Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 869
Filtrar
1.
Vopr Virusol ; 69(2): 187-192, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843024

RESUMEN

INTRODUCTION: Herpes simplex virus type 1 (HSV-1) is one of the most common human viral infections and has a double-stranded DNA genome belonging to the Herpesviridae family. Smoking is one of the leading causes of disease and premature death worldwide, responsible for the death of up to six million people annually. The purpose of the current study was to determine the seroprevalence of HSV-1 infection among smokers. Methods. The search strategy was conducted in the period from December 2022 to January 2023. The study included a random sample of 94 (88 males, and 6 females) healthy participants, aged between ≤ 20 to ≥ 60 years, with 50 participants as the control group. The HSV serological testing consisted of detecting antibodies to HSV-1 IgG with the help of ELISA. RESULTS: Most participants were university students, consisting of 45.7% males and 5.3% females, followed by employed smokers, consisting of 0.2% males and 1.1% females. The number of females was much lower than that of males reaching 6.4 and 93.6% respectively, due to customs and traditions. The seroprevalence was 24.47, 22.3 and 2.1% in males and females respectively. The seroprevalence rate was 13.8% in hookah and cigarette smokers, 9% in cigarette smokers and 1.1% in hookah smokers exclusively. The highest rate was observed in the age groups of 21-30 and 31-40 years with 12.80% and 7.40% respectively. CONCLUSIONS: The study revealed that the seroprevalence of HSV-1 IgG was 24.47%, and was higher among hookah and cigarette smokers compared to those who exclusively smoked cigarettes or hookah.


Asunto(s)
Anticuerpos Antivirales , Herpes Simple , Herpesvirus Humano 1 , Fumadores , Humanos , Masculino , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/aislamiento & purificación , Femenino , Estudios Seroepidemiológicos , Adulto , Persona de Mediana Edad , Herpes Simple/epidemiología , Herpes Simple/virología , Herpes Simple/sangre , Anticuerpos Antivirales/sangre , Inmunoglobulina G/sangre , Adulto Joven , Fumar/epidemiología , Anciano , Adolescente
2.
Biomolecules ; 14(5)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38786010

RESUMEN

Cholesterol, a crucial component of cell membranes, influences various biological processes, including membrane trafficking, signal transduction, and host-pathogen interactions. Disruptions in cholesterol homeostasis have been linked to congenital and acquired conditions, including neurodegenerative disorders such as Alzheimer's disease (AD). Previous research from our group has demonstrated that herpes simplex virus type I (HSV-1) induces an AD-like phenotype in several cell models of infection. This study explores the interplay between cholesterol and HSV-1-induced neurodegeneration. The impact of cholesterol was determined by modulating its levels with methyl-beta-cyclodextrin (MßCD) using the neuroblastoma cell lines SK-N-MC and N2a. We have found that HSV-1 infection triggers the intracellular accumulation of cholesterol in structures resembling endolysosomal/autophagic compartments, a process reversible upon MßCD treatment. Moreover, MßCD exhibits inhibitory effects at various stages of HSV-1 infection, underscoring the importance of cellular cholesterol levels, not only in the viral entry process but also in subsequent post-entry stages. MßCD also alleviated several features of AD-like neurodegeneration induced by viral infection, including lysosomal impairment and intracellular accumulation of amyloid-beta peptide (Aß) and phosphorylated tau. In conclusion, these findings highlight the connection between cholesterol, neurodegeneration, and HSV-1 infection, providing valuable insights into the underlying mechanisms of AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Colesterol , Herpes Simple , Herpesvirus Humano 1 , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/fisiología , Colesterol/metabolismo , Humanos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/virología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/tratamiento farmacológico , Herpes Simple/virología , Herpes Simple/metabolismo , Herpes Simple/tratamiento farmacológico , Herpes Simple/patología , Línea Celular Tumoral , Animales , beta-Ciclodextrinas/farmacología , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Proteínas tau/metabolismo , Fenotipo , Ratones
3.
Nat Commun ; 15(1): 4018, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740820

RESUMEN

Anti-HSV therapies are only suppressive because they do not eliminate latent HSV present in ganglionic neurons, the source of recurrent disease. We have developed a potentially curative approach against HSV infection, based on gene editing using HSV-specific meganucleases delivered by adeno-associated virus (AAV) vectors. Gene editing performed with two anti-HSV-1 meganucleases delivered by a combination of AAV9, AAV-Dj/8, and AAV-Rh10 can eliminate 90% or more of latent HSV DNA in mouse models of orofacial infection, and up to 97% of latent HSV DNA in mouse models of genital infection. Using a pharmacological approach to reactivate latent HSV-1, we demonstrate that ganglionic viral load reduction leads to a significant decrease of viral shedding in treated female mice. While therapy is well tolerated, in some instances, we observe hepatotoxicity at high doses and subtle histological evidence of neuronal injury without observable neurological signs or deficits. Simplification of the regimen through use of a single serotype (AAV9) delivering single meganuclease targeting a duplicated region of the HSV genome, dose reduction, and use of a neuron-specific promoter each results in improved tolerability while retaining efficacy. These results reinforce the curative potential of gene editing for HSV disease.


Asunto(s)
Dependovirus , Edición Génica , Herpes Simple , Herpesvirus Humano 1 , Carga Viral , Esparcimiento de Virus , Animales , Edición Génica/métodos , Femenino , Dependovirus/genética , Ratones , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiología , Herpes Simple/genética , Herpes Simple/virología , Herpes Simple/terapia , Modelos Animales de Enfermedad , Latencia del Virus/genética , Humanos , Vectores Genéticos/genética , Células Vero , Terapia Genética/métodos , Herpes Genital/terapia , Herpes Genital/virología , ADN Viral/genética
4.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731826

RESUMEN

Although Herpes simplex virus type 1 (HSV-1) has been deeply studied, significant gaps remain in the fundamental understanding of HSV-host interactions: our work focused on studying the Infected Cell Protein 27 (ICP27) as an inhibitor of the Absent-in-melanoma-2 (AIM 2) inflammasome pathway, leading to reduced pro-inflammatory cytokines that influence the activation of a protective innate immune response to infection. To assess the inhibition of the inflammasome by the ICP27, hTert-immortalized Retinal Pigment Epithelial cells (hTert-RPE 1) infected with HSV-1 wild type were compared to HSV-1 lacking functional ICP27 (HSV-1∆ICP27) infected cells. The activation of the inflammasome by HSV-1∆ICP27 was demonstrated by quantifying the gene and protein expression of the inflammasome constituents using real-time PCR and Western blot. The detection of the cleavage of the pro-caspase-1 into the active form was performed by using a bioluminescent assay, while the quantification of interleukins 1ß (IL-1ß) and 18 (IL-18)released in the supernatant was quantified using an ELISA assay. The data showed that the presence of the ICP27 expressed by HSV-1 induces, in contrast to HSV-1∆ICP27 vector, a significant downregulation of AIM 2 inflammasome constituent proteins and, consequently, the release of pro-inflammatory interleukins into the extracellular environment reducing an effective response in counteracting infection.


Asunto(s)
Citocinas , Herpesvirus Humano 1 , Proteínas Inmediatas-Precoces , Inflamasomas , Epitelio Pigmentado de la Retina , Humanos , Inflamasomas/metabolismo , Herpesvirus Humano 1/fisiología , Citocinas/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/virología , Células Epiteliales/metabolismo , Células Epiteliales/virología , Línea Celular , Herpes Simple/inmunología , Herpes Simple/metabolismo , Herpes Simple/virología , Proteínas de Unión al ADN
5.
Viruses ; 16(5)2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38793654

RESUMEN

Based on several clinical observations it was hypothesized that herpesviruses may influence the replication of human bocaviruses, the second known parvoviruses that have been confirmed as human pathogens. While several cell lines support the growth of HSV-1, HBoV-1 was exclusively cultivated on air-liquid interface cultures, the latter being a rather complicated, slow, and low throughput system. One of the cell lines are T84 cells, which are derived from the lung metastasis of a colorectal tumor. In this study, we provide evidence that T84 also supports HBoV replication when cultivated as monolayers, while simultaneously being permissive for HSV-1. The cell culture model thus would enable co-infection studies of both viruses and is worth being optimized for high throughput studies with HBoV-1. Additionally, the study provides evidence for a supporting effect of HSV-1 on the replication and packaging of HBoV-1 progeny DNA into DNase-resistant viral particles.


Asunto(s)
Coinfección , Herpesvirus Humano 1 , Bocavirus Humano , Replicación Viral , Herpesvirus Humano 1/fisiología , Humanos , Coinfección/virología , Bocavirus Humano/fisiología , Bocavirus Humano/genética , Línea Celular , Línea Celular Tumoral , Técnicas de Cultivo de Célula/métodos , Herpes Simple/virología , Infecciones por Parvoviridae/virología , Chlorocebus aethiops , Cultivo de Virus/métodos
6.
Cell Rep ; 43(5): 114122, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38652659

RESUMEN

DNA sensing is important for antiviral immunity. The DNA sensor cGAS synthesizes 2'3'-cyclic GMP-AMP (cGAMP), a second messenger that activates STING, which induces innate immunity. cGAMP not only activates STING in the cell where it is produced but cGAMP also transfers to other cells. Transporters, channels, and pores (including SLC19A1, SLC46A2, P2X7, ABCC1, and volume-regulated anion channels (VRACs)) release cGAMP into the extracellular space and/or import cGAMP. We report that infection with multiple human viruses depletes some of these cGAMP conduits. This includes herpes simplex virus 1 (HSV-1) that targets SLC46A2, P2X7, and the VRAC subunits LRRC8A and LRRC8C for degradation. The HSV-1 protein UL56 is necessary and sufficient for these effects that are mediated at least partially by proteasomal turnover. UL56 thereby inhibits cGAMP uptake via VRAC, SLC46A2, and P2X7. Taken together, HSV-1 antagonizes intercellular cGAMP transfer. We propose that this limits innate immunity by reducing cell-to-cell communication via the immunotransmitter cGAMP.


Asunto(s)
Herpesvirus Humano 1 , Nucleótidos Cíclicos , Herpesvirus Humano 1/fisiología , Humanos , Nucleótidos Cíclicos/metabolismo , Proteínas Virales/metabolismo , Células HEK293 , Animales , Herpes Simple/virología , Herpes Simple/metabolismo , Herpes Simple/inmunología
8.
Virology ; 595: 110063, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38564935

RESUMEN

This experimental study aimed to evaluate the antiviral and synergistic effects of photoenergy irradiation on human herpes simplex virus type I (HSV-1) infection. We assessed viral replication, plaque formation, and relevant viral gene expression to examine the antiviral and synergistic effects of blue light (BL) with acyclovir treatment. Our results showed that daily BL (10 J/cm2) irradiation inhibited plaque-forming ability and decreased viral copy numbers in HSV-1-infected monkey kidney epithelial Vero cells and primary human oral keratinocyte (HOK) cells. Combined treatment with the antiviral agent acyclovir and BL irradiation increased anti-viral activity, reducing viral titers and copy numbers. In particular, accumulated BL irradiation suppressed characteristic viral genes including UL19 and US6, and viral DNA replication-essential genes including UL9, UL30, UL42, and UL52 in HOK cells. Our results suggest that BL irradiation has anti-viral and synergistic properties, making it a promising therapeutic candidate for suppressing viral infections in clinical trials.


Asunto(s)
Aciclovir , Antivirales , Herpesvirus Humano 1 , Replicación Viral , Antivirales/farmacología , Animales , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/efectos de la radiación , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 1/genética , Chlorocebus aethiops , Células Vero , Humanos , Replicación Viral/efectos de los fármacos , Replicación Viral/efectos de la radiación , Aciclovir/farmacología , Luz , Herpes Simple/virología , Herpes Simple/tratamiento farmacológico , Queratinocitos/virología , Queratinocitos/efectos de la radiación , Queratinocitos/efectos de los fármacos , Ensayo de Placa Viral
9.
J Hematop ; 17(2): 91-96, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38418769

RESUMEN

Hemophagocytic lymphohistiocytosis is a severe hyperinflammatory syndrome that can be potentially life-threatening without appropriate treatment. Although viral infection is the most common trigger of hemophagocytic lymphohistiocytosis, cases of herpes simplex virus type 1-induced hemophagocytic lymphohistiocytosis are rare in adults. This study aims to provide a comprehensive overview of the clinical characteristics and treatment outcomes associated with HSV-1-induced HLH. We herein report an adult case of hemophagocytic lymphohistiocytosis caused by herpes simplex virus type 1, diagnosed on the basis of peripheral blood metagenomic next-generation sequencing results. The patient exhibited a favorable response to treatment, involving dexamethasone, intravenous immunoglobulin, and acyclovir. Notably, etoposide administration was deemed unnecessary, and there has been no recurrence of the disease within the year following treatment. Early and sensitive recognition, rapid and precise diagnosis, and timely and appropriate treatment facilitated the successful treatment of this case.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Linfohistiocitosis Hemofagocítica , Humanos , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/virología , Linfohistiocitosis Hemofagocítica/tratamiento farmacológico , Herpesvirus Humano 1/aislamiento & purificación , Herpesvirus Humano 1/genética , Herpes Simple/diagnóstico , Herpes Simple/tratamiento farmacológico , Herpes Simple/virología , Herpes Simple/complicaciones , Masculino , Adulto , Dexametasona/uso terapéutico , Dexametasona/administración & dosificación , Aciclovir/uso terapéutico , Aciclovir/administración & dosificación , Antivirales/uso terapéutico
10.
J Virol ; 96(16): e0016322, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35913218

RESUMEN

Low endosomal pH facilitates herpesvirus entry in a cell-specific manner. Herpes simplex virus 1 (HSV-1) causes significant morbidity and death in humans worldwide. HSV-1 enters cells by low-pH and neutral-pH pathways. Low-pH-induced conformational changes in the HSV envelope glycoprotein B (gB) may mediate membrane fusion during viral entry. HSV-1 gC, a 511-amino acid, type I integral membrane glycoprotein, mediates HSV-1 attachment to host cell surface glycosaminoglycans, but this interaction is not essential for viral entry. We previously demonstrated that gC regulates low-pH viral entry independent of its known role in cell attachment. Low-pH-triggered conformational changes in gB occur at a lower pH when gC is absent, suggesting that gC positively regulates gB conformational changes. Here, we demonstrate that mildly acidic pH triggers conformational changes in gC itself. Low-pH treatment of virions induced antigenic changes in distinct gC epitopes, and those changes were reversible. One of these gC epitopes is recognized by a monoclonal antibody that binds to a linear sequence that includes residues within gC amino acids 33 to 123. This antibody inhibited low-pH entry of HSV, suggesting that its gC N-terminal epitope is particularly important. We propose that gC plays a critical role in HSV entry through a low-pH endocytosis pathway, which is a major entry route in human epithelial cells. IMPORTANCE Herpesviruses are ubiquitous pathogens that cause lifelong latent infections and are characterized by multiple entry pathways. The HSV envelope gC regulates HSV entry by a low-pH entry route. The fusion protein gB undergoes pH-triggered conformational changes that are facilitated by gC. Here, we report that gC itself undergoes a conformational change at low pH. A monoclonal antibody to gC that binds to a region that undergoes pH-induced changes also selectively inhibits HSV low-pH entry, corroborating the importance of gC in the low-pH entry pathway. This study illustrates the complex role of endosomal pH during HSV entry and provides novel insights into the functions of gC.


Asunto(s)
Herpesvirus Humano 1 , Proteínas del Envoltorio Viral/química , Anticuerpos Monoclonales , Epítopos/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Humanos , Internalización del Virus
11.
J Virol ; 96(3): e0198521, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34851143

RESUMEN

Herpes simplex virus 1 (HSV-1) latency-associated transcript (LAT) plays a significant role in efficient establishment of latency and reactivation. LAT has antiapoptotic activity and downregulates expression of components of the type I interferon pathway. LAT also specifically activates expression of the herpesvirus entry mediator (HVEM), one of seven known receptors used by HSV-1 for cell entry that is crucial for latency and reactivation. However, the mechanism by which LAT regulates HVEM expression is not known. LAT has two small noncoding RNAs (sncRNAs) that are not microRNAs (miRNAs), within its 1.5-kb stable transcript, which also have antiapoptotic activity. These sncRNAs may encode short peptides, but experimental evidence is lacking. Here, we demonstrate that these two sncRNAs control HVEM expression by activating its promoter. Both sncRNAs are required for wild-type (WT) levels of activation of HVEM, and sncRNA1 is more important in HVEM activation than sncRNA2. Disruption of a putative start codon in sncRNA1 and sncRNA2 sequences reduced HVEM promoter activity, suggesting that sncRNAs encode a protein. However, we did not detect peptide binding using two chromatin immunoprecipitation (ChIP) approaches, and a web-based algorithm predicts low probability that the putative peptides bind to DNA. In addition, computational modeling predicts that sncRNA molecules bind with high affinity to the HVEM promoter, and deletion of these binding sites to sncRNA1, sncRNA2, or both reduced HVEM promoter activity. Together, our data suggest that sncRNAs exert their function as RNA molecules, not as proteins, and we provide a model for the predicted binding affinities and binding sites of sncRNA1 and sncRNA2 in the HVEM promoter. IMPORTANCE HSV-1 causes recurrent ocular infections, which is the leading cause of corneal scarring and blindness. Corneal scarring is caused by the host immune response to repeated reactivation events. LAT functions by regulating latency and reactivation, in part by inhibiting apoptosis and activating HVEM expression. However, the mechanism used by LAT to control HVEM expression is unclear. Here, we demonstrate that two sncRNAs within the 1.5-kb LAT transcript activate HVEM expression by binding to two regions of its promoter. Interfering with these interactions may reduce latency and thereby eye disease associated with reactivation.


Asunto(s)
Regulación Viral de la Expresión Génica , Herpes Simple/virología , Regiones Promotoras Genéticas , ARN Pequeño no Traducido/genética , ARN Viral , Activación Viral , Animales , Sitios de Unión , Células Cultivadas , Codón Iniciador , Herpesvirus Humano 1/fisiología , Humanos , Ratones , Mutación , Conformación de Ácido Nucleico , Péptidos , Conejos , Replicación Viral
13.
Drug Discov Today ; 27(1): 185-195, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34678489

RESUMEN

Human herpes simplex viruses (HSVs) belong to the Herpesviridae family. At present, no vaccine or curative treatment is available for the prevention of HSV infections. Here, we review the cell surface receptors that are recognized by HSV's glycoprotein B, glycoprotein C, glycoprotein D, and the glycoprotein H - glycoprotein L complex to facilitate entry into host cells. These receptors include heparan sulfate (HS), herpesvirus entry mediator (HVEM), and nectin-1/-2, 3-O-sulfated heparan sulfate (3-OS HS).


Asunto(s)
Antivirales/farmacología , Herpes Simple , Herpesvirus Humano 1 , Ligandos , Proteínas del Envoltorio Viral , Internalización del Virus/efectos de los fármacos , Desarrollo de Medicamentos , Descubrimiento de Drogas/métodos , Herpes Simple/tratamiento farmacológico , Herpes Simple/prevención & control , Herpes Simple/virología , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/fisiología , Humanos , Glicoproteínas de Membrana/clasificación , Proteínas del Envoltorio Viral/clasificación , Proteínas del Envoltorio Viral/fisiología
14.
mBio ; 12(6): e0322821, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34933455

RESUMEN

The nature and the intensity of innate immune response to virus infection determine the course of pathogenesis in the host. Among the many pathogen-associated molecular pattern recognition receptors, STING, an endoplasmic reticulum (ER)-associated protein, plays a pivotal role in triggering responses to microbial or cellular cytoplasmic DNA. Herpes simplex virus 1 (HSV-1), a common human pathogen, activates STING signaling, and the resultant induction of type I interferon causes inhibition of virus replication. In this context, we have observed that phosphorylation of Tyr245 of STING by epidermal growth factor receptor kinase is necessary for interferon induction. Here, we report that phosphorylation of Tyr240 by the tyrosine kinase Syk is essential for all signaling activities of STING. Our analysis showed that upon ligand-binding, STING dimerizes and interacts with membrane-bound EGFR, which autophosphorylates and provides the platform for the recruitment of cytoplasmic Syk to the signaling complex and its activation. Activated Syk phosphorylates Tyr240 of STING, followed by phosphorylation of Tyr245 by epidermal growth factor receptor (EGFR). Pharmacological or genetic ablation of Syk activity resulted in an arrest of STING in the ER compartment and a complete block of gene induction. Consequently, in the absence of Syk, HSV-1 could not induce interferon, and it replicated more robustly. IMPORTANCE The innate immune response to virus infection leads to interferon production and inhibition of viral replication. STING, an ER-bound protein, mediates such a response to cytoplasmic cellular or microbial DNA. HSV-1, a DNA virus, activates STING, and it replicates more efficiently in the absence of STING signaling. We demonstrate that phosphorylation of Tyr240 of STING by the protein tyrosine kinase Syk is essential for STING-mediated gene induction. To signal, ligand-activated STING recruits two kinases, Syk and EGFR, which phosphorylate Tyr240 and Tyr245, respectively. The dependence of STING signaling on Syk has broad significance, because STING plays a major role in many microbial, mitochondrial, and autoimmune diseases as well as in cancer development and therapy.


Asunto(s)
Herpes Simple/metabolismo , Herpesvirus Humano 1/fisiología , Interferón beta/metabolismo , Proteínas de la Membrana/metabolismo , Quinasa Syk/metabolismo , Secuencias de Aminoácidos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Herpes Simple/genética , Herpes Simple/virología , Herpesvirus Humano 1/genética , Humanos , Interferón beta/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Fosforilación , Quinasa Syk/genética , Replicación Viral
15.
mBio ; 12(6): e0279221, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34749529

RESUMEN

Under pathological conditions like herpes simplex virus 1 (HSV-1) infection, host-pathogen interactions lead to major reconstruction of the host protein network, which contributes to the dysregulation of signaling pathways and disease onset. Of note is the upregulation of a multifunctional host protein, heparanase (HPSE), following infection, which serves as a mediator in HSV-1 replication. In this study, we identify a novel function of HPSE and highlight it as a key regulator of ß-catenin signal transduction. The regulatory role of HPSE on the activation, nuclear translocation, and signal transduction of ß-catenin disrupts cellular homeostasis and establishes a pathogenic environment that promotes viral replication. Under normal physiological conditions, ß-catenin is bound to a group of proteins, referred to as the destruction complex, and targeted for ubiquitination and, ultimately, degradation. We show that virus-induced upregulation of HPSE leads to the activation of Akt and subsequent stabilization and activation of ß-catenin through (i) the release of ß-catenin from the destruction complex, and (ii) direct phosphorylation of ß-catenin at Ser552. This study also provides an in-depth characterization of the proviral role of ß-catenin signaling during HSV-1 replication using physiologically relevant cell lines and in vivo models of ocular infection. Furthermore, pharmacological inhibitors of this pathway generated a robust antiviral state against multiple laboratory and clinical strains of HSV-1. Collectively, our findings assign a novel regulatory role to HPSE as a driver of ß-catenin signaling in HSV-1 infection. IMPORTANCE Heparanase (HPSE) and ß-catenin have independently been implicated in regulating key pathophysiological processes, including neovascularization, angiogenesis, and inflammation; however, the relationship between the two proteins has remained elusive thus far. For that reason, characterizing this relationship is crucial and can lead to the development of novel therapeutics. For HSV-1 specifically, current antivirals are not able to abolish the virus from the host, leaving patients susceptible to episodes of viral reactivation. Identifying a host-based intervention can provide a better alternative with enhanced efficacy and sustained relief.


Asunto(s)
Glucuronidasa/metabolismo , Herpes Simple/enzimología , Herpesvirus Humano 1/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , beta Catenina/metabolismo , Secuencias de Aminoácidos , Línea Celular , Glucuronidasa/genética , Herpes Simple/genética , Herpes Simple/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/genética , Interacciones Huésped-Patógeno , Humanos , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Activación Viral , Replicación Viral , Vía de Señalización Wnt , beta Catenina/química , beta Catenina/genética
16.
PLoS Pathog ; 17(11): e1010117, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34843605

RESUMEN

Plasmacytoid dendritic cells (pDC) are important innate immune cells during the onset of viral infections as they are specialized in the production of massive amounts of antiviral type I interferon (IFN). Alphaherpesviruses such as herpes simplex virus (HSV) or pseudorabies virus (PRV) are double stranded DNA viruses and potent stimulators of pDC. Detailed information on how PRV activates porcine pDC is lacking. Using PRV and porcine primary pDC, we report here that PRV virions, so-called heavy (H-)particles, trigger IFNα production by pDC, whereas light (L-) particles that lack viral DNA and capsid do not. Activation of pDC requires endosomal acidification and, importantly, depends on the PRV gD envelope glycoprotein and O-glycosylations. Intriguingly, both for PRV and HSV-1, we found that L-particles suppress H-particle-mediated activation of pDC, a process which again depends on viral gD. This is the first report describing that gD plays a critical role in alphaherpesvirus-induced pDC activation and that L-particles directly interfere with alphaherpesvirus-induced IFNα production by pDC.


Asunto(s)
Células Dendríticas/inmunología , Herpes Simple/inmunología , Interferón Tipo I/metabolismo , Seudorrabia/inmunología , Proteínas del Envoltorio Viral/metabolismo , Virión/fisiología , Animales , Células Dendríticas/metabolismo , Células Dendríticas/virología , Herpes Simple/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Herpesvirus Suido 1/fisiología , Masculino , Seudorrabia/metabolismo , Seudorrabia/virología , Porcinos , Testículo/inmunología , Testículo/metabolismo , Testículo/virología , Proteínas del Envoltorio Viral/genética
17.
Viruses ; 13(11)2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34835102

RESUMEN

Following acute infection, herpes simplex virus 1 (HSV-1) establishes lifelong latency in neurons, including sensory neurons within trigeminal ganglia. During latency, lytic cycle viral gene expression is silenced. However, stressful stimuli can trigger reactivation from latency. The viral tegument protein, VP-16, transactivates all immediate early (IE) promoters during productive infection. Conversely, cellular factors are expected to trigger viral gene expression during early stages of reactivation from latency and in non-neuronal cells that do not support high levels of productive infection. The glucocorticoid receptor (GR), synthetic corticosteroid dexamethasone, and certain stress-induced transcription factors cooperatively transactivate infected cell protein 0 (ICP0) and ICP4 promoters. Since ICP27 protein expression is required for productive infection, we hypothesized that the ICP27 promoter is transactivated by stress-induced transcription factors. New studies have demonstrated that ICP27 enhancer sequences were transactivated by GR and Krüppel-like factor 15 (KLF15). Mutation of a consensus Sp1 binding site within ICP27 enhancer sequences impaired transactivation by GR and KLF15. Chromatin immunoprecipitation studies have demonstrated that GR and KLF15 occupy ICP27 promoter sequences during productive infection. Cells transfected with an ICP27 enhancer fragment revealed the GR and KLF15 occupancy of ICP27 enhancer sequences required the intact Sp1 binding site. Notably, GR and KLF15 form a feed-forward transcription loop in response to stress, suggesting these cellular factors promote viral replication following stressful stimuli.


Asunto(s)
Herpes Simple/inmunología , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Proteínas Inmediatas-Precoces/inmunología , Receptores de Glucocorticoides/inmunología , Latencia del Virus , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Inmunoprecipitación de Cromatina , Regulación Viral de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/inmunología , Ratones , Factores de Transcripción , Células Vero , Activación Viral
18.
mBio ; 12(6): e0255721, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34809467

RESUMEN

Viruses have evolved a plethora of mechanisms to impair host innate immune responses. Herpes simplex virus type 1 (HSV-1), a double-stranded linear DNA virus, impairs the mitochondrial network and dynamics predominantly through the UL12.5 gene. We demonstrated that HSV-1 infection induced a remodeling of mitochondrial shape, resulting in a fragmentation of the mitochondria associated with a decrease in their volume and an increase in their sphericity. This damage leads to the release of mitochondrial DNA (mtDNA) to the cytosol. By generating a stable THP-1 cell line expressing the DNase I-mCherry fusion protein and a THP-1 cell line specifically depleted of mtDNA upon ethidium bromide treatment, we showed that cytosolic mtDNA contributes to type I interferon and APOBEC3A upregulation. This was confirmed by using an HSV-1 strain (KOS37 UL98-SPA) with a deletion of the UL12.5 gene that impaired its ability to induce mtDNA stress. Furthermore, by using an inhibitor of RNA polymerase III, we demonstrated that upon HSV-1 infection, cytosolic mtDNA enhanced type I interferon induction through the RNA polymerase III/RIG-I pathway. APOBEC3A was in turn induced by interferon. Deep sequencing analyses of cytosolic mtDNA mutations revealed an APOBEC3A signature predominantly in the 5'TpCpG context. These data demonstrate that upon HSV-1 infection, the mitochondrial network is disrupted, leading to the release of mtDNA and ultimately to its catabolism through APOBEC3-induced mutations. IMPORTANCE Herpes simplex virus 1 (HSV-1) impairs the mitochondrial network through the viral protein UL12.5. This leads to the fusion of mitochondria and simultaneous release of mitochondrial DNA (mtDNA) in a mouse model. We have shown that released mtDNA is recognized as a danger signal, capable of stimulating signaling pathways and inducing the production of proinflammatory cytokines. The expression of the human cytidine deaminase APOBEC3A is highly upregulated by interferon responses. This enzyme catalyzes the deamination of cytidine to uridine in single-stranded DNA substrates, resulting in the catabolism of edited DNA. Using human cell lines deprived of mtDNA and viral strains deficient in UL12, we demonstrated the implication of mtDNA in the production of interferon and APOBEC3A expression during viral infection. We have shown that HSV-1 induces mitochondrial network fragmentation in a human model and confirmed the implication of RNA polymerase III/RIG-I signaling in the capture of cytosolic mtDNA.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Herpes Simple/metabolismo , Herpesvirus Humano 1/fisiología , Interferón beta/metabolismo , Mitocondrias/virología , ARN Polimerasa III/metabolismo , Receptores Inmunológicos/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Proteína 58 DEAD Box/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Desoxirribonucleasas/genética , Desoxirribonucleasas/metabolismo , Herpes Simple/genética , Herpes Simple/virología , Herpesvirus Humano 1/genética , Interacciones Huésped-Patógeno , Humanos , Interferón beta/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas/genética , Proteínas/metabolismo , ARN Polimerasa III/genética , Receptores Inmunológicos/genética , Transducción de Señal , Proteínas Virales/genética , Proteínas Virales/metabolismo
19.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34830340

RESUMEN

Herpes simplex virus 1 (HSV-1) infects the majority of the human population and can induce encephalitis, which is the most common cause of sporadic, fatal encephalitis. An increase of microglia is detected in the brains of encephalitis patients. The issues regarding whether and how microglia protect the host and neurons from HSV-1 infection remain elusive. Using a murine infection model, we showed that HSV-1 infection on corneas increased the number of microglia to outnumber those of infiltrating leukocytes (macrophages, neutrophils, and T cells) and enhanced microglia activation in brains. HSV-1 antigens were detected in brain neurons, which were surrounded by microglia. Microglia depletion increased HSV-1 lethality of mice with elevated brain levels of viral loads, infected neurons, neuron loss, CD4 T cells, CD8 T cells, neutrophils, interferon (IFN)-ß, and IFN-γ. In vitro studies demonstrated that microglia from infected mice reduced virus infectivity. Moreover, microglia induced IFN-ß and the signaling pathway of signal transducer and activator of transcription (STAT) 1 to inhibit viral replication and damage of neurons. Our study reveals how microglia protect the host and neurons from HSV-1 infection.


Asunto(s)
Encéfalo/virología , Córnea/virología , Herpes Simple/virología , Herpesvirus Humano 1/patogenicidad , Microglía/virología , Animales , Encéfalo/patología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/patología , Linfocitos T CD8-positivos/virología , Recuento de Células , Córnea/patología , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Herpes Simple/metabolismo , Herpes Simple/mortalidad , Herpes Simple/patología , Herpesvirus Humano 1/crecimiento & desarrollo , Humanos , Interferón beta/genética , Interferón beta/metabolismo , Interferón gamma/genética , Interferón gamma/metabolismo , Macrófagos/patología , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/patología , Neuronas/patología , Neuronas/virología , Neutrófilos/patología , Neutrófilos/virología , Compuestos Orgánicos/toxicidad , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Análisis de Supervivencia , Carga Viral
20.
Viruses ; 13(9)2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34578430

RESUMEN

Herpes simplex virus type-1 (HSV-1) and type-2 (HSV-2) are prototypical alphaherpesviruses that are characterized by their unique properties to infect trigeminal and dorsal root ganglionic neurons, respectively, and establish life-long latent infections. These viruses initially infect mucosal epithelial tissues and subsequently spread to neurons. They are associated with a significant disease spectrum, including orofacial and ocular infections for HSV-1 and genital and neonatal infections for HSV-2. Viral glycoproteins within the virion envelope bind to specific cellular receptors to mediate virus entry into cells. This is achieved by the fusion of the viral envelope with the plasma membrane. Similarly, viral glycoproteins expressed on cell surfaces mediate cell-to-cell fusion and facilitate virus spread. An interactive complex of viral glycoproteins gB, gD/gH/gL, and gK and other proteins mediate these membrane fusion phenomena with glycoprotein B (gB), the principal membrane fusogen. The requirement for the virion to enter neuronal axons suggests that the heterodimeric protein complex of gK and membrane protein UL20, found only in alphaherpesviruses, constitute a critical determinant for neuronal entry. This hypothesis was substantiated by the observation that a small deletion in the amino terminus of gK prevents entry into neuronal axons while allowing entry into other cells via endocytosis. Cellular receptors and receptor-mediated signaling synergize with the viral membrane fusion machinery to facilitate virus entry and intercellular spread. Unraveling the underlying interactions among viral glycoproteins, envelope proteins, and cellular receptors will provide new innovative approaches for antiviral therapy against herpesviruses and other neurotropic viruses.


Asunto(s)
Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Fusión de Membrana , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Axones/virología , Fusión Celular , Humanos , Neuronas/virología , Proteínas del Envoltorio Viral/química , Tropismo Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA