Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273257

RESUMEN

Chemotherapy-induced diarrhea (CID) is a potentially serious side effect that often occurs during anticancer therapy and is caused by the toxic effects of chemotherapeutic drugs on the gastrointestinal tract, resulting in increased frequency of bowel movements and fluid contents. Among these agents, irinotecan (CPT-11) is most commonly associated with CID. Hesperidin (HPD), a flavonoid glycoside found predominantly in citrus fruits, has anti-oxidation properties and anti-inflammation properties that may benefit CID management. Nevertheless, its potential mechanism is still uncertain. In this study, we firstly evaluated the pharmacodynamics of HPD for the treatment of CID in a mouse model, then used network pharmacology and molecular docking methods to excavate the mechanism of HPD in relieving CID, and finally further proved the predicted mechanism through molecular biology experiments. The results demonstrate that HPD significantly alleviated diarrhea, weight loss, colonic pathological damage, oxidative stress, and inflammation in CID mice. In addition, 74 potential targets for HPD intervention in CID were verified by network pharmacology, with the top 10 key targets being AKT1, CASP3, ALB, EGFR, HSP90AA1, MMP9, ESR1, ANXA5, PPARG, and IGF1. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the PI3K-Akt pathway, FoxO pathway, MAPK pathway, TNF pathway, and Ras pathway were most relevant to the HPD potential treatment of CID genes. The molecular docking results showed that HPD had good binding to seven apoptosis-related targets, including AKT1, ANXA5, CASP3, HSP90AA1, IGF1, MMP9, and PPARG. Moreover, we verified apoptosis by TdT-mediated dUTP nick-end labeling (TUNEL) staining and immunohistochemistry, and the hypothesis about the proteins above was further verified by Western blotting in vivo experiments. Overall, this study elucidates the potential and underlying mechanisms of HPD in alleviating CID.


Asunto(s)
Diarrea , Hesperidina , Irinotecán , Simulación del Acoplamiento Molecular , Farmacología en Red , Hesperidina/farmacología , Hesperidina/química , Hesperidina/uso terapéutico , Animales , Diarrea/tratamiento farmacológico , Diarrea/inducido químicamente , Ratones , Irinotecán/efectos adversos , Irinotecán/farmacología , Modelos Animales de Enfermedad , Masculino , Estrés Oxidativo/efectos de los fármacos
2.
Int Immunopharmacol ; 140: 112759, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39098226

RESUMEN

Triple negative breast cancer (TNBC) represents a heterogeneous subtype of breast cancer characterized by an unfavorable prognosis due to its aggressive biology. Cancer-associated adipocytes (CAAs) play an active role in tumor development, invasion and metastasis, and response to treatment by secreting various cytokines. CAAs secrete CCL2 and ADPN which significantly affect the efficacy of aPD-1 in treating breast cancer. Our recent research has demonstrated that Hesperidin, a natural phenolic compound, significantly inhibits CCL2, elevates ADPN secreted by CAAs in vitro and in vivo, remodels the immune microenvironment, and potentiates the efficacy of aPD-1 in triple-negative breast cancer. We used Oil red staining, Bodipy 493/503 staining and quantitative real-time PCR to verify the formation of CAAs. ELISA was used to detect levels of CCL2, ADPN secreted by CAAs. Changes in the number of immune cells in mouse tumor tissues were detected using flow cytometry and immunofluorescence. Our data suggest that Hesperidin PLGA nanoparticles significantly reduced CCL2 and increased ADPN secreted by CAAs, which concurrently decreased the recruitment of M2 macrophages, Tregs and MDSCs while increased the infiltration of CD8+T cells, M1 macrophages and DCs into tumor, thus significantly potentiated the efficacy of aPD-1 in vivo. This study provides a new combined strategy for the clinical treatment of triple-negative breast cancer by interfering with CCL2, ADPN secreted by CAAs to enhance the efficacy of immunotherapy.


Asunto(s)
Adipocitos , Quimiocina CCL2 , Hesperidina , Nanopartículas , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Hesperidina/farmacología , Hesperidina/uso terapéutico , Femenino , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Humanos , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Línea Celular Tumoral , Ratones , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Ratones Endogámicos BALB C , Adipoquinas/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Sinergismo Farmacológico
3.
Int Immunopharmacol ; 141: 113001, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39186835

RESUMEN

In triple-negative breast cancer (TNBC), the tumor immune microenvironment (TIME) is a highly heterogeneous ecosystem that exerts indispensable roles in tumorigenesis and tumor progression. Cancer-associated fibroblasts (CAFs) and cancer-associated adipocytes (CAAs) are the main matrix components in the TIME of TNBC. CAFs mediate the edesmoplastic response, which is a major driver of the immunosuppressive microenvironment to promote tumor growth. In addition, CAAs, a type of tumor-educated adipocyte, participate in crosstalk with breast cancer and are capable of secreting various cytokines, adipokines and chemokines, especially C-C Motif Chemokine Ligand 2 (CCL2), resulting in changes of cancer cell phenotype and function. Therefore, how to treat tumors by regulating the CAFs and the secretion of CCL2 by CAAs in TIME is investigated here. Our research group previously found that rhein (Rhe) has been identified as effective against CAFs, while hesperidin (Hes) could effectively diminish CCL2 secretion by CAAs. Inspired by the above, we developed unique PLGA-based nanoparticles loaded with Rhe and Hes (RH-NP) using the emulsion solvent diffusion method. The RH-NP particles have an average size of 114.1 ± 0.98 nm. RH-NP effectively reduces CAFs and inhibits CCL2 secretion by CAAs, promoting increased infiltration of cytotoxic T cells and reducing immunosuppressive cell presence within tumors. This innovative, safe, low-toxic, and highly effective anti-tumor strategy could be prospective in TNBC treatment.


Asunto(s)
Antraquinonas , Fibroblastos Asociados al Cáncer , Quimiocina CCL2 , Hesperidina , Nanopartículas , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Quimiocina CCL2/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/inmunología , Femenino , Humanos , Hesperidina/farmacología , Hesperidina/uso terapéutico , Animales , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/metabolismo , Nanopartículas/química , Línea Celular Tumoral , Antraquinonas/farmacología , Antraquinonas/uso terapéutico , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipocitos/inmunología , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química
4.
Sci Rep ; 14(1): 7434, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548778

RESUMEN

Cyclosporine A (CsA) is employed for organ transplantation and autoimmune disorders. Nephrotoxicity is a serious side effect that hampers the therapeutic use of CsA. Hesperidin and sitagliptin were investigated for their antioxidant, anti-inflammatory, and tissue-protective properties. We aimed to investigate and compare the possible nephroprotective effects of hesperidin and sitagliptin. Male Wistar rats were utilized for induction of CsA nephrotoxicity (20 mg/kg/day, intraperitoneally for 7 days). Animals were treated with sitagliptin (10 mg/kg/day, orally for 14 days) or hesperidin (200 mg/kg/day, orally for 14 days). Blood urea, serum creatinine, albumin, cystatin-C (CYS-C), myeloperoxidase (MPO), and glucose were measured. The renal malondialdehyde (MDA), glutathione (GSH), catalase, and SOD were estimated. Renal TNF-α protein expression was evaluated. Histopathological examination and immunostaining study of Bax, Nrf-2, and NF-κB were performed. Sitagliptin or hesperidin attenuated CsA-mediated elevations of blood urea, serum creatinine, CYS-C, glucose, renal MDA, and MPO, and preserved the serum albumin, renal catalase, SOD, and GSH. They reduced the expressions of TNF-α, Bax, NF-κB, and pathological kidney damage. Nrf2 expression in the kidney was raised. Hesperidin or sitagliptin could protect the kidney against CsA through the mitigation of oxidative stress, apoptosis, and inflammation. Sitagliptin proved to be more beneficial than hesperidin.


Asunto(s)
Hesperidina , Enfermedades Renales , Insuficiencia Renal , Ratas , Animales , Masculino , Ciclosporina/farmacología , FN-kappa B/metabolismo , Catalasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Hesperidina/farmacología , Hesperidina/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Ratas Wistar , Fosfato de Sitagliptina/efectos adversos , Creatinina , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Riñón/metabolismo , Estrés Oxidativo , Insuficiencia Renal/patología , Glutatión/metabolismo , Urea/metabolismo , Superóxido Dismutasa/metabolismo , Glucosa/metabolismo
5.
Respir Physiol Neurobiol ; 323: 104240, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38417564

RESUMEN

In this study, we hypothesized that long-term administration of hesperidin can modulate the inflammatory response and oxidative stress in animals submitted to mechanical ventilation (MV). Twenty-five C57BL/6 male mice were divided into 5 groups: control, MV, animals receiving hesperidin in three doses 10, 25 and 50 mg/kg. The animals received the doses of hesperidin for 30 days via orogastric gavage, and at the end of the period the animals were submitted to MV. In animals submitted to MV, increased lymphocyte, neutrophil and monocyte/macrophage cell counts were observed in the blood and airways. Associated to this, MV promoted an increase in inflammatory cytokine levels such as CCL2, IL-12 and TNFα. The daily administration of hesperidin in the three doses prevented the effects caused by MV, which was observed by a lower influx of inflammatory cells into the airways, a reduction in inflammatory markers and less oxidative damage.


Asunto(s)
Hesperidina , Neumonía , Ratones , Animales , Masculino , Hesperidina/farmacología , Hesperidina/uso terapéutico , Ratones Endogámicos C57BL , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Estrés Oxidativo , Neumonía/prevención & control , Inflamación/prevención & control
6.
BMC Pharmacol Toxicol ; 25(1): 22, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414079

RESUMEN

BACKGROUND: Radiation triggers salivary gland damage and excess iron accumulates in tissues induces cell injury. Flavonoids are found in some fruits and are utilized as potent antioxidants and radioprotective agents. This study aimed to evaluate the antioxidant and anti-inflammatory effects of hesperidin and rutin on gamma radiation and iron overload induced submandibular gland (SMG) damage and to evaluate their possible impact on mitigating the alteration in mTOR signaling pathway and angiogenesis. METHODS: Forty-eight adult male Wistar albino rats were randomly assigned to six groups: group C received a standard diet and distilled water; group H received hesperidin at a dose of 100 mg/kg; four times a week for four weeks; group U received rutin at a dose of 50 mg/kg; three times a week for three weeks; group RF received a single dose (5 Gy) of gamma radiation followed by iron at a dose of 100 mg/kg; five times a week for four weeks; group RFH received radiation and iron as group RF and hesperidin as group H; group RFU received radiation and iron as group RF and rutin as group U. SMG specimens from all groups were removed at the end of the experiment; and some were used for biochemical analysis, while others were fixed for histological and immunohistochemical examination. RESULTS: In the RF group, several genes related to antioxidants (Nrf-2 and SOD) and DNA damage (BRCA1) were significantly downregulated, while several genes related to inflammation and angiogenesis (TNFα, IL-1ß and VEGF) and the mTOR signaling pathway (PIK3ca, AKT and mTOR) were significantly upregulated. Acinar cytoplasmic vacuolation, nuclear pyknosis, and interacinar hemorrhage with distinct interacinar spaces were observed as histopathological changes in SMGs. The duct system suffered significant damage, eventually degenerating entirely as the cells were shed into the lumina. VEGF and NF-κB were also significantly overexpressed. Hesperidin and rutin cotreatment generated partial recovery as indicated by significant upregulation of Nrf-2, SOD and BRCA1 and considerable downregulation of TNF-α, IL-1ß, VEGF, PIK3ca, AKT, and mTOR. Although some acini and ducts continued to deteriorate, most of them had a normal appearance. There was a notable decrease in the expression of VEGF and NF-κB. CONCLUSIONS: In γ-irradiated rats with iron overload, the administration of hesperidin and rutin may mitigate salivary gland damage.


Asunto(s)
Hesperidina , Sobrecarga de Hierro , Ratas , Masculino , Animales , Hesperidina/farmacología , Hesperidina/uso terapéutico , Rutina/farmacología , Rutina/uso terapéutico , Rutina/metabolismo , Ratas Wistar , Glándula Submandibular/metabolismo , FN-kappa B/metabolismo , Rayos gamma/efectos adversos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/metabolismo , Superóxido Dismutasa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Hierro/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Estrés Oxidativo
7.
Sci Rep ; 14(1): 1510, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233443

RESUMEN

Breast cancer ranks as the second leading most significant of mortality for women. Studies have demonstrated the potential benefits of natural compounds in cancer treatment and prevention, either in isolation or in conjunction with chemotherapy. In order to improve Tamoxifen's therapeutic efficacy in in-vivo studies, our research sought to determine the effects of hesperidin, piperine, and bee venom as natural compounds, as well as their combination effect with or without Tamoxifen. First, 132 female albino rats were equally divided into six groups and five subgroups, and breast cancer was induced in the selected groups by xenografting of MCF7 cells. Second, the effect of single and best ratio combinations treatment from previous in vitro studies were selected. Next, tumorous mammary glands were collected for apoptotic and antiapoptotic biomarkers and cell cycle analysis. Single or combined natural products with or without Tamoxifen revealed a significant up-regulation in apoptotic genes Bax and Casp3 and a downregulation of antiapoptotic and angiogenesis genes Bcl-2 and VEGF genes. We found that cell cycle arrest in the G0/G1 phase was exclusively caused by Tamoxifen and/ or hesperidin. However, the cell cycle arrest in the G2/M phase is a result of the combination of piperine and bee venom, with or without Tamoxifen by using the flow cytometric technique. Our research concludes that bee venom, hesperidin, and piperine can synergistically enhance to increase Tamoxifen's efficiency in the management of breast cancer.


Asunto(s)
Alcaloides , Venenos de Abeja , Benzodioxoles , Neoplasias de la Mama , Hesperidina , Piperidinas , Alcamidas Poliinsaturadas , Humanos , Femenino , Ratas , Animales , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Hesperidina/farmacología , Hesperidina/uso terapéutico , Células MCF-7 , Venenos de Abeja/farmacología , Venenos de Abeja/uso terapéutico , Angiogénesis , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Biomarcadores
8.
Life Sci ; 336: 122295, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38007145

RESUMEN

INTRODUCTION: Sorafenib, an FDA-approved standard chemotherapy for advanced hepatocellular carcinoma, is associated with numerous adverse effects that significantly impact patients' physiological well-being. Consequently, identifying agents that mitigate these side effects while enhancing efficacy is crucial. Hesperetin, a flavone present in fruits and vegetables, possesses antioxidant, anti-inflammatory, and anti-cancer properties. This study aimed to investigate the hepatotoxic and neurotoxic effects of sorafenib and the potential protective role of hesperetin. MATERIALS AND METHODS: Swiss albino mice were orally administered sorafenib (100 mg/kg) alone or in combination with hesperetin (50 mg/kg) over 21 days. Behavioral assessments for anxiety and depressive-like behaviors were conducted. Additionally, evaluations encompassed apoptotic activity, mitochondrial integrity, liver enzyme levels, proliferation rates, and histopathological changes. RESULTS: Combining hesperetin with sorafenib showed improvements in behavioral alterations, liver damage, brain mitochondrial dysfunction, and liver apoptosis compared to the sorafenib-only group in mice. CONCLUSION: Hesperetin exhibits potential as an adjunct to sorafenib, mitigating its side effects by attenuating its toxicity, enhancing efficacy, and potentially reducing the occurrence of sorafenib-induced resistance through the downregulation of hepatocyte growth factor levels.


Asunto(s)
Carcinoma Hepatocelular , Hesperidina , Neoplasias Hepáticas , Humanos , Ratones , Animales , Sorafenib/farmacología , Carcinoma Hepatocelular/patología , Hesperidina/farmacología , Hesperidina/uso terapéutico , Apoptosis , Neoplasias Hepáticas/patología
9.
Chem Biodivers ; 21(2): e202301613, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38105348

RESUMEN

In this study, we sought to determine how well naringenin, hesperidin, and quercetin prevented damage brought on by radiotherapy. During the investigation, 48 adult female Sprague Dawley rats were used. Eight groups of eight rats each were formed by randomly assigning the rats to the groups. The normal control group was represented by Group 1. Group 2 rats were those that received a dose of 15 Gray (Gy) of radiotherapy. The rats assigned to Group 3 received only Naringenin, whereas those assigned to Group 4 received only quercetine, and those assigned to Group 5 received only hesperidin. Rats in Group 6, 7 and 8 were received naringenin, quarcetin and hesperidin at a dose of 50 mg/kg daily for one week prior to radiotheraphy exposition. After radiotheraphy and phenolic compounds rats were sacrificed and some metabolic enzyme (aldose reductase (AR), sorbitol dehydrogenase (SDH), paraoxonase-1 (PON1), butyrylcholinesterase (BChE) and glutathione S-transferase (GST)) activity was determined in eye and brain tissues. It was found that phenolic compounds have protective effect against radiation-induced damage because of their anti-diabetic antioxidant and anti-inflammatory properties. In addition, hesperidin was found to be superior to quercetin and naringenin in terms of enzyme activity efficacy. Furthermore, hesperidin exhibited favorable binding affinity for BChE in silico compared to other enzymes.


Asunto(s)
Flavanonas , Hesperidina , Ratas , Femenino , Animales , Hesperidina/farmacología , Hesperidina/uso terapéutico , Quercetina/farmacología , Quercetina/uso terapéutico , Butirilcolinesterasa , Ratas Sprague-Dawley , Antioxidantes/farmacología , Estrés Oxidativo
10.
J Cell Mol Med ; 27(18): 2756-2769, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37581480

RESUMEN

Considering the unfavourable response of breast cancer (BC) to treatment, we assessed the therapeutic potential hesperidin in mice bearing 4T1 BC tumours. Anti-tumour effects were assessed by measuring pathologic complete response (pCR), survival analysis, immunohistochemistry for E-cadherin, VEGF, MMP9, MMP2 and Ki-67, serum measurement of IFNγ and IL-4, and gene expression analysis of CD105, VEGFa, VEGFR2 and COX2. Survival of tumour-bearing mice was the highest in mice receiving a combination of hesperidin and doxorubicin (Dox) (80%) compared to the normal saline (43%), hesperidin 5 (54%), 10 (55.5%), 10 (60.5%) and 40 (66%) mg/kg, and 10 mg/kg Dox-treated (73%) groups (p < 0.0001 for all). Compared to the normal saline group, there was a significant elevation in IFNγ level in the animals receiving 20 (p = 0.0026) and 40 (p < 0.001) mg/kg hesperidin, 10 mg/kg Dox (p < 0.001), and combined hesperidin (20 mg/kg) and Dox (10 mg/kg) (p < 0.001). A significant reduction in the gene expression of CD 105 (p = 0.0106), VEGFa (p < 0.0001), VEGFR2 (p < 0.0001), and Cox2 (p = 0.034) and a significant higher pCR score (p = 0.006) were noticed in mice treated with 10 mg/kg Dox + 20 mg/kg hesperidin compared to those treated with 10 mg/kg Dox alone. Immunohistochemical staining showed significant reductions in Ki-67 (p < 0.001) and VEGF (p < 0.001) and a significant elevation in E-cadherin (p = 0.005) in the 10 mg/kg Dox + 20 mg/kg treatment group than in 10 mg/kg Dox alone group. Hesperidin can be considered as a potentially suitable anti-cancer agent for BC that can synergize with other chemotherapeutics.


Asunto(s)
Hesperidina , Neoplasias , Ratones , Animales , Hesperidina/farmacología , Hesperidina/uso terapéutico , Ratones Endogámicos BALB C , Ciclooxigenasa 2 , Antígeno Ki-67 , Factor A de Crecimiento Endotelial Vascular/genética , Solución Salina , Doxorrubicina/farmacología , Cadherinas , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico
11.
J Photochem Photobiol B ; 246: 112760, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37535996

RESUMEN

Ultraviolet radiation is the primary risk factor for keratinocyte carcinoma. Because of increasing incidence rates, new methods of photoprotection must be explored. Oral supplementation with photoprotective compounds presents a promising alternative. Phytochemical compounds like hesperidin methyl chalcone, phloroglucinol, and syringic acid are particularly of interest because of their antioxidant properties. Our primary outcome was to evaluate the effects of oral phytochemicals on photocarcinogenesis with time until tumour onset as the primary endpoint. A total of 125 hairless C3.Cg-Hrhr/TifBom Tac mice were randomised to receive tap water supplemented with either 100 mg/kg hesperidin methyl chalcone, phloroglucinol, or syringic acid, 600 mg/kg nicotinamide as a positive control, or no supplementation. The mice were irradiated with 3.5 standard erythema doses thrice weekly to induce photocarcinogenesis. Supplementation with the phytochemicals phloroglucinol and syringic acid and nicotinamide delayed tumour onset from a median of 140 days to 151 (p = 0.036), 157 days (p = 0.02), and 178 (p = 2.7·10-5), respectively. Phloroglucinol and nicotinamide supplementation reduced tumour number. Nicotinamide increased UV-induced pigmentation and reduced oedema formation, while phloroglucinol supplementation reduced epidermal thickness. These results indicate that oral supplementation with phloroglucinol and syringic acid protects against photocarcinogenesis in hairless mice, but not to the same extent as nicotinamide.


Asunto(s)
Chalconas , Hesperidina , Neoplasias Inducidas por Radiación , Neoplasias Cutáneas , Animales , Ratones , Neoplasias Cutáneas/patología , Rayos Ultravioleta , Ratones Pelados , Floroglucinol/farmacología , Hesperidina/farmacología , Hesperidina/uso terapéutico , Piel/efectos de la radiación
12.
Molecules ; 28(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446814

RESUMEN

Cancer represents one of the most frequent causes of death in the world. The current therapeutic options, including radiation therapy and chemotherapy, have various adverse effects on patients' health. In this vista, the bioactive ingredient of natural products plays a vital role in disease management via the inhibition and activation of biological processes such as oxidative stress, inflammation, and cell signaling molecules. Although natural products are not a substitute for medicine, they can be effective adjuvants or a type of supporting therapy. Hesperidin, a flavonoid commonly found in citrus fruits, with its potential antioxidant, anti-inflammatory, and hepatoprotective properties, and cardio-preventive factor for disease prevention, is well-known. Furthermore, its anticancer potential has been suggested to be a promising alternative in cancer treatment or management through the modulation of signal transduction pathways, which includes apoptosis, cell cycle, angiogenesis, ERK/MAPK, signal transducer, and the activator of transcription and other cell signaling molecules. Moreover, its role in the synergistic effects with anticancer drugs and other natural compounds has been described properly. The present article describes how hesperidin affects various cancers by modulating the various cell signaling pathways.


Asunto(s)
Hesperidina , Neoplasias , Humanos , Hesperidina/farmacología , Hesperidina/uso terapéutico , Flavonoides/farmacología , Transducción de Señal , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Estrés Oxidativo , Apoptosis
13.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3615-3626, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37272929

RESUMEN

Exposure to dust storm particulate matter (PM) is detrimental to kidney tissue. In this study, the impacts of chronic intake of dusty PM were explored as a major objective in a specified compartment to make a real-like dust storm (DS) model, and the role of hesperidin (HSP) as an antioxidant on kidney tissue was assessed in rats. Thirty-two male Wistar rats (200-220 g) were randomly allocated into 4 groups: CA+NS: (clean air and normal saline as a vehicle of HSP). Dusty PM and NS (DS+NS). HSP+ CA: rats received 200 mg/kg of HSP by gavage for 28 days, once daily in addition to exposure to clean air. HSP+DS: HSP plus DS. In DS groups, the animals were exposed to dust storms at a concentration of 5000-8000 µg/m3 in the chamber for 1 h daily, for 4 consecutive weeks, except Thursdays and Fridays. At the end of the experiment, the animals were sacrificed for biochemical, inflammatory, oxidative stress, molecular parameters, and histological evaluation. DS significantly enhanced blood urea nitrogen and creatinine, inflammatory (tumor necrosis factor-α, and interleukin-1ß), and oxidative stress indexes. Likewise, a significant increase was seen in mRNA Smads, collagen-I, and transforming growth factor-ß1 (TGF-ß1) expressions in the kidney. Histological findings showed contracted glomeruli and kidney structure disorder. In addition, Masson's trichrome staining demonstrated renal fibrosis. Nevertheless, HSP could significantly reverse these changes. Our data confirmed that DS results in kidney fibrosis through enhancing Smads/TGF-ß1 signaling. However, HSP was able to inhibit these changes as confirmed by histological findings.


Asunto(s)
Hesperidina , Enfermedades Renales , Ratas , Masculino , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Hesperidina/farmacología , Hesperidina/uso terapéutico , Material Particulado/toxicidad , Material Particulado/metabolismo , Ratas Wistar , Riñón , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/prevención & control , Fibrosis , Polvo
14.
Food Chem Toxicol ; 176: 113791, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37080525

RESUMEN

Hesperidin is a flavonoid commonly found in citrus fruits. Studies have shown that hesperidin has anti-inflammatory, analgesic, and antimicrobial properties, as well as its effectiveness in carcinogenesis. In this paper, we aim to investigate the molecular mechanisms of hesperidin-induced apoptosis in MCF-7 and MDA-MB-231 cancer cells. The inhibitory effect of hesperidin on cellular proliferation was evaluated with the MTT assay. Cell cycle analysis of hesperidin-treated cells was then performed, as well as immunocytochemical analysis of the effect on the apoptosis pathway (TUNEL, Bax, and Bcl-2 expression). Moreover, hesperidin induced cellular apoptosis in MCF-7 breast cancer cells by inhibiting Bcl-2 and enhancing Bax expression at protein levels. On the other hand, hesperidin caused apoptosis in the MDA-MB-231 breast cancer cell line, but it did not activate the Bax/Bcl-2 pathway. Hesperidin also induced cell cycle arrest at the S phase in the MCF-7 and MDA-MB-231 cell lines. These findings showed that hesperidin is a potential therapeutic candidate for preventing the progression of breast cancer. In addition, hesperidin could significantly stimulate the death mechanisms in ER/PR (+) MCF-7 cells by changing the expression balance of Bax and Bcl-2 proteins, but lead ER/PR (-) MDA-MB-231 breast cancer cells to apoptosis in a different way.


Asunto(s)
Neoplasias de la Mama , Hesperidina , Humanos , Femenino , Células MCF-7 , Hesperidina/farmacología , Hesperidina/uso terapéutico , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Apoptosis , Proliferación Celular , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral
15.
J Egypt Natl Canc Inst ; 35(1): 6, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36967442

RESUMEN

BACKGROUND: We previously reported that in highly metastatic breast cancer cells, doxorubicin (DOX) at non-toxic concentrations promoted cell migration and invasion. Hesperidin (30, 5, 9-dihydroxy-40-methoxy-7-orutinosyl flavanone) is a flavonoid glycoside isolated from citrus/lemon plant that possesses a cytotoxic effect in several cancer cells. In this study, we investigate whether DOX efficacy is enhanced by hesperidin (Hsd) and the molecular pathway involved in highly metastatic breast cancer, 4T1. METHODS: Combined cytotoxicity of Hsd and DOX was evaluated with MTT assay and was analyzed using Chou-Talalay's method. To better understand the underlying mechanism, several factors, including apoptosis and cell cycle arrest were analyzed by flow cytometry. In addition, antimigration activity was evaluated by scratch wound healing assay, MMP-9 expression by ELISA and gelatin zymography, and Rac-1 protein level using western blot. The data on survival rate and expression level of MMP-9 and Rac-1 were obtained from Gene Expression OMNIBUS (GEO). RESULTS: Under MTT assay, Hsd showed a cytotoxic effect in a concentration-dependent manner with an IC50 value of 284 µM on 4T1 cells. Hsd synergistically enhanced the cytotoxic effect of DOX which seemed to correlate with an increase in apoptotic cell death, G2/M cell cycle arrest and blocked the migration of 4T1 cells. At 10 nM, doxorubicin induced lamellipodia formation, and increased the level of Rac-1 and metalloproteinase-9 (MMP-9) expression. Interestingly, combined treatment of DOX and Hsd dramatically downregulated the expression of MMP-9 and Rac-1. These results indicated that Hsd block the cell migration induced by DOX under in vitro studies. CONCLUSION: These findings strongly suggest that Hsd possesses a potential synergistic effect that can be developed to enhance the anticancer efficacy of DOX and reduce the risks of chemotherapy use in highly metastatic breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Hesperidina , Humanos , Femenino , Hesperidina/farmacología , Hesperidina/uso terapéutico , Transición Epitelial-Mesenquimal , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/farmacología , Metaloproteinasa 9 de la Matriz/uso terapéutico , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Antineoplásicos/uso terapéutico , Apoptosis
16.
Biomed Pharmacother ; 160: 114389, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36791565

RESUMEN

Excessively activated transforming growth factor-beta 1 (TGF-ß1) exacerbates benign prostatic hyperplasia (BPH) by triggering epithelial-mesenchymal transition (EMT) as well as epithelial and stromal cell differentiation. Hesperidin (HSP), a flavanone rich in citrus peels, exhibits a safe anti-cancer activity with few side effects. Although HSP reportedly inhibits cell growth in prostate cancer, studies on BPH have not yet been reported. Thus, this study aimed to figure out the therapeutic effect of HSP and its underlying mechanisms in BPH models in vivo and in vitro. To evaluate the anti-BPH effect of HSP in vivo, rats were injected with testosterone propionate (TP; 10 mg/kg, s.c.), finasteride (5 mg/kg, p.o.), and HSP (50 and 100 mg/kg, i.p.) for four weeks. The in vitro efficacy of HSP was evaluated using two prostate cell models, BPH-1 and dihydrotestosterone-stimulated WPMY-1 cells, for studying the interaction between epithelial and stromal cells. Both in vivo and in vitro, HSP inhibited prostate cell proliferation by suppressing the expression of androgen receptor-related markers. In addition, HSP reduced the expression levels of inflammatory and mesenchymal markers by blocking TGF-ß1 activation. Collectively, HSP alleviated BPH by attenuating prostate cell proliferation, the inflammatory response, and EMT by regulating the TGF-ß1/Smad signaling pathway. Thus, these results provide evidence for a new therapeutic approach against BPH.


Asunto(s)
Hesperidina , Hiperplasia Prostática , Animales , Humanos , Masculino , Ratas , Proliferación Celular , Transición Epitelial-Mesenquimal , Hesperidina/farmacología , Hesperidina/uso terapéutico , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Smad/metabolismo
17.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835279

RESUMEN

Previously, we reported that a crude polyphenol-enriched fraction of Cyclopia intermedia (CPEF), a plant consumed as the herbal tea, commonly known as honeybush, reduced lipid content in 3T3-L1 adipocytes and inhibited body weight gain in obese, diabetic female leptin receptor-deficient (db/db) mice. In the current study, the mechanisms underlying decreased body weight gain in db/db mice were further elucidated using western blot analysis and in silico approaches. CPEF induced uncoupling protein 1 (UCP1, 3.4-fold, p < 0.05) and peroxisome proliferator-activated receptor alpha (PPARα, 2.6-fold, p < 0.05) expression in brown adipose tissue. In the liver, CPEF induced PPARα expression (2.2-fold, p < 0.05), which was accompanied by a 31.9% decrease in fat droplets in Hematoxylin and Eosin (H&E)-stained liver sections (p < 0.001). Molecular docking analysis revealed that the CPEF compounds, hesperidin and neoponcirin, had the highest binding affinities for UCP1 and PPARα, respectively. This was validated with stabilising intermolecular interactions within the active sites of UCP1 and PPARα when complexed with these compounds. This study suggests that CPEF may exert its anti-obesity effects by promoting thermogenesis and fatty acid oxidation via inducing UCP1 and PPARα expression, and that hesperidin and neoponcirin may be responsible for these effects. Findings from this study could pave the way for designing target-specific anti-obesity therapeutics from C. intermedia.


Asunto(s)
Fabaceae , Obesidad , Animales , Ratones , Hesperidina/farmacología , Hesperidina/uso terapéutico , Ratones Obesos , Simulación del Acoplamiento Molecular , Obesidad/terapia , PPAR alfa/metabolismo , Proteína Desacopladora 1/metabolismo
18.
Int Immunopharmacol ; 117: 109891, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36812672

RESUMEN

Cyclophosphamide (CP) is widely used as an immunosuppressive and chemotherapeutic drug. However, its therapeutic application is restricted by its adverse effects, particularly hepatotoxicity. Both metformin (MET) and hesperidin (HES) have promising antioxidant, anti-inflammatory, and anti-apoptotic effects. Therefore, the principal aim of the current study is to investigate the hepatoprotective effects of MET, HES, and their combinations on the CP-induced hepatotoxicity model. Hepatotoxicity was evoked by a single (I.P) injection of CP (200 mg/kg) on day 7. For this study, 64 albino rats were randomly categorized into eight equal groups; naïve, control vehicle, untreated CP (200 mg/kg, IP), and CP 200 groups treated with MET 200, HES 50, HES 100 or a combination of MET 200 with HES 50 and HES 100 respectively orally daily for 12 days. At the end of the study, the liver function biomarkers, oxidative stress, inflammatory parameters, histopathological and immunohistochemical analysis of PPAR-γ, Nrf-2, NF-κB, Bcl-2, and caspase3 were assessed. CP significantly increased serum ALT, AST, total bilirubin, hepatic MDA, NO content, NF-κB, and TNF-α. Otherwise, albumin, hepatic GSH content, Nrf-2, and PPAR-γ expression decreased considerably compared to the control vehicle group. The combinations of MET200 with HES50 or HES100 induced pronounced hepatoprotective, anti-oxidative, anti-inflammatory, and anti-apoptotic effects on CP-treated rats. The possible explanation of such hepatoprotective effects may be mediated via upregulation of Nrf-2, PPAR-γ, Bcl-2 expression, hepatic GSH content, and marked suppression of TNF-α and NF-κB expression. In conclusion, the current study showed that combining MET and HES revealed a remarkable hepatoprotective effect against CP-induced hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Hesperidina , Metformina , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Ciclofosfamida/toxicidad , Hesperidina/farmacología , Hesperidina/uso terapéutico , Hígado/patología , Metformina/uso terapéutico , Metformina/farmacología , FN-kappa B/metabolismo , Estrés Oxidativo , PPAR gamma/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Ratas
19.
Sci Rep ; 13(1): 158, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599902

RESUMEN

Cyclophosphamide (CYP) is an alkylating agent that is used on a wide range as a treatment of malignancies and autoimmune diseases. Previous studies have shown the promising role of hesperidin (HSP) as an antioxidant agent against various models of toxic agents. The protective effect of the HSP against CYP-induced parotid damage was evaluated in this study. Forty rats (180-200 g) were divided into four equal groups: Group I (received normal saline), Group II (HSP-treated at a dose of 100 mg/kg/day for 7 consecutive days), Group III (CYP-treated at a dose of 200 mg/kg single intraperitoneal injection on the 7th day of the experiment), Group IV (CYP + HSP); HSP-treated at a dose of 100 mg/kg/day for 7 consecutive days and CYP (200 mg/kg) single intraperitoneal injection on the 7th day of the experiment. Afterwards, the oxidative stress and inflammatory markers, the histopathological and immunohistochemical alterations of the parotid tissues in the studied groups were evaluated. CYP intoxication induced a significant parotid tissue injury represented by the elevation in the values of malondialdehyde (MDA), tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) and decrease in the catalase activity and glutathione peroxidase (GPx). Histologically, extensive histopathological alterations e.g., widely spaced serous acini with irregular shapes and congested blood vessels as well as downregulated ki-67 and alpha-smooth muscle actin (α-SMA) immunoexpression were induced by CYP. HSP administration markedly improved the biochemical and the histopathological studies. We can conclude that HSP elicited protective effects against the CYP-induced parotid toxicity.


Asunto(s)
Hesperidina , Glándula Parótida , Animales , Ratas , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Ciclofosfamida/toxicidad , Hesperidina/farmacología , Hesperidina/uso terapéutico , Estrés Oxidativo , Ratas Wistar , Glándula Parótida/lesiones , Glándula Parótida/patología
20.
Biochim Biophys Acta Mol Basis Dis ; 1869(2): 166620, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36494040

RESUMEN

Obesity has become an increasingly serious health issue with the continuous improvement in living standards. Its prevalence has become an economic burden on health care systems worldwide. Flavonoids have been shown to be beneficial in the prevention and treatment of obesity. Here, we evaluated the therapeutic potential of the flavonoid hesperidin methyl chalcone (HMC) on mice with high-fat diet (HFD)-induced hepatic steatosis in vivo and in vitro. Treatment with HMC reduced oleic and palmitic acid-induced increases in intracellular triglyceride accumulation in HepG2, AML12 and LMH cells. HMC also enhanced energy metabolism and lowered oxidative stress. We used Discovery studio to dock key proteins associated with lipid metabolism disorders to HMC, and found that HMC interacted with lipase. Furthermore, we demonstrated that HMC improved lipase activity and lipolysis. In addition, we found that HMC promoted glucose absorption, alleviated lipid metabolic disorders, improved HFD-induced liver injury, and regulated HFD-induced changes in energy metabolism. In conclusion, our study demonstrated that HMC ameliorated HFD-induced obesity and its complications by promoting lipase activity, and provides a novel approach for the prevention and treatment of obesity and related diseases.


Asunto(s)
Chalconas , Hesperidina , Trastornos del Metabolismo de los Lípidos , Ratones , Animales , Hesperidina/farmacología , Hesperidina/uso terapéutico , Chalconas/farmacología , Obesidad/metabolismo , Flavonoides/uso terapéutico , Metabolismo Energético , Lipasa/metabolismo , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA