HCV core. A significantly higher accumulation of hepatocellular 8-OHdG and a lower NRF2/8-OHdG ratio were observed in patients with R70Q/H+L91M than in those with the wild-type disease. Increased levels of intracellular superoxide and hydrogen peroxide in the cytoplasm and mitochondria, mRNA expression of enzymes generating oxidative stress, and nuclear expression of nicotinamide adenine dinucleotide phosphate oxidase 4 were augmented in cells treated with R70Q+L91M. HCV core proteins harboring either or both substitutions of R70Q/H or L91M enhanced hepatocellular oxidative stress in vivo and in vitro. These amino acid substitutions may affect HCC development by enhancing hepatic oxidative stress in patients with chronic HCV-1b infection.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C Crónica , Hepatitis C , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Hepacivirus/genética , Neoplasias Hepáticas/patología , Sustitución de Aminoácidos , Factor 2 Relacionado con NF-E2/genética , Hepatitis C/genética , Hepatitis C Crónica/genética , Estrés Oxidativo/genética , 8-Hidroxi-2'-Desoxicoguanosina , Proteínas del Núcleo Viral/genética , Proteínas del Núcleo Viral/farmacología , Proteínas del Núcleo Viral/uso terapéutico , Genotipo
18.
BMC Med Genomics ; 16(1): 319, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066559

RESUMEN

BACKGROUND: The severity of chronic hepatitis C and susceptibility to hepatocellular carcinoma (HCC) are associated with genetic variations within vitamin D receptor (VDR) in several populations. This study aims to determine the significance of the VDRs (rs2228570, rs3782905, rs11568820) and DBP (rs7041) for the susceptibility to HCC in Egyptian patients with chronic HCV infection and their effect on the progression of liver cirrhosis to carcinogenesis. METHODS: Single nucleotide polymorphisms (SNPs) VDR (rs2228570, rs3782905), and DBP rs7041 were genotyped using restriction fragment length-PCR (RFLP-PCR) technique and VDR rs11568820 was genotyped using single strand polymorphism PCR (SSP PCR). These SNPs genotypes, haplotypes and linkage disequilibrium analyses were examined in 299 Egyptian individuals (100 HCV-cirrhotic patients, 99 HCC- HCV patients, and 100 healthy controls). RESULT: The VDR rs2228570 CC genotype, VDR rs3782905 GC and CC genotypes, and DBP rs7041 GG genotype are significantly higher in HCC. It is noteworthy that, VDR rs3782905 CC and DBP rs7041 TG genotypes are higher in HCV induced liver cirrhosis than with HCC progression in HCV infected patients. Furthermore, among patients, the relationship between these SNPs and smoking status, gender, and HCC susceptibility was reported. CONCLUSION: Among the four investigated SNPs, there are associations between VDR rs3782905 and DBP rs7041 and the HCC progression in Egyptian patients chronically infected with HCV. These SNPs are considered as risk factors in HCV induced liver cirrhosis and HCC. The combinations of these SNPs with smoking status and gender are statistically linked to a high risk of HCC. Future research with a larger sample size of subjects with HCV infection is advised, because chronic liver disease induced by HCV infection is the primary cause of HCC in Egypt. We recommend screening of these SNPs for prediction of LC and HCC development in HCV infected patients, which may improve the used therapeutic protocol. These results suggest that VDR polymorphisms may be potential determinants for HCC susceptibility in Egyptian HCV patients.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C , Neoplasias Hepáticas , Receptores de Calcitriol , Proteína de Unión a Vitamina D , Humanos , Carcinoma Hepatocelular/genética , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Genotipo , Hepatitis C/complicaciones , Hepatitis C/genética , Cirrosis Hepática/complicaciones , Cirrosis Hepática/genética , Neoplasias Hepáticas/genética , Polimorfismo de Nucleótido Simple , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/genética , Vitamina D/metabolismo , Proteína de Unión a Vitamina D/genética
19.
Cells ; 12(21)2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37947646

RESUMEN

Hepatitis C virus (HCV) alters gene expression epigenetically to rearrange the cellular microenvironment in a beneficial way for its life cycle. The host epigenetic changes induced by HCV lead to metabolic dysfunction and malignant transformation. Lysine-specific demethylase 1 (LSD1) is an epigenetic controller of critical cellular functions that are essential for HCV propagation. We investigated the putative role of LSD1 in the establishment of HCV infection using genetic engineering and pharmacological inhibition to alter endogenous LSD1 levels. We demonstrated for the first time that HCV replication was inhibited in LSD1-overexpressing cells, while specific HCV proteins differentially fine-tuned endogenous LSD1 expression levels. Electroporation of the full-length HCV genome and subgenomic replicons in LSD1 overexpression enhanced translation and partially restored HCV replication, suggesting that HCV might be inhibited by LSD1 during the early steps of infection. Conversely, the inhibition of LSD1, followed by HCV infection in vitro, increased viral replication. LSD1 was shown to participate in an intriguing antiviral mechanism, where it activates endolysosomal interferon-induced transmembrane protein 3 (IFITM3) via demethylation, leading endocytosed HCV virions to degradation. Our study proposes that HCV-mediated LSD1 oscillations over countless viral life cycles throughout chronic HCV infection may promote epigenetic changes related to HCV-induced hepatocarcinogenesis.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Hepacivirus/fisiología , Lisina/metabolismo , Hepatitis C/genética , Histona Demetilasas/metabolismo , Epigénesis Genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo
20.
J Integr Bioinform ; 20(3)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37978846

RESUMEN

Hepatocellular carcinoma (HCC) has been associated with hepatitis C viral (HCV) infection as a potential risk factor. Nonetheless, the precise genetic regulatory mechanisms triggered by the virus, leading to virus-induced hepatocarcinogenesis, remain unclear. We hypothesized that HCV proteins might modulate the activity of aberrantly methylated HCC genes through regulatory pathways. Virus-host regulatory pathways, interactions between proteins, gene expression, transport, and stability regulation, were reconstructed using the ANDSystem. Gene expression regulation was statistically significant. Gene network analysis identified four out of 70 HCC marker genes whose expression regulation by viral proteins may be associated with HCC: DNA-binding protein inhibitor ID - 1 (ID1), flap endonuclease 1 (FEN1), cyclin-dependent kinase inhibitor 2A (CDKN2A), and telomerase reverse transcriptase (TERT). It suggested the following viral protein effects in HCV/human protein heterocomplexes: HCV NS3(p70) protein activates human STAT3 and NOTC1; NS2-3(p23), NS5B(p68), NS1(E2), and core(p21) activate SETD2; NS5A inhibits SMYD3; and NS3 inhibits CCN2. Interestingly, NS3 and E1(gp32) activate c-Jun when it positively regulates CDKN2A and inhibit it when it represses TERT. The discovered regulatory mechanisms might be key areas of focus for creating medications and preventative therapies to decrease the likelihood of HCC development during HCV infection.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C , Neoplasias Hepáticas , Virosis , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatitis C/complicaciones , Hepatitis C/genética , N-Metiltransferasa de Histona-Lisina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA