Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 785
Filtrar
1.
Bioorg Chem ; 147: 107422, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705106

RESUMEN

Two acylhydrazone based zinc(II) complexes [Zn(HL)2Cl2(CH3OH)2] (Zn1) and [ZnL(AC)]2 (Zn2) were synthesized from 3-(1-(salicyloylhydrazono)ethyl) pyridine (HL). Single crystal X-ray structure analyses showed that complexes Zn1 and Zn2 have a zero-dimensional monomer or dimer structure. Antiproliferative activity studies revealed that Zn1 and Zn2 are both more effective against A549 cells than cisplatin. The results of the reactive oxygen species (ROS) generation assay on A549 cells showed that both Zn1 and Zn2 induced apoptosis through ROS accumulation. The apoptosis-inducing and cell cycle arrest effects of Zn1 and Zn2 on A549 cells indicated that the antitumor effect was achieved through apoptosis induction and inhibition of DNA synthesis by blocking the G0/G1 phase of the cell cycle. What's more, the results of wound-healing assay showed that Zn1 and Zn2 could inhibit the migration of A549 cells. Western blot analysis further demonstrated that Zn1 and Zn2 induced cell apoptosis through the mitochondrial pathway, in which process, the expression level of cytochrome C, cleaved-PARP, cleaved-caspase 3 and cleaved-caspase 9 proteins increased while pro-caspase 3 and pro-caspase 9 expression decreased. In vivo anticancer evaluation demonstrated that both Zn1 and Zn2 complexes effectively inhibited tumor growth without causing significant toxicity in systemic organs.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Complejos de Coordinación , Ensayos de Selección de Medicamentos Antitumorales , Hidrazonas , Neoplasias Pulmonares , Zinc , Animales , Ratones , Células A549 , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Relación Dosis-Respuesta a Droga , Hidrazonas/química , Hidrazonas/farmacología , Hidrazonas/síntesis química , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratones Endogámicos BALB C , Ratones Desnudos , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Neoplasias Experimentales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Zinc/química , Zinc/farmacología
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731825

RESUMEN

Aminopyrazoles represent interesting structures in medicinal chemistry, and several derivatives showed biological activity in different therapeutic areas. Previously reported 5-aminopyrazolyl acylhydrazones and amides showed relevant antioxidant and anti-inflammatory activities. To further extend the structure-activity relationships in this class of derivatives, a novel series of pyrazolyl acylhydrazones and amides was designed and prepared through a divergent approach. The novel compounds shared the phenylamino pyrazole nucleus that was differently decorated at positions 1, 3, and 4. The antiproliferative, antiaggregating, and antioxidant properties of the obtained derivatives 10-22 were evaluated in in vitro assays. Derivative 11a showed relevant antitumor properties against selected tumor cell lines (namely, HeLa, MCF7, SKOV3, and SKMEL28) with micromolar IC50 values. In the platelet assay, selected pyrazoles showed higher antioxidant and ROS formation inhibition activity than the reference drugs acetylsalicylic acid and N-acetylcysteine. Furthermore, in vitro radical scavenging screening confirmed the good antioxidant properties of acylhydrazone molecules. Overall, the collected data allowed us to extend the structure-activity relationships of the previously reported compounds and confirmed the pharmaceutical attractiveness of this class of aminopyrazole derivatives.


Asunto(s)
Amidas , Antineoplásicos , Antioxidantes , Proliferación Celular , Hidrazonas , Pirazoles , Humanos , Pirazoles/química , Pirazoles/farmacología , Hidrazonas/química , Hidrazonas/farmacología , Hidrazonas/síntesis química , Antioxidantes/farmacología , Antioxidantes/química , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Amidas/química , Amidas/farmacología , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Células MCF-7 , Células HeLa
3.
Int J Mol Sci ; 25(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732264

RESUMEN

Pyridoxal and pyridoxal 5'-phosphate are aldehyde forms of B6 vitamin that can easily be transformed into each other in the living organism. The presence of a phosphate group, however, provides the related compounds (e.g., hydrazones) with better solubility in water. In addition, the phosphate group may sometimes act as a binding center for metal ions. In particular, a phosphate group can be a strong ligand for a gold(III) ion, which is of interest for researchers for the anti-tumor and antimicrobial potential of gold(III). This paper aims to answer whether the phosphate group is involved in the complex formation between gold(III) and hydrazones derived from pyridoxal 5'-phosphate. The answer is negative, since the comparison of the stability constants determined for the gold(III) complexes with pyridoxal- and pyridoxal 5'-phosphate-derived hydrazones showed a negligible difference. In addition, quantum chemical calculations confirmed that the preferential coordination of two series of phosphorylated and non-phosphorylated hydrazones to gold(III) ion is similar. The preferential protonation modes for the gold(III) complexes were also determined using experimental and calculated data.


Asunto(s)
Oro , Hidrazonas , Piridoxal , Hidrazonas/química , Oro/química , Piridoxal/química , Fosfato de Piridoxal/química , Complejos de Coordinación/química , Espectrofotometría Ultravioleta , Estructura Molecular
4.
J Agric Food Chem ; 72(20): 11351-11359, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38720167

RESUMEN

Tobacco mosaic virus (TMV), as one of the most traditional and extensive biological stresses, poses a serious threat to plant growth and development. In this work, a series of 1-phenyl/tertbutyl-5-amino-4-pyrazole oxadiazole and arylhydrazone derivatives was synthesized. Bioassay evaluation demonstrated that the title compounds (P1-P18) without a "thioether bond" lost their anti-TMV activity, while some of the ring-opening arylhydrazone compounds exhibited superior in vivo activity against TMV in tobacco. The EC50 value of title compound T8 for curative activity was 139 µg/mL, similar to that of ningnanmycin (NNM) (EC50 = 152 µg/mL). Safety analysis revealed that compound T8 had no adverse effects on plant growth or seed germination at a concentration of 250 µg/mL. Morphological observation revealed that compound T8 could restore the leaf tissue of a TMV-stressed host and the leaf stomatal aperture to normal. A mechanism study further revealed that compound T8 not only restored the photosynthetic and growth ability of the damaged host to normal levels but also enhanced catalase (CAT) activity and reduced the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in the damaged host, thereby reducing the oxidation damage to the host. TMV-green fluorescent protein (GFP) experiments further demonstrated that compound T8 not only slowed the transmission speed of TMV in the host but also inhibited its reproduction. All of the experimental results demonstrated that compound T8 could reduce the oxidative damage caused by TMV stress and regulate the photosynthetic ability of the host, achieving the ability to repair damage, to make the plant grow normally.


Asunto(s)
Antivirales , Hidrazonas , Nicotiana , Oxadiazoles , Enfermedades de las Plantas , Virus del Mosaico del Tabaco , Virus del Mosaico del Tabaco/efectos de los fármacos , Virus del Mosaico del Tabaco/fisiología , Oxadiazoles/química , Oxadiazoles/farmacología , Hidrazonas/farmacología , Hidrazonas/química , Hidrazonas/síntesis química , Nicotiana/virología , Nicotiana/efectos de los fármacos , Enfermedades de las Plantas/virología , Antivirales/farmacología , Antivirales/síntesis química , Antivirales/química , Diseño de Fármacos , Relación Estructura-Actividad , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Estructura Molecular
5.
Molecules ; 29(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38792153

RESUMEN

Breast cancer is associated with high mortality and morbidity rates. As about 20-30% of patients exhibiting ER-positive phenotype are resistant to hormonal treatment with the standard drug tamoxifen, finding new therapies is a necessity. Postbiotics, metabolites, and macromolecules isolated from probiotic bacteria cultures have been proven to have sufficient bioactivity to exert prohealth and anticancer effects, making them viable adjunctive agents for the treatment of various neoplasms, including breast cancer. In the current study, postbiotics derived from L. plantarum and L. rhamnosus cultures were assessed on an in vitro breast cancer model as potential adjunctive agents to therapy utilizing tamoxifen and a candidate aziridine-hydrazide hydrazone derivative drug. Cell viability and cell death processes, including apoptosis, were analyzed for neoplastic MCF-7 cells treated with postbiotics and synthetic compounds. Cell cycle progression and proliferation were analyzed by PI-based flow cytometry and Ki-67 immunostaining. Postbiotics decreased viability and triggered apoptosis in MCF-7, modestly affecting the cell cycle and showing a lack of negative impact on normal cell viability. Moreover, they enhanced the cytotoxic effect of tamoxifen and the new candidate drug toward MCF-7, accelerating apoptosis and the inhibition of proliferation. This illustrates postbiotics' potential as natural adjunctive agents supporting anticancer therapy based on synthetic drugs.


Asunto(s)
Apoptosis , Aziridinas , Neoplasias de la Mama , Proliferación Celular , Tamoxifeno , Humanos , Tamoxifeno/farmacología , Tamoxifeno/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Células MCF-7 , Femenino , Aziridinas/farmacología , Aziridinas/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Hidrazonas/farmacología , Hidrazonas/química , Probióticos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Ciclo Celular/efectos de los fármacos
6.
Molecules ; 29(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38792260

RESUMEN

(1) Background: The aim of the work is the evaluation of in vitro antiproliferative and pro-apoptotic activity of four benzimidazole derivatives containing colchicine-like and catechol-like moieties with methyl group substitution in the benzimidazole ring against highly invasive breast cancer cell line MDA-MB-231 and their related impairment of tubulin dynamics. (2) Methods: The antiproliferative activity was assessed with the MTT assay. Alterations in tubulin polymerization were evaluated with an in vitro tubulin polymerization assay and a docking analysis. (3) Results: All derivatives showed time-dependent cytotoxicity with IC50 varying from 40 to 60 µM after 48 h and between 13 and 20 µM after 72 h. Immunofluorescent and DAPI staining revealed the pro-apoptotic potential of benzimidazole derivatives and their effect on tubulin dynamics in living cells. Compound 5d prevented tubulin aggregation and blocked mitosis, highlighting the importance of the methyl group and the colchicine-like fragment. (4) Conclusions: The benzimidazole derivatives demonstrated moderate cytotoxicity towards MDA-MB-231 by retarding the initial phase of tubulin polymerization. The derivative 5d containing a colchicine-like moiety and methyl group substitution in the benzimidazole ring showed potential as an antiproliferative agent and microtubule destabilizer by facilitating faster microtubule aggregation and disrupting cellular and nuclear integrity.


Asunto(s)
Antineoplásicos , Apoptosis , Bencimidazoles , Neoplasias de la Mama , Proliferación Celular , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Bencimidazoles/farmacología , Bencimidazoles/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Femenino , Hidrazonas/farmacología , Hidrazonas/química , Hidrazonas/síntesis química , Simulación del Acoplamiento Molecular , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/química , Relación Estructura-Actividad , Polimerizacion , Estructura Molecular
7.
Chemosphere ; 359: 142297, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729443

RESUMEN

The large use and emission of p-nitrophenol (p-NP) seriously pollute the environment and endanger human health. In this work, a hydrazone-linked fluorescent covalent organic framework (BATHz-COF) was simply synthesized at room temperature and covalently linked N-acetyl-L-cysteine (NALC) via the "thiol-ene" click reaction, where carboxyl groups were introduced to improve dispersion and fluorescence intensity. As a rapid, good selectivity and reusability fluorescence sensor, the obtained COF-NALC has been used for quantitative analysis of p-NP predicated on the internal filtering effect (IFE). Under optimal conditions, COF-NALC enabled quantitative detection of p-NP with a linear range of 5-50 µM and the detection limit was 1.46 µM. The application of COF-NALC to the detection of p-NP in river water samples was successful, and the satisfactory recoveries were 98.0%-109.3%. Furthermore, the fluorescent COF paper chips constructed by in situ growth were combined with a smartphone to build a visual platform for the quick and real-time detection of p-NP, providing an excellent illustration for the development of intelligent fluorescence sensing in environmental analysis.


Asunto(s)
Hidrazonas , Nitrofenoles , Contaminantes Químicos del Agua , Nitrofenoles/análisis , Nitrofenoles/química , Hidrazonas/química , Contaminantes Químicos del Agua/análisis , Cisteína/análisis , Cisteína/química , Límite de Detección , Colorantes Fluorescentes/química , Estructuras Metalorgánicas/química , Papel , Fluorescencia , Monitoreo del Ambiente/métodos , Espectrometría de Fluorescencia , Ríos/química
8.
J Inorg Biochem ; 256: 112546, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593611

RESUMEN

Two copper(II) complexes [Cu(Hpmoh)(NO3)(NCS)] (1) and [Cu(peoh)(N3)]2 (2) were designed and synthesized by reaction of Cu(NO3)2·3H2O with hydrazone Schiff base ligands,abbreviated with Hpmoh and Hpeoh. Hpmoh and Hpeoh were prepared by condensation reaction of octanoic hydrazide with pyridine-2-carboxyaldehyde and 2-acetylpyridine, respectively. Complexes 1 and 2 were characterized using different analytical techniques such as FT-IR, UV-Vis, IR, EPR and single X-ray diffraction (XRD) analyses as well as computational methods (DFT). The XRD of 1 and 2 shows a mononuclear or a dinuclear structure with the copper(II) centre adopting a slightly distorted square pyramidal geometry. In water-containing solution and in DMSO, 1 and 2 undergo a partial transformation with formation of [Cu(Hpmoh)(NO3)(NCS)] (1) and [Cu(Hpmoh)(NO3)(H2O/DMSO)] (1a) in one system and [Cu(peoh)(N3)] (2a) in the other one, as supported by DFT calculations. Docking simulations confirmed that the intercalation is the preferred binding mode with DNA for 1, 1a and 2a, but suggested that the minor groove binding is also possible. A significant fluorescence quenching of the DNA-ethidium bromide conjugate was observed upon the addition of complexes 1 and 2 with a quenching constant around 104 M-1 s-1. Finally, both 1 and 2 were examined for anti-cancer activity using MDA-MB-231 (human breast adenocarcinoma) and A375 (malignant melanoma) cell lines through in vitro MTT assay which suggest comparable cancer cell killing efficacy, with the higher effectiveness of 2 due to the dissociation into two [Cu(peoh)(N3)] units.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Cobre , ADN , Cobre/química , ADN/química , Humanos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ligandos , Hidrazinas/química , Hidrazinas/farmacología , Línea Celular Tumoral , Piridinas/química , Piridinas/farmacología , Simulación del Acoplamiento Molecular , Hidrazonas/química , Hidrazonas/farmacología , Hidrazonas/síntesis química
9.
J Inorg Biochem ; 256: 112550, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38599004

RESUMEN

Cisplatin remains the most widely used chemotherapeutic agent in cancer treatment; however, its inherent drawbacks have fueled the development of novel metalloanticancer drugs. In this study, two novel Cu(II) complexes (Cu1 and Cu2) were designed and synthesized. Notably, these Cu(II) complexes showed higher cytotoxicity against HL-7402 cells than cisplatin. Moreover, Cu(II) complexes significantly inhibited liver cancer growth in a xenograft model. A mechanism study revealed that the Cu(II) complexes reduced the mitochondrial membrane potential of cancer cells, produced excessive reactive oxygen species (ROS), induced mitochondrial DNA (mtDNA) damage, and ultimately facilitated cancer cell apoptosis.


Asunto(s)
Antineoplásicos , Apoptosis , Complejos de Coordinación , Cobre , Daño del ADN , ADN Mitocondrial , Neoplasias Hepáticas , Mitocondrias , Especies Reactivas de Oxígeno , Humanos , Cobre/química , Cobre/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Animales , Daño del ADN/efectos de los fármacos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Línea Celular Tumoral , Hidrazonas/farmacología , Hidrazonas/química , Hidrazonas/síntesis química , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Ratones Endogámicos BALB C
10.
J Nat Prod ; 87(5): 1407-1415, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38662578

RESUMEN

Alkaloids with a phenylhydrazone architecture are rarely found in nature. Four unusual phenylhydrazone alkaloids named talarohydrazones A-D (1-4) were isolated from the deep-sea cold seep derived fungus Talaromyces amestolkiae HDN21-0307 using the one strain-many compounds (OSMAC) approach and MS/MS-based molecular networking (MN) combined with network annotation propagation (NAP) and the unsupervised substructure annotation method MS2LDA. Their structures were elucidated by spectroscopic data analysis, single-crystal X-ray diffraction, and quantum chemical calculations. Talarohydrazone A (1) possessed an unusual skeleton combining 2,4-pyridinedione and phenylhydrazone. Talarohydrazone B (2) represents the first natural phenylhydrazone-bearing azadophilone. Bioactivity evaluation revealed that compound 1 exhibited cytotoxic activity against NCI-H446 cells with an IC50 value of 4.1 µM. In addition, compound 1 displayed weak antibacterial activity toward Staphylococcus aureus with an MIC value of 32 µg/mL.


Asunto(s)
Alcaloides , Hidrazonas , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Talaromyces , Talaromyces/química , Hidrazonas/farmacología , Hidrazonas/química , Alcaloides/farmacología , Alcaloides/química , Alcaloides/aislamiento & purificación , Estructura Molecular , Staphylococcus aureus/efectos de los fármacos , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Ensayos de Selección de Medicamentos Antitumorales , Cristalografía por Rayos X
11.
Arch Pharm (Weinheim) ; 357(5): e2300725, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38346258

RESUMEN

Over the years, pharmacological agents bearing antioxidant merits arose as beneficial in the prophylaxis and treatment of various health conditions. Hazardous effects of radical species hyperproduction disrupt normal cell functioning, thus increasing the possibility for the development of various oxidative stress-associated disorders, such as cancer. Contributing to the efforts for efficient antioxidant drug discovery, a thorough in vitro and in silico assessment of antioxidant properties of 14 newly synthesized N-pyrocatechoyl and N-pyrogalloyl hydrazones (N-PYRs) was accomplished. All compounds exhibited excellent antioxidant potency against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. The extensive in silico analysis revealed multiple favorable features of N-PYRs to inactivate harmful radical species, which supported the obtained in vitro results. Also, in silico experiments provided insights into the preferable antioxidant pathways. Prompted by these findings, the cytotoxicity effects and the influence on the redox status of cancer HCT-116 cells and healthy fibroblasts MRC-5 were evaluated. These investigations exposed four analogs exhibiting both cytotoxicity and selectivity toward cancer cells. Furthermore, the frequently uncovered antimicrobial potency of hydrazone-type hybrids encouraged investigations on G+ and G- bacterial strains, which revealed the antibacterial potency of several N-PYRs. These findings highlighted the N-PYRs as excellent antioxidant agents endowed with cytotoxic and antibacterial features.


Asunto(s)
Antibacterianos , Antineoplásicos , Antioxidantes , Hidrazonas , Pruebas de Sensibilidad Microbiana , Humanos , Hidrazonas/farmacología , Hidrazonas/química , Hidrazonas/síntesis química , Antioxidantes/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Células HCT116 , Estructura Molecular , Supervivencia Celular/efectos de los fármacos , Picratos/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/química , Compuestos de Bifenilo/farmacología , Relación Dosis-Respuesta a Droga
12.
Dalton Trans ; 53(7): 3075-3096, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38235791

RESUMEN

Hetero-bimetallic ruthenium(II) complexes (PRAFIZ and PRBFIZ) containing acetyl ferrocene (AFIZ)/benzoyl ferrocene isonicotinic hydrazone ligands (BFIZ) were synthesized and characterized by various spectral and analytical techniques. The structure of acetyl ferrocene isonicotinic hydrazone (AFIZ) and the complex PRBFIZ was confirmed by X-ray crystallography. The hydrazide ligands coordinated in a bidentate monobasic fashion using their N1 hydrazinic nitrogen and enolic oxygen atoms. The binding interactions of the ligands and complexes were examined using Calf-Thymus DNA (CT-DNA) and bovine serum albumin (BSA). Scanning Electron Microscopic (SEM) experiments clarified the efficient binding interaction of the ligands and complexes with BSA. The results of in vitro cytotoxicity studies on MDA-MB-261 breast cancer cells and A549 human lung cancer cells and cell morphological analysis results through staining assays clearly indicated the cytotoxic nature of the complexes.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Humanos , Rutenio/química , Metalocenos , ADN/química , Albúmina Sérica Bovina/química , Hidrazonas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Complejos de Coordinación/química , Cristalografía por Rayos X , Ligandos , Línea Celular Tumoral
13.
Inorg Chem ; 62(49): 19937-19947, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37993987

RESUMEN

Multidimensional applicability of functional materials is one of the focal attractions in today's scientific research. Highly stable and crystalline coordination polymers served as one of the active members in the club of multifunctional materials. Toward this concept, a 3-dimensional (3D) coordination framework, {[Zn2(tdc)2(pcih)2]n} (1) (tdc2-, 2,5-thiophene dicarboxylate; pcih, pyridine-4-carboxaldehyde isonicotinoyl hydrazine), is designed and has been structurally well characterized by single crystal X-ray crystallography. One of the carboxylate groups of tdc2- chelates to Zn(II), while the other carboxylato group (-COO) acts as bridging-O to neighboring Zn(II); the pcih serves as pyridyl-N bridging motif to two Zn(II) centers. The optical band gap, 3.83 eV (Tauc's plot), implies probable semiconducting ability of the material. Interestingly, the device fabricated using compound 1 measures the electrical conductivity, 2.21 × 10-5 S cm-1, and series resistance (Rs), 807 Ω, at the dark phase, which are improved significantly to 6.36 × 10-5 S cm-1 and 460 Ω, respectively, under illumination conditions. Isoniazid, used to synthesize pcih and hence the Zn(II) compound 1, is a medicine; so, the medicinal efficiency of 1 is checked by measuring the anticancer activity against MDA-MB-231, HeLa, HCT-116, and HepG2 cells. It is observed that drug efficacy is highest on MDA-MB-231 cells (IC50: 19.43 ± 1.36 µM) than other cancer cells [IC50: 24.43 ± 2.02 µM (HeLa), 26.06 ± 3.48 µM (HCT-116), and 44.28 ± 3.04 µM (HepG2)]. Therefore, the material has significant contribution in the area of energy and health toward the sustainable development goals.


Asunto(s)
Hidrazonas , Isoniazida , Hidrazonas/química , Ácidos Carboxílicos , Zinc/química , Conductividad Eléctrica
14.
ACS Appl Bio Mater ; 6(12): 5360-5371, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38019535

RESUMEN

In this work, three titanium(IV) [TiIV(L1-3)2] (1-3) complexes have been reported using three different tridentate dibasic ONO donor hydrazone ligands, pyridine-4-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)-hydrazide (H2L1), furan-2-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)-hydrazide (H2L2), and thiophene-2-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)-hydrazide (H2L3) tethered with heterocyclic moieties. Elemental analysis, FT-IR, UV-vis, NMR, HR-ESI-MS, and single-crystal X-ray analysis have been used to characterize H2L1-3 and 1-3. In solid structures of 1-3, two ligand molecules with N2O4 donor sets give distorted octahedral geometries to the metal center. The aqueous stability of 1-3 was investigated and well correlated to their perceived pharmacological results. During the investigation, all three complexes were found to be hydrolytically stable in a 90% DMSO-d6/10% D2O (v/v) medium up to 48 h. Furthermore, the interaction of 1-3 with bovine serum albumin (BSA) was tested using fluorescence and absorption techniques. The complexes showed static quenching with a biomolecular quenching constant of Kq ∼ 1013 proposing a high affinity of complexes for BSA. Finally, the anticancer potential of 1-3 was tested against HeLa, A549, and NIH-3T3 cell lines. Among all, 1 with an IC50 value of 11.6 ± 1.1 µM against HeLa cells was found to be the most cytotoxic in the series. Furthermore, it has been found that the compounds induce an apoptotic mode of cell death, which is confirmed by the live cell confocal microscopy and flow cytometry techniques.


Asunto(s)
Hidrazonas , Titanio , Humanos , Hidrazonas/farmacología , Hidrazonas/química , Células HeLa , Espectroscopía Infrarroja por Transformada de Fourier , Cristalografía por Rayos X , Titanio/farmacología , Hidrazinas , Ácidos Carboxílicos
15.
J Agric Food Chem ; 71(29): 11016-11025, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37442997

RESUMEN

Marine natural products have attracted more and more attention in drug research and development due to their unique structure, diverse biological activities, and novel mode of action. Using antiviral alkaloid aldisine as the lead compound and drawing on the hydrogen bond effect widely used in drug design, derivatives containing oxime and hydrazone moieties were designed and synthesized by introducing functional groups with hydrogen-bond receptors or donors into molecules. The configuration of derivatives was systematically studied through nuclear Overhauser effect (NOE) spectroscopy and single crystal analysis. The antiviral activity test result showed that most derivatives had antiviral activity against tobacco mosaic virus (TMV), and some compounds had better activity than the commercial antiviral drug ribavirin, especially compounds 2 and 24, which had comparable activity to the most effective commercial antiviral drug ningnanmycin. Preliminary mode of action studies showed that compound 2 could affect the assembly of rod-shaped TMVs by promoting the aggregation and fragmentation of TMV coat proteins. Molecular docking experiments demonstrated that the introduction of oxime and hydrazone moieties could indeed increase the hydrogen bond between molecules and target proteins. In addition, we conducted fungicidal and larvicidal activities study of these derivatives. Most of these derivatives had good larvicidal activities against Mythimna separata and Plutella xylostella and showed broad-spectrum fungicidal activities.


Asunto(s)
Oximas , Virus del Mosaico del Tabaco , Relación Estructura-Actividad , Estructura Molecular , Oximas/farmacología , Simulación del Acoplamiento Molecular , Enlace de Hidrógeno , Antivirales/química , Hidrazinas/farmacología , Hidrazonas/química , Diseño de Fármacos
16.
Chem Biodivers ; 20(8): e202300773, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37384873

RESUMEN

In this study, twenty new anthranilic acid hydrazones 6-9 (a-e) were synthesized and their structures were characterized by Fourier-transform Infrared (FT-IR), Nuclear Magnetic Resonance (1 H-NMR - 13 C-NMR), and High-resolution Mass Spectroscopy (HR-MS). The inhibitory effects of the compounds against COX-II were evaluated. IC50 values of the compounds were found in the range of >200-0.32 µM and compounds 6e, 8d, 8e, 9b, 9c, and 9e were determined to be the most effective inhibitors. Cytotoxic effects of the most potent compounds were investigated against human hepatoblastoma (Hep-G2) and human healthy embryonic kidney (Hek-293) cell lines. Doxorubicin (IC50 : 8.68±0.16 µM for Hep-G2, 55.29±0.56 µM for Hek-293) was used as standard. 8e is the most active compound, with low IC50 against Hep-G2 (4.80±0.04 µM), high against Hek-293 (159.30±3.12), and high selectivity (33.15). Finally, molecular docking and dynamics studies were performed to understand ligand-protein interactions between the most potent compounds and COX II, Epidermal Growth Factor Receptor (EGFR), and Transforming Growth Factor beta II (TGF-ßII). The docking scores were calculated in the range of -10.609--6.705 kcal/mol for COX-II, -8.652--7.743 kcal/mol for EGFR, and -10.708--8.596 kcal/mol for TGF-ßII.


Asunto(s)
Antineoplásicos , Fenamatos , Humanos , Simulación del Acoplamiento Molecular , Hidrazonas/farmacología , Hidrazonas/química , Estructura Molecular , Relación Estructura-Actividad , Fenamatos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Células HEK293 , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Receptores ErbB , Antiinflamatorios/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular
17.
J Agric Food Chem ; 71(22): 8297-8316, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37249236

RESUMEN

Hydrazides are present in many bioactive molecules and exhibit a variety of biological activities, such as insecticidal, herbicidal, antifungal, antitumor, and antiviral effects. In this Review, we review the application of hydrazide and its derived structures in the agricultural fungicidal field, including monohydrazides, diacylhydrazines, hydrazide-hydrazones, and sulfonyl hydrazides. In addition, the antifungal mechanism of action of the hydrazide derivatives was analyzed and summarized, mainly involving succinate dehydrogenase inhibitors, laccase inhibitors, and targeting plasma membranes. Finally, based on the structural analysis of the novel fungicidal lead compounds, the structure-activity relationship of the hydrazide derivatives was constructed and the development trend of hydrazide structures in fungicidal applications was prospected. It is hoped that this Review can provide some significant guidance for the development of new hydrazide fungicides in the future.


Asunto(s)
Fungicidas Industriales , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Hidrazinas/farmacología , Hidrazinas/química , Antifúngicos/farmacología , Relación Estructura-Actividad , Hidrazonas/química , Antibacterianos/farmacología
18.
Int J Mol Sci ; 24(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37108514

RESUMEN

Despite the significant advancements in complex anticancer therapy, the search for new and more efficient specific anticancer agents remains a top priority in the field of drug discovery and development. Here, based on the structure-activity relationships (SARs) of eleven salicylaldehyde hydrazones with anticancer activities, we designed three novel derivatives. The compounds were tested in silico for drug-likeness, synthesized, and evaluated in vitro for anticancer activity and selectivity on four leukemic cell lines (HL-60, KE-37, K-562, and BV-173), one osteosarcomic cell line (SaOS-2), two breast adenocarcinomic cell lines (MCF-7 and MDA-MB-231), and one healthy cell line (HEK-293). The designed compounds were found to have appropriate drug likeness and showed anticancer activities in all cell lines tested; particularly, two of them exhibited remarkable anticancer activity in nanomolar concentrations on the leukemic cell lines HL-60 and K-562 and the breast cancer MCF-7 cells and extraordinary selectivity for the same cancer lines ranging between 164- and 1254-fold. The study also examined the effects of different substituents on the hydrazone scaffold and found that the 4-methoxy salicylic moiety, phenyl, and pyridinyl rings are the most appropriate for anticancer activity and selectivity of this chemical class.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Leucemia , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Hidrazonas/química , Células HEK293 , Diseño de Fármacos , Proliferación Celular , Antineoplásicos/química , Relación Estructura-Actividad , Línea Celular Tumoral , Leucemia/tratamiento farmacológico , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales
19.
ChemMedChem ; 18(13): e202300199, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37078232

RESUMEN

Three unique hydrazone-based small-molecule-activatable photosensitizers were designed and synthesized. Two of them work efficiently in a low-pH environment, resembling the microenvironment of the cancerous tissues. The activation pathway is unique and based on hydrazone bond cleavage. They were investigated through in vitro cellular studies in aggressive cancer lines, and tumor-specific culture conditions successfully initiated the cleavage and activation of the cytotoxic singlet oxygen generation in the relevant time period. The interesting photophysical characteristics of the α- and ß-substituted hydrazone derivatives of the Bodipy structures and their mild hydrolysis methodologies were also investigated successfully.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Hidrazonas/farmacología , Hidrazonas/química , Microambiente Tumoral
20.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768232

RESUMEN

The propensity of 4-hydroxybenzhydrazone-related ligands derived from 3-methoxysalicylaldehyde (H2L3OMe), 4-methoxysalicylaldehyde (H2L4OMe), and salicylaldehyde (H2LH) to act as chelating and/or bridging ligands in Ni(II) complexes was investigated. Three clusters of different nuclearities, [Ni3(L3OMe)2(OAc)2(MeOH)2]∙2MeOH∙MeCN (1∙2MeOH∙MeCN), [Ni2(HL4OMe)(L4OMe)(OAc)(MeOH)2]∙4.7MeOH (2∙4.7MeOH), and [Ni4(HLH)2(LH)2(OAc)2]∙4MeOH·0.63H2O·0.5MeCN·HOAc (3∙4MeOH·0.63H2O·0.5MeCN·HOAc), were prepared from Ni(OAc)2∙4H2O and the corresponding ligand in the presence of Et3N. The hydrazones in these acetato- and phenoxido-bridged clusters acted as singly or doubly deprotonated ligands. When pyridine was used, mononuclear complexes with the square-planar geometry seemed to be favoured, as found for complexes [Ni(L3OMe)(py)] (4), [Ni(L4Ome)(py)] (5) and [Ni(LH)(py)] (6). Ligand substituent effects and the stability of square-planar complexes were investigated and quantified by extensive quantum chemical analysis. Obtained results showed that standard Gibbs energies of binding were lower for square-planar than for octahedral complexes. Starting from [MoO2(L)(EtOH)] complexes as precursors and applying the metal-exchange procedure, the mononuclear complexes [Ni(HL3OMe)2]∙MeOH (7∙MeOH) and [Ni(HLH)]∙2MeOH (9∙2MeOH) and hybrid organic-inorganic compound [Ni2(HL4OMe)2(CH3OH)4][Mo4O10(OCH3)6] (10) were achieved. The octahedral complexes [Ni(HL)2] (7-9) can also be obtained by the direct synthesis from Ni(Oac)2∙4H2O and the appropriate ligand under specific reaction conditions. Crystal and molecular structures of 1∙2MeOH∙MeCN, 2∙4.7MeOH, 3∙4MeOH∙0.63H2O∙0.5MeCN∙HOAc, 4, 5, 9∙2MeOH, and 10 were determined by the single-crystal X-ray diffraction method.


Asunto(s)
Complejos de Coordinación , Níquel , Níquel/química , Ligandos , Hidrazonas/química , Estructura Molecular , Cristalografía por Rayos X , Complejos de Coordinación/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA