Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 848
Filtrar
1.
Mikrochim Acta ; 191(7): 372, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38839678

RESUMEN

A highly sensitive micelle-induced sensory has been developed for detection of long-chain aldehydes as potential biomarkers of respiratory cancers. The micelle-like sensor was fabricated through the partial self-assembly of CTAB and S2 surfactants, containing a fluorescent hydrazine-functionalized dye (Naph-NH2). In principle, long-chain aldehydes with amphiphilic character act as the induced-fit surfactants to form well-entrapped micellar particles, as well as react with Naph-NH2 to form hydrazone derivatives resulting in fluorescent enhancement. The limit of detection (LOD) of micellar Naph-NH2/CTAB/S2 platform was calculated to be ∼  64.09-80.98 µM for detection of long-chain aldehydes, which showed fluorescent imaging in lung cancer cells (A549). This micellar sensory probe demonstrated practical applicability for long-chain aldehyde sensing in human blood samples with an accepted percent recovery of ~ 94.02-102.4%. Beyond Naph-NH2/CTAB/S2 sensor, the milcellar hybrid sensor was successfully developed by incorporating a micelle-like platform with supramolecular gel regarding to carboxylate-based gelators (Gel1), which showed a tenfold improvement in sensitivity. Expectedly, the determination of long-chain aldehydes through these sensing platforms holds significant promise for point-of-care cancer diagnosis and therapy.


Asunto(s)
Aldehídos , Colorantes Fluorescentes , Hidrogeles , Límite de Detección , Micelas , Humanos , Aldehídos/química , Colorantes Fluorescentes/química , Hidrogeles/química , Células A549 , Hidrazinas/química , Cetrimonio/química , Tensoactivos/química
2.
Org Lett ; 26(23): 5021-5026, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38842216

RESUMEN

We describe a simple and robust oxidation strategy for preparing N-terminal thiazolidine-containing peptide thioesters from peptide hydrazides. We find for the first time that l-thioproline can be used as a protective agent to prevent the nitrosation of N-terminal thiazolidine during peptide hydrazide oxidation. The thioproline-based oxidation strategy has been successfully applied to the chemical synthesis of CC chemokine ligand-2 (69aa) and omniligase-C (113aa), thereby demonstrating its utility in hydrazide-based native chemical ligation.


Asunto(s)
Oxidación-Reducción , Péptidos , Tiazolidinas , Tiazolidinas/química , Tiazolidinas/síntesis química , Estructura Molecular , Péptidos/química , Péptidos/síntesis química , Hidrazinas/química , Prolina/química , Ésteres/química , Compuestos de Sulfhidrilo/química
3.
J Steroid Biochem Mol Biol ; 242: 106545, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38762058

RESUMEN

Most breast and prostate cancers are caused by abnormal production or action of steroidal hormones. Hormonal drugs based on steroid scaffolds represent a significant class of chemotherapeutics that are routinely used in chemotherapy. In this study, the synthesis of new 17a-homo lactone and 17α-(pyridine-2-ylmethyl) androstane derivatives with hydrazide and semicarbazone motifs is presented. All compounds were screened for their effect on cell viability against a panel of five cancer cell lines and one healthy cell line. Two compounds showed significant cytotoxicity against cancer cells, with low toxicity against healthy cells. The relative binding affinities of compounds for the ligand-binding domains of estrogen receptor α, estrogen receptor ß, androgen receptor and glucocorticoid receptor were tested using a fluorescence screen in yeast. Potential for inhibition of aldo-keto reductase 1C3 and 1C4 activity was measured in vitro. Experimental results are analyzed in the context of molecular docking simulations. Our results could help guide design of steroid compounds with improved anticancer properties against androgen- and estrogen-dependent cancers.


Asunto(s)
Antineoplásicos , Simulación del Acoplamiento Molecular , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Hidrazinas/farmacología , Hidrazinas/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Esteroides/química , Esteroides/farmacología , Semicarbazonas/farmacología , Semicarbazonas/química , Semicarbazonas/síntesis química , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química , Ensayos de Selección de Medicamentos Antitumorales
4.
Environ Res ; 252(Pt 4): 119121, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38734291

RESUMEN

Extensive utilization of pesticides and herbicides to boost agricultural production increased the environmental health risks, which can be mitigate with the aid of highly sensitive detection systems. In this study, an electrochemical sensor for monitoring the carcinogenic pesticides in the environmental samples has been developed based on sulfur-doped graphitic-carbon nitride-gold nanoparticles (SCN-AuNPs) nanohybrid. Thermal polycondensation of melamine with thiourea followed by solvent exfoliation via ultrasonication leads to SCN formation and electroless deposition of AuNPs on SCN leads to SCN-AuNPs nanohybrid synthesis. The chemical composition, S-doping, and the morphology of the nanohybrid were confirmed by various microscopic and spectroscopic tools. The as-synthesized nanohybrid was fabricated with glassy carbon (GC) electrode for determining the carcinogenic hydrazine (HZ) and atrazine (ATZ) in field water samples. The present sensor exhibited superior electrocatalytic activity than GC/SCN and GC/AuNPs electrodes due to the synergism between SCN and AuNPs and the amperometric studies showed the good linear range of detection of 20 nM-0.5 mM and 500 nM-0.5 mM with the limit of detection of 0.22 and 69 nM (S/N = 3) and excellent sensitivity of 1173.5 and 13.96 µA mM-1 cm-2 towards HZ and ATZ, respectively. Ultimately, the present sensor is exploited in environmental samples for monitoring HZ and ATZ and the obtained results are validated with high-performance liquid chromatography (HPLC) technique. The excellent recovery percentage and close agreement with the results of HPLC analysis proved the practicability of the present sensor. In addition, the as-prepared materials were utilized for the photocatalytic degradation of ATZ and the SCN-AuNPs nanohybrid exhibited higher photocatalytic activity with the removal efficiency of 93.6% at 90 min. Finally, the degradation mechanism was investigated and discussed.


Asunto(s)
Carcinógenos , Oro , Grafito , Nanopartículas del Metal , Contaminantes Químicos del Agua , Oro/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Nanopartículas del Metal/química , Grafito/química , Carcinógenos/análisis , Atrazina/análisis , Atrazina/química , Azufre/química , Azufre/análisis , Técnicas Electroquímicas/métodos , Hidrazinas/análisis , Hidrazinas/química , Compuestos de Nitrógeno/química , Compuestos de Nitrógeno/análisis , Nitrilos/química , Nitrilos/análisis , Monitoreo del Ambiente/métodos
5.
An Acad Bras Cienc ; 96(2): e20230375, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747836

RESUMEN

In pursuit of potential agents to treat Chagas disease and leishmaniasis, we report the design, synthesis, and identification novel naphthoquinone hydrazide-based molecular hybrids. The compounds were subjected to in vitro trypanocide and leishmanicidal activities. N'-(1,4-Dioxo-1,4-dihydronaphthalen-2-yl)-3,5-dimethoxybenzohydrazide (13) showed the best performance against Trypanosoma cruzi (IC50 1.83 µM) and Leishmania amazonensis (IC50 9.65 µM). 4-Bromo-N'-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzohydrazide (16) exhibited leishmanicidal activity (IC50 12.16 µM). Regarding trypanocide activity, compound 13 was low cytotoxic to LLC-MK2 cells (SI = 95.28). Furthermore, through molecular modeling studies, the cysteine proteases cruzain, rhodesain and CPB2.8 were identified as the potential biological targets.


Asunto(s)
Diseño de Fármacos , Hidrazinas , Leishmania , Naftoquinonas , Tripanocidas , Trypanosoma cruzi , Naftoquinonas/farmacología , Naftoquinonas/química , Naftoquinonas/síntesis química , Trypanosoma cruzi/efectos de los fármacos , Tripanocidas/farmacología , Tripanocidas/síntesis química , Tripanocidas/química , Leishmania/efectos de los fármacos , Hidrazinas/química , Hidrazinas/farmacología , Animales , Antiprotozoarios/farmacología , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Pruebas de Sensibilidad Parasitaria , Concentración 50 Inhibidora , Relación Estructura-Actividad , Cisteína Endopeptidasas
6.
Org Lett ; 26(21): 4497-4501, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38768369

RESUMEN

Despite numerous optimizations in peptide synthesis, the formation of aspartimide remains a significant side reaction that needs to be addressed. Herein, we introduce an approach that utilizes hydrazide as a carboxylic-acid-protecting group to reduce the formation of aspartimide. The aspartic acid hydrazide effectively suppressed the formation of aspartimide, even under microwave conditions, and was readily converted to native aspartic acid using CuSO4 in an aqueous medium.


Asunto(s)
Ácido Aspártico , Ácidos Carboxílicos , Péptidos , Técnicas de Síntesis en Fase Sólida , Ácidos Carboxílicos/química , Péptidos/química , Péptidos/síntesis química , Péptidos/farmacología , Estructura Molecular , Ácido Aspártico/química , Ácido Aspártico/análogos & derivados , Microondas , Hidrazinas/química
7.
Dalton Trans ; 53(19): 8315-8327, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38666341

RESUMEN

The development of coordination compounds with antineoplastic therapeutic properties is currently focused on non-covalent interactions with deoxyribonucleic acid (DNA). Additionally, the interaction profiles of these compounds with globular plasma proteins, particularly serum albumin, warrant thorough evaluation. In this study, we report on the interactions between biomolecules and complexes featuring hydrazone-type imine ligands coordinated with vanadium. The potential to enhance the therapeutic efficiency of these compounds through mitochondrial targeting is explored. This targeting is facilitated by the derivatization of ligands with triphenylphosphonium groups. Thus, this work presents the synthesis, characterization, interactions, and cytotoxicity of dioxidovanadium(V) complexes (C1-C5) with a triphenylphosphonium moiety. These VV-species are coordinated to hydrazone-type iminic ligands derived from (3-formyl-4-hydroxybenzyl)triphenylphosphonium chloride ([AH]Cl) and aromatic hydrazides ([H2L1]Cl-[H2L5]Cl). The structures of the five complexes were elucidated through single-crystal X-ray diffraction and vibrational spectroscopies, confirming the presence of dioxidovanadium(V) species in various geometries with degrees of distortion (τ = 0.03-0.50) and highlighting their zwitterionic characteristics. The molecular structural stability of C1-C5 in solution was ascertained using 1H, 19F, 31P, and 51V-nuclear magnetic resonance. Moreover, their interactions with biomolecules were evaluated using diverse spectroscopic methodologies and molecular docking, indicating moderate interactions (Kb ≈ 104 M-1) with calf thymus DNA in the minor groove and with human serum albumin, predominantly in the superficial IB subdomain. Lastly, the cytotoxic potentials of these complexes were assessed in keratinocytes of the HaCaT lineage, revealing that C1-C5 induce a reduction in metabolic activity and cell viability through apoptotic pathways.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , ADN , Compuestos Organofosforados , Vanadio , Humanos , Vanadio/química , Vanadio/farmacología , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , ADN/metabolismo , ADN/química , Supervivencia Celular/efectos de los fármacos , Hidrazinas/química , Hidrazinas/farmacología , Animales , Simulación del Acoplamiento Molecular , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Estructura Molecular , Ligandos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales
8.
J Inorg Biochem ; 256: 112546, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593611

RESUMEN

Two copper(II) complexes [Cu(Hpmoh)(NO3)(NCS)] (1) and [Cu(peoh)(N3)]2 (2) were designed and synthesized by reaction of Cu(NO3)2·3H2O with hydrazone Schiff base ligands,abbreviated with Hpmoh and Hpeoh. Hpmoh and Hpeoh were prepared by condensation reaction of octanoic hydrazide with pyridine-2-carboxyaldehyde and 2-acetylpyridine, respectively. Complexes 1 and 2 were characterized using different analytical techniques such as FT-IR, UV-Vis, IR, EPR and single X-ray diffraction (XRD) analyses as well as computational methods (DFT). The XRD of 1 and 2 shows a mononuclear or a dinuclear structure with the copper(II) centre adopting a slightly distorted square pyramidal geometry. In water-containing solution and in DMSO, 1 and 2 undergo a partial transformation with formation of [Cu(Hpmoh)(NO3)(NCS)] (1) and [Cu(Hpmoh)(NO3)(H2O/DMSO)] (1a) in one system and [Cu(peoh)(N3)] (2a) in the other one, as supported by DFT calculations. Docking simulations confirmed that the intercalation is the preferred binding mode with DNA for 1, 1a and 2a, but suggested that the minor groove binding is also possible. A significant fluorescence quenching of the DNA-ethidium bromide conjugate was observed upon the addition of complexes 1 and 2 with a quenching constant around 104 M-1 s-1. Finally, both 1 and 2 were examined for anti-cancer activity using MDA-MB-231 (human breast adenocarcinoma) and A375 (malignant melanoma) cell lines through in vitro MTT assay which suggest comparable cancer cell killing efficacy, with the higher effectiveness of 2 due to the dissociation into two [Cu(peoh)(N3)] units.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Cobre , ADN , Cobre/química , ADN/química , Humanos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ligandos , Hidrazinas/química , Hidrazinas/farmacología , Línea Celular Tumoral , Piridinas/química , Piridinas/farmacología , Simulación del Acoplamiento Molecular , Hidrazonas/química , Hidrazonas/farmacología , Hidrazonas/síntesis química
9.
Talanta ; 269: 125448, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38029607

RESUMEN

As an important chemical raw material, hydrazine brings convenience to people's lives and provides opportunities for human development. However, the misuse or leakage of hydrazine has brought pollution to the environment, including water, soil and living organisms. At the same time, hydrazine poses a potential threat to human health as a carcinogen. Despite the enormous challenges, it is crucial to develop an effective method to detect hydrazine in environmental samples. In this work, we have synthesized a series of probes based on phenothiazine fluorophore by the introduction of different substituents and developed a novel probe for the detection of hydrazine. The probe is capable of detecting hydrazine in aqueous solutions with high sensitivity and selectivity, and can be easily fabricated into paper test strips for use in in situ samples. In addition, the probe is effective in detecting hydrazine in water, soil, cells, and zebrafish, providing an excellent tool for detecting hydrazine in the environment.


Asunto(s)
Colorantes Fluorescentes , Pez Cebra , Animales , Humanos , Colorantes Fluorescentes/química , Hidrazinas/química , Fenotiazinas , Agua , Suelo , Espectrometría de Fluorescencia
10.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139308

RESUMEN

In this research, twenty-four hydrazide-hydrazones of 2,4-dihydroxybenzoic acid were designed, synthesized, and subjected to in vitro and in vivo bioactivity studies. The chemical structure of the obtained compounds was confirmed by spectral methods. Antimicrobial activity screening was performed against a panel of microorganisms for all synthesized hydrazide-hydrazones. The performed assays revealed the interesting antibacterial activity of a few substances against Gram-positive bacterial strains including MRSA-Staphylococcus aureus ATCC 43300 (compound 18: 2,4-dihydroxy-N-[(2-hydroxy-3,5-diiodophenyl)methylidene]benzohydrazide-Minimal Inhibitory Concentration, MIC = 3.91 µg/mL). In addition, we performed the in vitro screening of antiproliferative activity and also assessed the acute toxicity of six hydrazide-hydrazones. The following human cancer cell lines were used: 769-P, HepG2, H1563, and LN-229, and the viability of the cells was assessed using the MTT method. The HEK-293 cell line was used as a reference line. The toxicity was tested in vivo on Danio rerio embryos using the Fish Embryo Acute Toxicity (FET) test procedure according to OECD No. 236. The inhibitory concentration values obtained in the in vitro test showed that N-[(4-nitrophenyl)methylidene]-2,4-dihydroxybenzhydrazide (21) inhibited cancer cell proliferation the most, with an extremely low IC50 (Inhibitory Concentration) value, estimated at 0.77 µM for LN-229. In addition, each of the compounds tested was selective against cancer cell lines. The compounds with a nitrophenyl substituent were the most promising in terms of inhibition cancer cell proliferation. The toxicity against zebrafish embryos and larvae was also very low or moderate.


Asunto(s)
Antineoplásicos , Hidrazonas , Animales , Humanos , Hidrazonas/farmacología , Hidrazinas/farmacología , Hidrazinas/química , Células HEK293 , Pez Cebra , Relación Estructura-Actividad , Pruebas de Sensibilidad Microbiana , Antineoplásicos/química
11.
Chem Biodivers ; 20(11): e202301132, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37743325

RESUMEN

A novel Schiff base namely 3,5-di-tert-butyl-6-((2-(perfluorophenyl)hydrazono)methyl)phenol was successfully synthesized and characterized using FT-IR and 1 H-NMR, 13 C-NMR, and 19 F-NMR. The crystal structure analysis of the Schiff base compound was also characterized with single crystal X-ray diffraction studies and supported the spectroscopic results. The cytotoxicity, anti-bacterial properties, and enzyme inhibition of the compound were also investigated. The molecular docking studies were performed in order to explain the interactions of the synthesized compound with target enzymes. The newly synthesized hydrazone derivative Schiff base compound showed high cellular toxicity on MCF-7 and PC-3 cells. Also, this compound caused low antibacterial effect on E. coli and S. aureus. Besides, the compound exhibited the inhibitory effect against pancreatic cholesterol esterase and carbonic anhydrase isoenzyme I, II with IC50 values 63, 99, and 188 µM, respectively. Consequently, it has been determined that the prepared Schiff base is an active compound in terms of cytotoxicity, enzyme inhibition, and anti-bacterial properties. These results provide preliminary information for some biological features of the compound and can play a major role in drug applications of the Schiff base compound.


Asunto(s)
Escherichia coli , Bases de Schiff , Simulación del Acoplamiento Molecular , Rayos X , Bases de Schiff/farmacología , Bases de Schiff/química , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus , Hidrazinas/farmacología , Hidrazinas/química , Estructura Molecular
12.
Sci Adv ; 9(33): eadh4327, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37585520

RESUMEN

Tissue adhesives have garnered extensive interest as alternatives and supplements to sutures, whereas major challenges still remain, including weak tissue adhesion, inadequate biocompatibility, and uncontrolled biodegradation. Here, injectable and biocompatible hydrogel adhesives are developed via catalyst-free o-phthalaldehyde/amine (hydrazide) cross-linking reaction. The hydrogels demonstrate rapid and firm adhesion to various tissues, and an o-phthalaldehyde-mediated tissue adhesion mechanism is established. The hydrogel adhesives show controlled degradation profiles of 6 to 22 weeks in vivo through the incorporation of disulfide bonds into hydrogel network. In liver and blood vessel injury, the hydrogels effectively seal the incisions and rapidly stop bleeding. In rat and rabbit models of full-thickness skin incision, the hydrogel adhesives quickly close the incisions and accelerate wound healing, which exhibit efficacies superior to those of commercially available fibrin glue and cyanoacrylate glue. Thus, the hydrogel adhesives show great potential for sutureless wound closure, hemostasis sealing, and prevention of leakage in surgical applications.


Asunto(s)
Adherencias Tisulares , Cicatrización de Heridas , Adhesividad , Hidrogeles/química , Disulfuros/química , Animales , Ratas , Conejos , Porcinos , Piel/lesiones , Hidrazinas/química , Polietilenglicoles/química
13.
J Agric Food Chem ; 71(22): 8297-8316, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37249236

RESUMEN

Hydrazides are present in many bioactive molecules and exhibit a variety of biological activities, such as insecticidal, herbicidal, antifungal, antitumor, and antiviral effects. In this Review, we review the application of hydrazide and its derived structures in the agricultural fungicidal field, including monohydrazides, diacylhydrazines, hydrazide-hydrazones, and sulfonyl hydrazides. In addition, the antifungal mechanism of action of the hydrazide derivatives was analyzed and summarized, mainly involving succinate dehydrogenase inhibitors, laccase inhibitors, and targeting plasma membranes. Finally, based on the structural analysis of the novel fungicidal lead compounds, the structure-activity relationship of the hydrazide derivatives was constructed and the development trend of hydrazide structures in fungicidal applications was prospected. It is hoped that this Review can provide some significant guidance for the development of new hydrazide fungicides in the future.


Asunto(s)
Fungicidas Industriales , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Hidrazinas/farmacología , Hidrazinas/química , Antifúngicos/farmacología , Relación Estructura-Actividad , Hidrazonas/química , Antibacterianos/farmacología
14.
Anal Chem ; 94(40): 14012-14020, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36166661

RESUMEN

Breast cancer is the most common malignancy in women and may become worse when a high concentration of hydrazine is absorbed from the environment or drug metabolite. Therefore, rapid and sensitive detection of hydrazine in vivo is beneficial for people's health. In this work, a novel estrogen receptor α (ERα)-targeted near-infrared fluorescence probe was designed to detect hydrazine levels. The probe showed good ERα affinity and an excellent fluorescence response toward hydrazine. Selectivity experiments demonstrated that the probe had a strong anti-interference ability. Mechanistic studies, including mass spectrometry (MS) and density functional theory (DFT) calculation, indicated that intermolecular charge transfer (ICT) progress was hindered when the probe reacted with hydrazine, resulting in fluorescent quenching. In addition, the probe could selectively bind to MCF-7 breast cancer cells with excellent biocompatibility. The in vivo and ex vivo imaging studies demonstrated that the probe could rapidly visualize hydrazine with high contrast in MCF-7 xenograft tumors. Therefore, this probe can serve as a potential tool to robustly monitor hydrazine levels in vivo.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Colorantes Fluorescentes/química , Humanos , Hidrazinas/química , Espectrometría de Fluorescencia
15.
Anal Methods ; 14(37): 3652-3660, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36052809

RESUMEN

A fluorescent probe TPSBT was developed to monitor hydrazine detection with a "turn on" response, converting from a "non-responsive" probe by a simple structural modification. The probe shows very weak fluorescence due to the strong ICT process and upon treatment with hydrazine, green fluorescence appears due to the blocking of this ICT by the formation of a hydrazone. The probe TPSBT can detect hydrazine with a very low detection limit (1.22 × 10-7 M) and within a very short time period of 50 s. Additionally, the probe is able to give a response in live cell imaging (MDA-MB 231) and also in the solid phase.


Asunto(s)
Neoplasias de la Mama , Colorantes Fluorescentes , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Colorantes Fluorescentes/química , Humanos , Hidrazinas/química , Hidrazonas , Espectrometría de Fluorescencia/métodos
16.
J Hazard Mater ; 440: 129713, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35944434

RESUMEN

Hydrazine (N2H4) is carcinogenic, extremely toxic, and induces serious environmental contamination and physiological dysfunction; however, it is widely used as an industrial material. Hence, the development of a simple and effective analytical method to detect N2H4 detection in both environmental and biological sectors is warranted. In this work, an intramolecular charge transfer (ICT)-based fluorescent probe 1, namely (Z)- 1-(4-acetoxybenzyl)- 4-(1-cyano-2-(7-(diethylamino)- 2-oxo-2 H-chromen-3-yl)vinyl)pyridin-1-ium, was designed for dual-excitation (420 and 600 nm, excitation separations >160 nm), near infrared (NIR)-emissive, and ratiometric fluorescent detection of N2H4. The sensing behavior of probe 1 for N2H4 detection was shown to be available over a wide pH range, and detection limits of 68 nM and 569 nM were achieved at excitation wavelengths of 420 and 600 nm, respectively. In addition, probe 1 was successfully used to image mitochondrial N2H4 in living cells and zebrafish. Furthermore, the probe was also capable of determining hydrazine signals in test strips and environmental soil.


Asunto(s)
Colorantes Fluorescentes , Pez Cebra , Animales , Colorantes Fluorescentes/química , Hidrazinas/química , Mitocondrias , Suelo
17.
J Org Chem ; 87(9): 6224-6236, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35442041

RESUMEN

An efficient copper-catalyzed aerobic oxidative cross-dehydrogenative coupling reaction for the synthesis of multisubstituted phosphorylhydrazides from N,N-disubstituted hydrazines and hydrogen phosphoryl compounds is accomplished. The reaction proceeds under mild conditions without the addition of any external oxidants and bases. This work reported here represents a direct P(═O)-N-N bond formation with the advantages of being operationally simple, good functional group tolerance, and high atom and step economy. Furthermore, the selected compounds exhibit potential inhibitory activity against tumor cells, which can be used in the field of screening of anticancer agents as new chemical entities.


Asunto(s)
Antineoplásicos , Hidrazinas , Antineoplásicos/farmacología , Catálisis , Cobre/química , Hidrazinas/química , Hidrazinas/farmacología , Fosforilación
18.
J Enzyme Inhib Med Chem ; 37(1): 515-526, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35144520

RESUMEN

Cathepsin K (CatK) is a target for the treatment of osteoporosis, arthritis, and bone metastasis. Peptidomimetics with a cyanohydrazide warhead represent a new class of highly potent CatK inhibitors; however, their binding mechanism is unknown. We investigated two model cyanohydrazide inhibitors with differently positioned warheads: an azadipeptide nitrile Gü1303 and a 3-cyano-3-aza-ß-amino acid Gü2602. Crystal structures of their covalent complexes were determined with mature CatK as well as a zymogen-like activation intermediate of CatK. Binding mode analysis, together with quantum chemical calculations, revealed that the extraordinary picomolar potency of Gü2602 is entropically favoured by its conformational flexibility at the nonprimed-primed subsites boundary. Furthermore, we demonstrated by live cell imaging that cyanohydrazides effectively target mature CatK in osteosarcoma cells. Cyanohydrazides also suppressed the maturation of CatK by inhibiting the autoactivation of the CatK zymogen. Our results provide structural insights for the rational design of cyanohydrazide inhibitors of CatK as potential drugs.


Asunto(s)
Catepsina K/antagonistas & inhibidores , Hidrazinas/farmacología , Nitrilos/farmacología , Inhibidores de Proteasas/farmacología , Catepsina K/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Hidrazinas/química , Modelos Moleculares , Estructura Molecular , Nitrilos/química , Inhibidores de Proteasas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
19.
Stem Cell Reports ; 17(2): 397-412, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35063131

RESUMEN

Inhibition of PIKfyve phosphoinositide kinase selectively kills autophagy-dependent cancer cells by disrupting lysosome homeostasis. Here, we show that PIKfyve inhibitors can also selectively eliminate pluripotent embryonal carcinoma cells (ECCs), embryonic stem cells, and induced pluripotent stem cells under conditions where differentiated cells remain viable. PIKfyve inhibitors prevented lysosome fission, induced autophagosome accumulation, and reduced cell proliferation in both pluripotent and differentiated cells, but they induced death only in pluripotent cells. The ability of PIKfyve inhibitors to distinguish between pluripotent and differentiated cells was confirmed with xenografts derived from ECCs. Pretreatment of ECCs with the PIKfyve specific inhibitor WX8 suppressed their ability to form teratocarcinomas in mice, and intraperitoneal injections of WX8 into mice harboring teratocarcinoma xenografts selectively eliminated pluripotent cells. Differentiated cells continued to proliferate, but at a reduced rate. These results provide a proof of principle that PIKfyve specific inhibitors can selectively eliminate pluripotent stem cells in vivo as well as in vitro.


Asunto(s)
Apoptosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Fosfatidilinositol 3-Quinasas/química , Animales , Autofagia , Línea Celular , Supervivencia Celular/efectos de los fármacos , ADN/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Femenino , Fase G1 , Humanos , Hidrazinas/química , Hidrazinas/farmacología , Hidrazinas/uso terapéutico , Ratones , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Teratocarcinoma/tratamiento farmacológico , Teratocarcinoma/patología , Trasplante Heterólogo
20.
Chem Commun (Camb) ; 58(10): 1442-1453, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34991152

RESUMEN

Formaldehyde (FA), a reactive carbonyl species, is classified as Group 1 carcinogen by International Agency for Research on Cancer (IARC) in 2004. In addition, clinical studies have implicated that elevated levels of FA have been associated with different kinds of diseases, such as neurodegenerative diseases, diabetes, and chronic liver and heart disorders. However, in addition to the direct inhalation of FA in the environment, most organisms can also produce FA endogenously by demethylases and oxidases during the metabolism of amino acids and xenobiotics. Since FA plays an important role in physiological and pathological processes, developing reliable and efficient methods to monitor FA levels in biological samples is crucial. Reaction-based fluorescent/chemiluminescent probes have provided robust methods for FA detection and real-time visualization in living organisms. In this highlight, we will summarize the major developments in the structure design and applications of FA probes in recent years. Three main strategies for designing FA probes have been discussed and grouped by different reaction mechanisms. In addition, some miscellaneous reaction mechanisms have also been discussed. We also highlight novel applications of these probes in biological systems, which offer powerful tools to discover the diverse functions of FA in physiology and pathology processes.


Asunto(s)
Colorantes Fluorescentes/química , Formaldehído/análisis , Mediciones Luminiscentes/métodos , Compuestos Aza/química , Línea Celular , Humanos , Hidrazinas/química , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA