Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.111
Filtrar
1.
Eur J Med Res ; 29(1): 310, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38840262

RESUMEN

KDM6A (lysine demethylase 6A) has been reported to undergo inactivating mutations in colorectal cancer, but its function in the progression of colorectal cancer has not been evaluated using animal models of colorectal cancer. In this study, we found that knocking out KDM6A expression in mouse intestinal epithelium increased the length of villus and crypt, promoting the development of AOM (azoxymethane)/DSS (dextran sulfate sodium salt)-induced colorectal cancer. On the other hand, knocking down KDM6A expression promoted the growth of colorectal cancer cells. In molecular mechanism studies, we found that KDM6A interacts with HIF-1α; knocking down KDM6A promotes the binding of HIF-1α to the LDHA promoter, thereby promoting LDHA expression and lactate production, enhancing glycolysis. Knocking down LDHA reversed the malignant phenotype caused by KDM6A expression loss. In summary, this study using animal models revealed that KDM6A loss promotes the progression of colorectal cancer through reprogramming the metabolism of the colorectal cancer cells, suggesting that restoring the function of KDM6A is likely to be one of the strategies for colorectal cancer treatment.


Asunto(s)
Neoplasias Colorrectales , Progresión de la Enfermedad , Glucólisis , Histona Demetilasas , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Animales , Ratones , Humanos , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética
2.
J Cancer Res Clin Oncol ; 150(5): 253, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748285

RESUMEN

BACKGROUND: Lysine-specific demethylase 1 (LSD1) is highly expressed in a variety of malignant tumors, rendering it a crucial epigenetic target for anti-tumor therapy. Therefore, the inhibition of LSD1 activity has emerged as a promising innovative therapeutic approach for targeted cancer treatment. METHODS: In our study, we employed innovative structure-based drug design methods to meticulously select compounds from the ZINC15 database. Utilizing virtual docking, we evaluated docking scores and binding modes to identify potential inhibitors. To further validate our findings, we harnessed molecular dynamic simulations and conducted meticulous biochemical experiments to deeply analyze the binding interactions between the protein and compounds. RESULTS: Our results showcased that ZINC10039815 exhibits an exquisite binding mode with LSD1, fitting perfectly into the active pocket and forming robust interactions with multiple critical residues of the protein. CONCLUSIONS: With its significant inhibitory effect on LSD1 activity, ZINC10039815 emerges as a highly promising candidate for the development of novel LSD1 inhibitors.


Asunto(s)
Inhibidores Enzimáticos , Histona Demetilasas , Simulación del Acoplamiento Molecular , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Histona Demetilasas/química , Humanos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Simulación de Dinámica Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Diseño de Fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
3.
Biomolecules ; 14(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38785960

RESUMEN

Histone demethylases, enzymes responsible for removing methyl groups from histone proteins, have emerged as critical players in regulating gene expression and chromatin dynamics, thereby influencing various cellular processes. LSD2 and LSD1 have attracted considerable interest among these demethylases because of their associations with cancer. However, while LSD1 has received significant attention, LSD2 has not been recognized to the same extent. In this study, we conduct a comprehensive comparison between LSD2 and LSD1, with a focus on exploring LSD2's implications. While both share structural similarities, LSD2 possesses unique features as well. Functionally, LSD2 shows diverse roles, particularly in cancer, with tissue-dependent roles. Additionally, LSD2 extends beyond histone demethylation, impacting DNA methylation, cancer cell reprogramming, E3 ubiquitin ligase activity and DNA damage repair pathways. This study underscores the distinct roles of LSD2, providing insights into their contributions to cancer and other cellular processes.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Histona Demetilasas , Neoplasias , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Metilación de ADN/genética , Histonas/metabolismo , Histonas/genética , Reparación del ADN , Regulación Neoplásica de la Expresión Génica , Proteínas F-Box , Histona Demetilasas con Dominio de Jumonji
4.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791111

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is poised to become the second leading cause of cancer-related death by 2030, necessitating innovative therapeutic strategies. Genetic and epigenetic alterations, including those involving the COMPASS-like complex genes, have emerged as critical drivers of PDAC progression. This review explores the genetic and epigenetic landscape of PDAC, focusing on the role of the COMPASS-like complex in regulating chromatin accessibility and gene expression. Specifically, we delve into the functions of key components such as KDM6A, KMT2D, KMT2C, KMT2A, and KMT2B, highlighting their significance as potential therapeutic targets. Furthermore, we discuss the implications of these findings for developing novel treatment modalities for PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Cromatina/metabolismo , Cromatina/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Animales
5.
Mol Cancer ; 23(1): 109, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769556

RESUMEN

Breast cancer (BC) is the most frequent malignant cancer diagnosis and is a primary factor for cancer deaths in women. The clinical subtypes of BC include estrogen receptor (ER) positive, progesterone receptor (PR) positive, human epidermal growth factor receptor 2 (HER2) positive, and triple-negative BC (TNBC). Based on the stages and subtypes of BC, various treatment methods are available with variations in the rates of progression-free disease and overall survival of patients. However, the treatment of BC still faces challenges, particularly in terms of drug resistance and recurrence. The study of epigenetics has provided new ideas for treating BC. Targeting aberrant epigenetic factors with inhibitors represents a promising anticancer strategy. The KDM5 family includes four members, KDM5A, KDM5B, KDM5C, and KDMD, all of which are Jumonji C domain-containing histone H3K4me2/3 demethylases. KDM5 proteins have been extensively studied in BC, where they are involved in suppressing or promoting BC depending on their specific upstream and downstream pathways. Several KDM5 inhibitors have shown potent BC inhibitory activity in vitro and in vivo, but challenges still exist in developing KDM5 inhibitors. In this review, we introduce the subtypes of BC and their current therapeutic options, summarize KDM5 family context-specific functions in the pathobiology of BC, and discuss the outlook and pitfalls of KDM5 inhibitors in this disease.


Asunto(s)
Neoplasias de la Mama , Histona Demetilasas , Terapia Molecular Dirigida , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/genética , Biomarcadores de Tumor
6.
Nat Commun ; 15(1): 4327, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773088

RESUMEN

The antitumor efficacy of adoptively transferred T cells is limited by their poor persistence, in part due to exhaustion, but the underlying mechanisms and potential interventions remain underexplored. Here, we show that targeting histone demethylase LSD1 by chemical inhibitors reshapes the epigenome of in vitro activated and expanded CD8+ T cells, and potentiates their antitumor efficacy. Upon T cell receptor activation and IL-2 signaling, a timely and transient inhibition of LSD1 suffices to improve the memory phenotype of mouse CD8+ T cells, associated with a better ability to produce multiple cytokines, resist exhaustion, and persist in both antigen-dependent and -independent manners after adoptive transfer. Consequently, OT1 cells primed with LSD1 inhibitors demonstrate an enhanced antitumor effect in OVA-expressing solid tumor models implanted in female mice, both as a standalone treatment and in combination with PD-1 blockade. Moreover, priming with LSD1 inhibitors promotes polyfunctionality of human CD8+ T cells, and increases the persistence and antitumor efficacy of human CD19-CAR T cells in both leukemia and solid tumor models. Thus, pharmacological inhibition of LSD1 could be exploited to improve adoptive T cell therapy.


Asunto(s)
Linfocitos T CD8-positivos , Histona Demetilasas , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Ratones , Humanos , Femenino , Ratones Endogámicos C57BL , Inmunoterapia Adoptiva/métodos , Línea Celular Tumoral , Activación de Linfocitos/efectos de los fármacos , Traslado Adoptivo , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Interleucina-2/metabolismo , Antígenos CD19/metabolismo , Antígenos CD19/inmunología , Memoria Inmunológica/efectos de los fármacos
7.
Biochemistry ; 63(11): 1369-1375, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38742921

RESUMEN

Lysine specific demethylase-1 (LSD1) serves as a regulator of transcription and represents a promising epigenetic target for anticancer treatment. LSD1 inhibitors are in clinical trials for the treatment of Ewing's sarcoma (EWS), acute myeloid leukemia, and small cell lung cancer, and the development of robust inhibitors requires accurate methods for probing demethylation, potency, and selectivity. Here, the inhibition kinetics on the H3K4me2 peptide and nucleosome substrates was examined, comparing the rates of demethylation in the presence of reversible [CC-90011 (PD) and SP-2577 (SD)] and irreversible [ORY-1001 (ID) and tranylcypromine (TCP)] inhibitors. Inhibitors were also subject to viability studies in three human cell lines and Western blot assays to monitor H3K4me2 nucleosome levels in EWS (TC-32) cells, enabling a correlation of drug potency, inhibition in vitro, and cell-based studies. For example, SP-2577, a drug in clinical trials for EWS, inhibits activity on small peptide substrates (Ki = 60 ± 20 nM) using an indirect coupled assay but does not inhibit demethylation on H3K4me2 peptides or nucleosomes using direct Western blot approaches. In addition, the drug has no effect on H3K4me2 levels in TC-32 cells. These data show that SP-2577 is not an LSD1 enzyme inhibitor, although the drug may function independent of demethylation due to its cytotoxic selectivity in TC-32 cells. Taken together, this work highlights the pitfalls of using coupled assays to ascribe a drug's mode of action, emphasizes the use of physiologically relevant substrates in epigenetic drug targeting strategies, and provides insight into the development of substrate-selective inhibitors of LSD1.


Asunto(s)
Antineoplásicos , Histona Demetilasas , Nucleosomas , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Humanos , Nucleosomas/metabolismo , Nucleosomas/efectos de los fármacos , Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Línea Celular Tumoral , Histonas/metabolismo , Tranilcipromina/farmacología , Especificidad por Sustrato , Cinética
8.
Free Radic Biol Med ; 219: 49-63, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38608823

RESUMEN

Previous studies have shown that ferroptosis of vascular smooth muscle cells (VSMCs) is involved in the development of aortic dissection (AD) and that histone methylation regulates this process. SP2509 acts as a specific inhibitor of lysine-specific demethylase 1 (LSD1), which governs a variety of biological processes. However, the effect of SP2509 on VSMC ferroptosis and AD remains to be elucidated. This aim of this study was to investigate the role and underlying mechanism of SP2509-mediated histone methylation on VSMC ferroptosis. Here, a mouse model of AD was established, and significantly reduced levels of H3K4me1 and H3K4me2 (target of SP2509) were found in the aortas of AD mice. In VSMCs, SP2509 treatment led to a dose-dependent increase in H3K4me2 levels. Furthermore, we found that SP2509 provided equivalent protection to ferrostatin-1 against VSMC ferroptosis, as evidenced by increased cell viability, decreased cell death and lipid peroxidation. RNA-sequencing analysis and subsequent experiments revealed that SP2509 counteracted cystine deficiency-induced response to inflammation and oxidative stress. More importantly, we demonstrated that SP2509 inhibited the expression of TFR and ferritin to reduce intracellular iron levels, thereby effectively blocking the process of ferroptosis. Therefore, our findings indicate that SP2509 protects VSMCs from multiple stimulus-induced ferroptosis by reducing intracellular iron levels, thereby preventing lipid peroxidation and cell death. These findings suggest that SP2509 may be a promising drug to alleviate AD by reducing iron deposition and VSMC ferroptosis.


Asunto(s)
Ferroptosis , Hierro , Músculo Liso Vascular , Miocitos del Músculo Liso , Ferroptosis/efectos de los fármacos , Animales , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Ratones , Hierro/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Estrés Oxidativo/efectos de los fármacos , Humanos , Modelos Animales de Enfermedad , Peroxidación de Lípido/efectos de los fármacos , Fenilendiaminas/farmacología , Masculino , Supervivencia Celular/efectos de los fármacos , Histonas/metabolismo , Histonas/genética , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Ratones Endogámicos C57BL , Ciclohexilaminas
9.
Bioorg Chem ; 147: 107336, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636431

RESUMEN

In this series we report the structure-based design, synthesis and anticancer activity evaluation of a series of eighteen cyclopropylamine containing cyanopyrimidine derivatives. The computational predictions of ADMET properties revealed appropriate aqueous solubility, high GI absorption, no BBB permeability, no Lipinski rule violations, medium total clearance and no mutagenic, tumorigenic, irritant and reproductive toxic risks for most of the compounds. Compounds VIIb, VIIi and VIIm emerged as the most potent anticancer agents among all compounds evaluated against 60 cancer cell lines through the one-dose (10 µM) sulforhodamine B assay. Further, the multiple dose cell viability studies against cancer cell lines MOLT-4, A549 and HCT-116 revealed results consistent with the one-dose assay, besides sparing normal cell line HEK-293. The three potent compounds also displayed potent LSD1 inhibitory activity with IC50 values of 2.25, 1.80 and 6.08 µM. The n-propyl-thio/isopropyl-thio group bonded to the pyrimidine ring and unsubstituted/ electron donating group (at the para- position) attached to the phenyl ring resulted in enhanced anticancer activity. However, against leukemia cancer, the electron donating isopropyl group remarkably enhanced anti-cancer activity. Our findings provide important leads, which merit further optimization to result in better cancer therapeutics.


Asunto(s)
Antineoplásicos , Proliferación Celular , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Histona Demetilasas , Pirimidinas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/síntesis química , Relación Estructura-Actividad , Estructura Molecular , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Línea Celular Tumoral , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Supervivencia Celular/efectos de los fármacos
10.
Prostate ; 84(10): 909-921, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38619005

RESUMEN

INTRODUCTION: Lysine-specific demethylase 1 (LSD1) is emerging as a critical mediator of tumor progression in metastatic castration-resistant prostate cancer (mCRPC). Neuroendocrine prostate cancer (NEPC) is increasingly recognized as an adaptive mechanism of resistance in mCRPC patients failing androgen receptor axis-targeted therapies. Safe and effective LSD1 inhibitors are necessary to determine antitumor response in prostate cancer models. For this reason, we characterize the LSD1 inhibitor bomedemstat to assess its clinical potential in NEPC as well as other mCRPC pathological subtypes. METHODS: Bomedemstat was characterized via crystallization, flavine adenine dinucleotide spectrophotometry, and enzyme kinetics. On-target effects were assessed in relevant prostate cancer cell models by measuring proliferation and H3K4 methylation using western blot analysis. In vivo, pharmacokinetic (PK) and pharmacodynamic (PD) profiles of bomedemstat are also described. RESULTS: Structural, biochemical, and PK/PD properties of bomedemstat, an irreversible, orally-bioavailable inhibitor of LSD1 are reported. Our data demonstrate bomedemstat has >2500-fold greater specificity for LSD1 over monoamine oxidase (MAO)-A and -B. Bomedemstat also demonstrates activity against several models of advanced CRPC, including NEPC patient-derived xenografts. Significant intra-tumoral accumulation of orally-administered bomedemstat is measured with micromolar levels achieved in vivo (1.2 ± 0.45 µM at the 7.5 mg/kg dose and 3.76 ± 0.43 µM at the 15 mg/kg dose). Daily oral dosing of bomedemstat at 40 mg/kg/day is well-tolerated, with on-target thrombocytopenia observed that is rapidly reversible following treatment cessation. CONCLUSIONS: Bomedemstat provides enhanced specificity against LSD1, as revealed by structural and biochemical data. PK/PD data display an overall safety profile with manageable side effects resulting from LSD1 inhibition using bomedemstat in preclinical models. Altogether, our results support clinical testing of bomedemstat in the setting of mCRPC.


Asunto(s)
Histona Demetilasas , Neoplasias de la Próstata Resistentes a la Castración , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Masculino , Humanos , Animales , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Ratones , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/farmacocinética , Benzamidas , Piperazinas , Triazoles
11.
Comput Biol Chem ; 110: 108072, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636391

RESUMEN

The methylation and demethylation of lysine and arginine side chains are fundamental processes in gene regulation and disease development. Histone lysine methylation, controlled by histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs), plays a vital role in maintaining cellular homeostasis and has been implicated in diseases such as cancer and aging. This study focuses on two members of the lysine demethylase (KDM) family, KDM4E and KDM6B, which are significant in gene regulation and disease pathogenesis. KDM4E demonstrates selectivity for gene regulation, particularly concerning cancer, while KDM6B is implicated in inflammation and cancer. The study utilizes specific inhibitors, DA-24905 and GSK-J1, showcasing their exceptional selectivity for KDM4E and KDM6B, respectively. Employing an array of computational simulations, including sequence alignment, molecular docking, dynamics simulations, and free energy calculations, we conclude that although the binding cavities of KDM4E and KDM6B has high similarity, there are still some different crucial amino acid residues, indicating diverse binding forms between protein and ligands. Various interaction predominates when proteins are bound to different ligands, which also has significant effect on selective inhibition. These findings provide insights into potential therapeutic strategies for diseases by selectively targeting these KDM members.


Asunto(s)
Inhibidores Enzimáticos , Histona Demetilasas con Dominio de Jumonji , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/química , Humanos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Simulación de Dinámica Molecular , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Estructura Molecular , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Histona Demetilasas/química , Relación Estructura-Actividad
12.
Ecotoxicol Environ Saf ; 277: 116352, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663195

RESUMEN

Cadmium (Cd) pollution in soil poses a global concern due to its serious impacts on human health and ecological security. In plants, tremendous efforts have been made to identify some key genes and pathways in Cd stress responses. However, studies on the roles of epigenetic factors in response to Cd stress were still limited. In the study, we first gain insight into the gene expression dynamics for maize seedlings under 0 h, 12 h, and 72 h Cd stress. As a result, six distinct groups of genes were identified by hierarchical clustering and principal component analysis. The key pathways associated with 12 h Cd stress were protein modifications including protein ubiquitination, signal transduction by protein phosphorylation, and histone modification. Whereas, under 72 h stress, main pathways were involved in biological processes including phenylalanine metabolism, response to oxygen-containing compounds and metal ions. Then to be noted, one of the most highly expressed genes at 12 h under Cd treatment is annotated as histone demethylases (ZmJMJ20). The evolutionary tree analysis and domain analysis showed that ZmJMJ20 belonged to the JmjC-only subfamily of the Jumonji-C (JmjC) family, and ZmJMJ20 was conserved in rice and Arabidopsis. After 72 h of Cd treatment, the zmjmj20 mutant created by EMS treatment manifested less severe chlorosis/leaf yellowing symptoms compared with wild-type plants, and there was no significant difference in Fv/Fm and φPSII value before and after Cd treatment. Moreover, the expression levels of several photosynthesis-related down-regulated genes in EMS mutant plants were dramatically increased compared with those in wild-type plants at 12 h under Cd treatment. Our results suggested that ZmJMJ20 plays an important role in the Cd tolerance response pathway and will facilitate the development of cultivars with improved Cd stress tolerance.


Asunto(s)
Cadmio , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Contaminantes del Suelo , Estrés Fisiológico , Zea mays , Zea mays/genética , Zea mays/efectos de los fármacos , Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Estrés Fisiológico/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/genética
13.
Nat Commun ; 15(1): 2165, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461301

RESUMEN

The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function.


Asunto(s)
Neoplasias , Estructuras R-Loop , ARN Largo no Codificante , Homeostasis del Telómero , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Separación de Fases , ARN Largo no Codificante/genética , Telómero/genética , Telómero/metabolismo , Homeostasis del Telómero/genética , Humanos
14.
Commun Biol ; 7(1): 374, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548886

RESUMEN

The transcription factor Growth Factor Independence 1B (GFI1B) recruits Lysine Specific Demethylase 1 A (LSD1/KDM1A) to stimulate gene programs relevant for megakaryocyte and platelet biology. Inherited pathogenic GFI1B variants result in thrombocytopenia and bleeding propensities with varying intensity. Whether these affect similar gene programs is unknow. Here we studied transcriptomic effects of four patient-derived GFI1B variants (GFI1BT174N,H181Y,R184P,Q287*) in MEG01 megakaryoblasts. Compared to normal GFI1B, each variant affected different gene programs with GFI1BQ287* uniquely failing to repress myeloid traits. In line with this, single cell RNA-sequencing of induced pluripotent stem cell (iPSC)-derived megakaryocytes revealed a 4.5-fold decrease in the megakaryocyte/myeloid cell ratio in GFI1BQ287* versus normal conditions. Inhibiting the GFI1B-LSD1 interaction with small molecule GSK-LSD1 resulted in activation of myeloid genes in normal iPSC-derived megakaryocytes similar to what was observed for GFI1BQ287* iPSC-derived megakaryocytes. Thus, GFI1B and LSD1 facilitate gene programs relevant for megakaryopoiesis while simultaneously repressing programs that induce myeloid differentiation.


Asunto(s)
Hematopoyesis , Megacariocitos , Humanos , Megacariocitos/metabolismo , Diferenciación Celular/genética , Hematopoyesis/genética , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Regulación de la Expresión Génica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo
15.
ACS Chem Neurosci ; 15(7): 1570-1580, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38501572

RESUMEN

Lysine-specific histone demethylase 5A (KDM5A) is known to facilitate proliferation in cancer cells and maintain stemness to repress the astrocytic differentiation of neural stem cells (NSCs). In the study presented here, we investigated the effect of a KDM5 inhibitor, CPI-455, on NSC fate control. CPI-455 induced astrocytogenesis in NSCs during differentiation. Kdm5a, but not Kdm5c, knockdown induced glial fibrillary acidic protein (Gfap) transcription. CPI-455 induced signal transducer and activator of transcription 3, increased bone morphogenetic protein 2 expression, and enhanced mothers against decapentaplegic homolog 1/5/9 phosphorylation. The treatment of CPI-455 enhanced the methylation of histone H3 lysine 4 in the Gfap promoter when compared to that of the dimethyl sulfoxide control. In addition, CPI-455 treatment significantly reduced the recruitment of KDM5A to the Gfap promoter. Our data suggest that the KDM5 inhibitor CPI-455 effectively controls NSC cell fate via KDM5A inhibition and induces astrocytogenesis.


Asunto(s)
Lisina , Células-Madre Neurales , Lisina/metabolismo , Histonas/metabolismo , Diferenciación Celular , Histona Demetilasas/metabolismo
16.
Biomed Pharmacother ; 174: 116488, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520871

RESUMEN

Gastrointestinal (GI) cancers have been considered primarily genetic malignancies, caused by a series of progressive genetic alterations. Accumulating evidence shows that histone methylation, an epigenetic modification program, plays an essential role in the different pathological stages of GI cancer progression, such as precancerous lesions, tumorigenesis, and tumor metastasis. Histone methylation-modifying enzymes, including histone methyltransferases (HMTs) and demethylases (HDMs), are the main executor of post-transcriptional modification. The abnormal expression of histone methylation-modifying enzymes characterizes GI cancers with complex pathogenesis and progression. Interactions between upstream controllers and histone methylation-modifying enzymes have recently been revealed, and have provided numerous opportunities to elucidate the pathogenesis of GI cancers in depth and clearly. Here we focus on the association between histone methylation-modifying enzymes and their controllers, aiming to provide a new perspective on the molecular research and clinical management of GI cancers.


Asunto(s)
Epigénesis Genética , Neoplasias Gastrointestinales , Histona Demetilasas , Histonas , Neoplasias Gastrointestinales/patología , Neoplasias Gastrointestinales/enzimología , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/metabolismo , Humanos , Histonas/metabolismo , Animales , Histona Demetilasas/metabolismo , Histona Metiltransferasas/metabolismo , Metilación , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Regulación Neoplásica de la Expresión Génica
17.
Blood ; 143(22): 2284-2299, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38457355

RESUMEN

ABSTRACT: Epigenetic modulation of the cell-intrinsic immune response holds promise as a therapeutic approach for leukemia. However, current strategies designed for transcriptional activation of endogenous transposons and subsequent interferon type-I (IFN-I) response, show limited clinical efficacy. Histone lysine methylation is an epigenetic signature in IFN-I response associated with suppression of IFN-I and IFN-stimulated genes, suggesting histone demethylation as key mechanism of reactivation. In this study, we unveil the histone demethylase PHF8 as a direct initiator and regulator of cell-intrinsic immune response in acute myeloid leukemia (AML). Site-specific phosphorylation of PHF8 orchestrates epigenetic changes that upregulate cytosolic RNA sensors, particularly the TRIM25-RIG-I-IFIT5 axis, thereby triggering the cellular IFN-I response-differentiation-apoptosis network. This signaling cascade largely counteracts differentiation block and growth of human AML cells across various disease subtypes in vitro and in vivo. Through proteome analysis of over 200 primary AML bone marrow samples, we identify a distinct PHF8/IFN-I signature in half of the patient population, without significant associations with known clinically or genetically defined AML subgroups. This profile was absent in healthy CD34+ hematopoietic progenitor cells, suggesting therapeutic applicability in a large fraction of patients with AML. Pharmacological support of PHF8 phosphorylation significantly impairs the growth in samples from patients with primary AML. These findings provide novel opportunities for harnessing the cell-intrinsic immune response in the development of immunotherapeutic strategies against AML.


Asunto(s)
Epigénesis Genética , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Animales , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Ratones , Interferón Tipo I/metabolismo , Autorrenovación de las Células , Regulación Leucémica de la Expresión Génica
18.
Sci Rep ; 14(1): 6764, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514636

RESUMEN

EBV-infected lymphoma has a poor prognosis and various treatment strategies are being explored. Reports suggesting that B cell lymphoma can be induced by epigenetic regulation have piqued interest in studying mechanisms targeting epigenetic regulation. Here, we set out to identify an epigenetic regulator drug that acts synergistically with doxorubicin in EBV-positive lymphoma. We expressed the major EBV protein, LMP1, in B-cell lymphoma cell lines and used them to screen 100 epigenetic modifiers in combination with doxorubicin. The screening results identified TCP, which is an inhibitor of LSD1. Further analyses revealed that LMP1 increased the activity of LSD1 to enhance stemness ability under doxorubicin treatment, as evidenced by colony-forming and ALDEFLUOR activity assays. Quantseq 3' mRNA sequencing analysis of potential targets regulated by LSD1 in modulating stemness revealed that the LMP1-induced upregulation of CHAC2 was decreased when LSD1 was inhibited by TCP or downregulated by siRNA. We further observed that SOX2 expression was altered in response to CHAC2 expression, suggesting that stemness is regulated. Collectively, these findings suggest that LSD1 inhibitors could serve as promising therapeutic candidates for EBV-positive lymphoma, potentially reducing stemness activity when combined with conventional drugs to offer an effective treatment approach.


Asunto(s)
Linfoma de Células B , Linfoma , Humanos , Herpesvirus Humano 4/genética , Lisina/metabolismo , Epigénesis Genética , Linfoma/genética , Linfoma de Células B/genética , Histona Demetilasas/metabolismo , Doxorrubicina/farmacología , Línea Celular Tumoral
19.
Proc Natl Acad Sci U S A ; 121(7): e2307150121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315842

RESUMEN

Cyclin-dependent kinase 9 (CDK9) plays a critical role in transcription initiation and is essential for maintaining gene silencing at heterochromatic loci. Inhibition of CDK9 increases sensitivity to immunotherapy, but the underlying mechanism remains unclear. We now report that RNF20 stabilizes LSD1 via K29-mediated ubiquitination, which is dependent on CDK9-mediated phosphorylation. This CDK9- and RNF20-dependent LSD1 stabilization is necessary for the demethylation of histone H3K4, then subsequent repression of endogenous retrovirus, and an interferon response, leading to epigenetic immunosuppression. Moreover, we found that loss of RNF20 sensitizes cancer cells to the immune checkpoint inhibitor anti-PD-1 in vivo and that this effect can be rescued by the expression of ectopic LSD1. Our findings are supported by the observation that RNF20 levels correlate with LSD1 levels in human breast cancer specimens. This study sheds light on the role of RNF20 in CDK9-dependent LSD1 stabilization, which is crucial for epigenetic silencing and immunosuppression. Our findings explore the potential importance of targeting the CDK9-RNF20-LSD1 axis in the development of new cancer therapies.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina , Histona Demetilasas , Tolerancia Inmunológica , Ubiquitina-Proteína Ligasas , Humanos , Quinasa 9 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/metabolismo , Epigénesis Genética , Histona Demetilasas/metabolismo , Histonas/metabolismo , Ubiquitina-Proteína Ligasas/genética
20.
Eur J Endocrinol ; 190(2): 173-181, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38330165

RESUMEN

IMPORTANCE: A paradoxical increase of growth hormone (GH) following oral glucose load has been described in ∼30% of patients with acromegaly and has been related to the ectopic expression of the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) in somatotropinomas. Recently, we identified germline pathogenic variants and somatic loss of heterozygosity of lysine demethylase 1A (KDM1A) in patients with GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing's syndrome. The ectopic expression of GIPR in both adrenal and pituitary lesions suggests a common molecular mechanism. OBJECTIVE: We aimed to analyze KDM1A gene sequence and KDM1A and GIPR expressions in somatotroph pituitary adenomas. SETTINGS: We conducted a cohort study at university hospitals in France and in Italy. We collected pituitary adenoma specimens from acromegalic patients who had undergone pituitary surgery. We performed targeted exome sequencing (gene panel analysis) and array-comparative genomic hybridization on somatic DNA derived from adenomas and performed droplet digital PCR on adenoma samples to quantify KDM1A and GIPR expressions. RESULTS: One hundred and forty-six patients with sporadic acromegaly were studied; 72.6% presented unsuppressed classical GH response, whereas 27.4% displayed a paradoxical rise in GH after oral glucose load. We did not identify any pathogenic variant in the KDM1A gene in the adenomas of these patients. However, we identified a recurrent 1p deletion encompassing the KDM1A locus in 29 adenomas and observed a higher prevalence of paradoxical GH rise (P = .0166), lower KDM1A expression (4.47 ± 2.49 vs 8.56 ± 5.62, P < .0001), and higher GIPR expression (1.09 ± 0.92 vs 0.43 ± 0.51, P = .0012) in adenomas from patients with KDM1A haploinsufficiency compared with those with 2 KDM1A copies. CONCLUSIONS AND RELEVANCE: Unlike in GIP-dependent primary bilateral macronodular adrenal hyperplasia, KDM1A genetic variations are not the cause of GIPR expression in somatotroph pituitary adenomas. Recurrent KDM1A haploinsufficiency, more frequently observed in GIPR-expressing adenomas, could be responsible for decreased KDM1A function resulting in transcriptional derepression on the GIPR locus.


Asunto(s)
Acromegalia , Adenoma , Adenoma Hipofisario Secretor de Hormona del Crecimiento , Hormona de Crecimiento Humana , Neoplasias Hipofisarias , Somatotrofos , Humanos , Neoplasias Hipofisarias/patología , Acromegalia/metabolismo , Somatotrofos/metabolismo , Somatotrofos/patología , Hibridación Genómica Comparativa , Hiperplasia/patología , Estudios de Cohortes , Genotipo , Adenoma Hipofisario Secretor de Hormona del Crecimiento/metabolismo , Adenoma/patología , Hormona de Crecimiento Humana/metabolismo , Hormona del Crecimiento/metabolismo , Glucosa , Histona Demetilasas/genética , Histona Demetilasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA