Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cells ; 10(2)2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-33498747

RESUMEN

We have previously reported that histone deacetylase epigenetic regulator Hdac1 and Hdac2 deletion in intestinal epithelial cells (IEC) disrupts mucosal tissue architecture and barrier, causing chronic inflammation. In this study, proteome and transcriptome analysis revealed the importance of signaling pathways induced upon genetic IEC-Hdac1 and Hdac2 deletion. Indeed, Gene Ontology biological process analysis of enriched deficient IEC RNA and proteins identified common pathways, including lipid metabolic and oxidation-reduction process, cell adhesion, and antigen processing and presentation, related to immune responses, correlating with dysregulation of major histocompatibility complex (MHC) class II genes. Top upstream regulators included regulators associated with environmental sensing pathways to xenobiotics, microbial and diet-derived ligands, and endogenous metabolites. Proteome analysis revealed mTOR signaling IEC-specific defects. In addition to mTOR, the STAT and Notch pathways were dysregulated specifically in jejunal IEC. To determine the impact of pathway dysregulation on mutant jejunum alterations, we treated mutant mice with Tofacitinib, a JAK inhibitor. Treatment with the inhibitor partially corrected proliferation and tight junction defects, as well as niche stabilization by increasing Paneth cell numbers. Thus, IEC-specific histone deacetylases 1 (HDAC1) and 2 (HDAC2) support intestinal homeostasis by regulating survival and translation processes, as well as differentiation and metabolic pathways. HDAC1 and HDAC2 may play an important role in the regulation of IEC-specific inflammatory responses by controlling, directly or indirectly, the JAK/STAT pathway. IEC-specific JAK/STAT pathway deregulation may be, at least in part, responsible for intestinal homeostasis disruption in mutant mice.


Asunto(s)
Células Epiteliales/metabolismo , Histona Desacetilasa 1/deficiencia , Histona Desacetilasa 2/deficiencia , Homeostasis , Intestinos/citología , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Eliminación de Gen , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Homeostasis/efectos de los fármacos , Recuento de Linfocitos , Ratones Endogámicos C57BL , Ratones Transgénicos , Organoides/efectos de los fármacos , Organoides/crecimiento & desarrollo , Células de Paneth/efectos de los fármacos , Células de Paneth/metabolismo , Piperidinas/farmacología , Pirimidinas/farmacología , Linfocitos T/efectos de los fármacos
2.
J Pharmacol Exp Ther ; 370(3): 490-503, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31308194

RESUMEN

Valproic acid (VPA) has been shown to regulate the levels of brain-derived neurotrophic factor (BDNF), but it is not known whether this drug can affect the neuronal responses to BDNF. In the present study, we show that in retinoic acid-differentiated SH-SY5Y human neuroblastoma cells, prolonged exposure to VPA reduces the expression of the BDNF receptor TrkB at the protein and mRNA levels and inhibits the intracellular signaling, neurotrophic activity, and prosurvival function of BDNF. VPA downregulates TrkB and curtails BDNF-induced signaling also in differentiated Kelly and LAN-1 neuroblastoma cells and primary mouse cortical neurons. The VPA effect is mimicked by several histone deacetylase (HDAC) inhibitors, including the class I HDAC inhibitors entinostat and romidepsin. Conversely, the class II HDAC inhibitor MC1568, the HDAC6 inhibitor tubacin, the HDAC8 inhibitor PCI-34051, and the VPA derivative valpromide have no effect. In neuroblastoma cells and primary neurons both VPA and entinostat increase the cellular levels of the transcription factor RUNX3, which negatively regulates TrkB gene expression. Treatment with RUNX3 siRNA attenuates VPA-induced RUNX3 elevation and TrkB downregulation. VPA, entinostat, HDAC1 depletion by siRNA, and 3-deazaneplanocin A (DZNep), an inhibitor of the polycomb repressor complex 2 (PRC2), decrease the PRC2 core component EZH2, a RUNX3 suppressor. Like VPA, HDAC1 depletion and DZNep increase RUNX3 and decrease TrkB expression. These results indicate that VPA downregulates TrkB through epigenetic mechanisms involving the EZH2/RUNX3 axis and provide evidence that this effect implicates relevant consequences with regard to BDNF efficacy in stimulating intracellular signaling and functional responses. SIGNIFICANCE STATEMENT: The tropomyosin-related kinase receptor B (TrkB) mediates the stimulatory effects of brain-derived neurotrophic factor (BDNF) on neuronal growth, differentiation, and survival and is highly expressed in aggressive neuroblastoma and other tumors. Here we show that exposure to valproic acid (VPA) downregulates TrkB expression and functional activity in retinoic acid-differentiated human neuroblastoma cell lines and primary mouse cortical neurons. The effects of VPA are mimicked by other histone deacetylase (HDAC) inhibitors and HDAC1 knockdown and appear to be mediated by an epigenetic mechanism involving the upregulation of RUNX3, a suppressor of TrkB gene expression. TrkB downregulation may have relevance for the use of VPA as a potential therapeutic agent in neuroblastoma and other pathologies characterized by an excessive BDNF/TrkB signaling.


Asunto(s)
Regulación hacia Abajo/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Receptor trkB/genética , Receptor trkB/metabolismo , Transducción de Señal/efectos de los fármacos , Ácido Valproico/farmacología , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Activación Enzimática/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Histona Desacetilasa 1/deficiencia , Histona Desacetilasa 1/genética , Humanos , Ratones , Neuronas/efectos de los fármacos , Neuronas/patología
3.
Cell Commun Signal ; 17(1): 86, 2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358016

RESUMEN

OBJECTIVE: This study aimed to investigate the function and mechanism of neddylation of HDAC1 underlying drug resistance of AML cells. METHODS: Evaluation experiments of effects of HDAC1 on drug resistance of AML cells were performed with AML cell transfected with constructs overexpressing HDAC1 or multi-drug resistance AML cells transfected with siRNA for HDAC1 through observing cell viability, percentage of apoptotic cell, doxorubicin-releasing index and multidrug resistance associated protein 1 (MRP1) expression. Neddylation or ubiquitination of HDAC1 was determined by immunoprecipitation or Ni2+ pull down assay followed by western blot. The role of HDAC1 was in vivo confirmed by xenograft in mice. RESULTS: HDAC1 was significantly upregulated in refractory AML patients, and in drug-resistant AML cells (HL-60/ADM and K562/A02). Intracellular HDAC1 expression promoted doxorubicin resistance of HL-60, K562, and primary bone marrow cells (BMCs) of remission AML patients as shown by increasing cell viability and doxorubicin-releasing index, inhibiting cell apoptosis. Moreover, HDAC1 protein level in AML cells was regulated by the Nedd8-mediated neddylation and ubiquitination, which further promoted HDAC1 degradation. In vivo, HDAC1 overexpression significantly increased doxorubicin resistance; while HDACs inhibitor Panobinostat markedly improved the inhibitory effect of doxorubicin on tumor growth. Furthermore, HDAC1 silencing by Panobinostat and/or lentivirus mediated RNA interference against HDAC1 effectively reduced doxorubicin resistance, resulting in the inhibition of tumor growth in AML bearing mice. CONCLUSION: Our findings suggested that HDAC1 contributed to the multidrug resistance of AML and its function turnover was regulated, at least in part, by post-translational modifications, including neddylation and ubiquitination.


Asunto(s)
Resistencia a Antineoplásicos , Histona Desacetilasa 1/biosíntesis , Histona Desacetilasa 1/metabolismo , Leucemia Mieloide Aguda/patología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Adulto , Anciano , Animales , Línea Celular Tumoral , Doxorrubicina/farmacología , Inducción Enzimática/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Histona Desacetilasa 1/deficiencia , Histona Desacetilasa 1/genética , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Masculino , Ratones , Persona de Mediana Edad , Proteína NEDD8/metabolismo , Ubiquitinación/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
4.
Stem Cell Reports ; 10(4): 1369-1383, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29641990

RESUMEN

The first hematopoietic stem and progenitor cells are generated during development from hemogenic endothelium (HE) through trans-differentiation. The molecular mechanisms underlying this endothelial-to-hematopoietic transition (EHT) remain poorly understood. Here, we explored the role of the epigenetic regulators HDAC1 and HDAC2 in the emergence of these first blood cells in vitro and in vivo. Loss of either of these epigenetic silencers through conditional genetic deletion reduced hematopoietic transition from HE, while combined deletion was incompatible with blood generation. We investigated the molecular basis of HDAC1 and HDAC2 requirement and identified TGF-ß signaling as one of the pathways controlled by HDAC1 and HDAC2. Accordingly, we experimentally demonstrated that activation of this pathway in HE cells reinforces hematopoietic development. Altogether, our results establish that HDAC1 and HDAC2 modulate TGF-ß signaling and suggest that stimulation of this pathway in HE cells would be beneficial for production of hematopoietic cells for regenerative therapies.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/metabolismo , Hematopoyesis , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Animales , Benzamidas/farmacología , Diferenciación Celular/efectos de los fármacos , Dioxoles/farmacología , Células Endoteliales/efectos de los fármacos , Eliminación de Gen , Hemangioblastos/citología , Hematopoyesis/efectos de los fármacos , Histona Desacetilasa 1/deficiencia , Histona Desacetilasa 2/deficiencia , Inhibidores de Histona Desacetilasas/farmacología , Ratones , Transducción de Señal/efectos de los fármacos
5.
Biol Chem ; 399(6): 603-610, 2018 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-29537214

RESUMEN

Non-small cell lung cancer (NSCLC) is a common malignant tumor. Although the abnormal expression and potential clinical prognostic value of histone deacetylase 1 (HDAC1) were recently discovered in many kinds of cancer, the roles and molecular mechanisms of HDAC1 in NSCLC is still limited. The CCK-8 assay is used to evaluate the viability of NSCLC cells. Downregulation of HDAC1 by shRNA. The TUNEL assay was used to evaluate the role of HDAC1 in NSCLC apoptosis. To evaluate the role of HDAC1 in NSCLC cells migration, the Boyden chamber transwell assay and wound healing assay were used. To evaluate the cells invasion, the matrigel precoated Transwell assay was used. Enzyme-linked immunosorbent assays (ELISAs) were used to detect the level of vascular endothelial growth factor (VEGF) and IL-8 in NSCLC. To investigate the role of HDAC1 in angiogenesis, the tube formation assay was investigated. In this study, we showed that HDAC1 expression was elevated in NSCLC lines compared to that in normal liver cells LO2. Furthermore, downregulation of HDAC1 inhibited cell proliferation, prevented cell migration, decreased cell invasion, reduced tumor angiogenesis and induced cell apoptosis. In summary, HDAC1 may be regarded as a potential indicator for NSCLC patient treatment.


Asunto(s)
Apoptosis/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Histona Desacetilasa 1/deficiencia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Invasividad Neoplásica/genética , Supervivencia Celular , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Humanos , Células Tumorales Cultivadas , Cicatrización de Heridas
6.
Antioxid Redox Signal ; 28(13): 1224-1237, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29113455

RESUMEN

AIMS: Iron-overload disorders are common and could lead to significant morbidity and mortality worldwide. Due to limited treatment options, there is a great need to develop novel strategies to remove the excess body iron. To discover potential epigenetic modulator in hepcidin upregulation and subsequently decreasing iron burden, we performed an epigenetic screen. The in vivo effects of the identified compounds were further tested in iron-overload mouse models, including Hfe-/-, Hjv-/-, and hepatocyte-specific Smad4 knockout (Smad4fl/fl;Alb-Cre+) mice. RESULTS: Entinostat (MS-275), the clinical used histone deacetylase 1 (HDAC1) inhibitor, was identified the most potent hepcidin agonist. Consistently, Hdac1-deficient mice also presented higher hepcidin levels than wild-type controls. Notably, the long-term treatment with entinostat in Hfe-/- mice significantly alleviated iron overload through upregulating hepcidin transcription. In contrast, entinostat showed no effect on hepcidin expression and iron levels in Smad4fl/fl;Alb-Cre+ mice. Further mechanistic studies revealed that HDAC1 suppressed expression of hepcidin through interacting with SMAD4 rather than deacetylation of SMAD4 or histone-H3 on the hepcidin promoter. INNOVATION: The findings uncovered HDAC1 as a novel hepcidin suppressor through complexing with SMAD4 but not deacetylation of either histone 3 or SMAD4. In addition, our study suggested a novel implication of entinostat in treating iron-overload disorders. CONCLUSIONS: Based on our results, we conclude that entinostat strongly activated hepcidin in vivo and in vitro. HDAC1 could serve as a novel hepcidin suppressor by binding to SMAD4, effect of which is independent of BMP/SMAD1/5/8 signaling. Antioxid. Redox Signal. 28, 1224-1237.


Asunto(s)
Modelos Animales de Enfermedad , Histona Desacetilasa 1/metabolismo , Histonas/metabolismo , Homeostasis , Sobrecarga de Hierro/metabolismo , Hierro/metabolismo , Acetilación , Animales , Benzamidas/farmacología , Relación Dosis-Respuesta a Droga , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 1/deficiencia , Inhibidores de Histona Desacetilasas/farmacología , Homeostasis/efectos de los fármacos , Hierro/efectos adversos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Piridinas/farmacología , Relación Estructura-Actividad
7.
Biol Chem ; 398(12): 1347-1356, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-28779562

RESUMEN

Targeted inhibition of histone deacetylase (HDAC) is one of the potent anticancer therapy approaches. Our data showed that mRNA and protein levels of HDAC1 in breast cancer cells were greater than that in normal fibroblast 3T3 cells and normal epithelial breast MCF10A cells. The mRNA levels of HDAC1 in 75% of breast cancer tissues (18/24) were greater than that in their corresponding adjacent normal tissues. Knockdown of HDAC1 by specific siRNAs can suppress the proliferation and migration of breast cancer cells and inhibit the expression of interleukin-8 (IL-8), while not IL-6. While recombinant IL-8 (rIL-8) can attenuate the suppression effects of si-HDAC1 on the proliferation and migration of breast cancer cells. HDAC1 can positively regulate the transcription and promoter activities of IL-8. While NF-κB and MAPK, two important signals responsible for the transcription of IL-8, did not mediate HDAC1 regulated IL-8 expression. The expression and nuclear translocation of Snail were increased in HDAC1 over expressed breast cancer cells. Targeted inhibition of Snail can attenuate HDAC1 over expression induced cell proliferation and migration. Collectively, our data showed that HDAC1 can trigger the proliferation and migration of breast cancer cells via activation of Snail/IL-8 signals.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Movimiento Celular , Histona Desacetilasa 1/metabolismo , Interleucina-8/metabolismo , Regulación hacia Arriba , Células 3T3 , Animales , Línea Celular Tumoral , Proliferación Celular , Femenino , Histona Desacetilasa 1/deficiencia , Histona Desacetilasa 1/genética , Humanos , Ratones , ARN Interferente Pequeño/genética , Transducción de Señal/genética
8.
J Am Heart Assoc ; 6(7)2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28679560

RESUMEN

BACKGROUND: Cardiac mesenchymal cell (CMC) administration improves cardiac function in animal models of heart failure. Although the precise mechanisms remain unclear, transdifferentiation and paracrine signaling are suggested to underlie their cardiac reparative effects. We have shown that histone deacetylase 1 (HDAC1) inhibition enhances CMC cardiomyogenic lineage commitment. Here, we investigated the impact of HDAC1 on CMC cytokine secretion and associated paracrine-mediated activities on endothelial cell function. METHODS AND RESULTS: CMCs were transduced with shRNA constructs targeting HDAC1 (shHDAC1) or nontarget (shNT) control. Cytokine arrays were used to assess the expression of secreted proteins in conditioned medium (CM) from shHDAC1 or shNT-transduced CMCs. In vitro functional assays for cell proliferation, protection from oxidative stress, cell migration, and tube formation were performed on human endothelial cells incubated with CM from the various treatment conditions. CM from shHDAC1-transduced CMCs contained more cytokines involved in cell growth/differentiation and more efficiently promoted endothelial cell proliferation and tube formation compared with CM from shNT. After evaluating key cytokines previously implicated in cell-therapy-mediated cardiac repair, we found that basic fibroblast growth factor was significantly upregulated in shHDAC1-transduced CMCs. Furthermore, shRNA-mediated knockdown of basic fibroblast growth factor in HDAC1-depleted CMCs inhibited the effects of shHDAC1 CM in promoting endothelial proliferation and tube formation-indicating that HDAC1 depletion activates CMC proangiogenic paracrine signaling in a basic fibroblast growth factor-dependent manner. CONCLUSIONS: These results reveal a hitherto unknown role for HDAC1 in the modulation of CMC cytokine secretion and implicate the targeted inhibition of HDAC1 in CMCs as a means to enhance paracrine-mediated neovascularization in cardiac cell therapy applications.


Asunto(s)
Proteínas Angiogénicas/biosíntesis , Factor 2 de Crecimiento de Fibroblastos/biosíntesis , Corazón , Histona Desacetilasa 1/deficiencia , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Madre Mesenquimatosas/enzimología , Miocitos Cardíacos/enzimología , Neovascularización Fisiológica , Comunicación Paracrina , Proteínas Angiogénicas/metabolismo , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Medios de Cultivo Condicionados/metabolismo , Citocinas/metabolismo , Represión Enzimática , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Corazón/metabolismo , Histona Desacetilasa 1/genética , Humanos , Células Madre Mesenquimatosas/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Transducción de Señal , Factores de Tiempo , Transducción Genética , Transfección
9.
Blood ; 130(2): 146-155, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28550044

RESUMEN

Histone acetylation and the families of enzymes responsible for controlling these epigenetic marks have been implicated in regulating T-cell maturation and phenotype. Here, we demonstrate a previously undefined role of histone deacetylase 11 (HDAC11) in regulating T-cell effector functions. Using EGFP-HDAC11 transgenic reporter mice, we found that HDAC11 expression was lower in effector relative to naive and central memory T-cell populations, and activation of resting T cells resulted in its decreased expression. Experiments using HDAC11 knockout (KO) mice revealed that T cells from these mice displayed enhanced proliferation, proinflammatory cytokine production, and effector molecule expression. In addition, HDAC11KO T cells had increased expression of Eomesodermin (Eomes) and TBX21 (Tbet), transcription factors previously shown to regulate inflammatory cytokine and effector molecule production. Conversely, overexpression of HDAC11 resulted in decreased expression of these genes. Chromatin immunoprecipitation showed the presence of HDAC11 at the Eomes and Tbet gene promoters in resting T cells, where it rapidly disassociated following T-cell activation. In vivo, HDAC11KO T cells were refractory to tolerance induction. HDAC11KO T cells also mediated accelerated onset of acute graft-versus-host disease (GVHD) in a murine model, characterized by increased proliferation of T cells and expression of interferon-γ, tumor necrosis factor, and EOMES. In addition, adoptive transfer of HDAC11KO T cells resulted in significantly reduced tumor burden in a murine B-cell lymphoma model. Taken together, these data demonstrate a previously unknown role of HDAC11 as a negative epigenetic regulator of T-cell effector phenotype and function.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Enfermedad Injerto contra Huésped/inmunología , Histona Desacetilasa 1/genética , Linfoma de Células B/inmunología , Proteínas de Dominio T Box/genética , Linfocitos T/inmunología , Traslado Adoptivo , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Cromatina/química , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/patología , Histona Desacetilasa 1/deficiencia , Histona Desacetilasa 1/inmunología , Interferón gamma/genética , Interferón gamma/inmunología , Activación de Linfocitos , Linfoma de Células B/genética , Linfoma de Células B/patología , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas , Transducción de Señal , Proteínas de Dominio T Box/inmunología , Linfocitos T/patología , Linfocitos T/trasplante , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
10.
Methods Mol Biol ; 1510: 169-192, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27761821

RESUMEN

Histone deacetylases (HDACs) play crucial roles during mammalian development and for cellular homeostasis. In addition, these enzymes are promising targets for small molecule inhibitors in the treatment of cancer and neurological diseases. Conditional HDAC knock-out mice are excellent tools for defining the functions of individual HDACs in vivo and for identifying the molecular targets of HDAC inhibitors in disease. Here, we describe the generation of tissue-specific HDAC knock-out mice and delineate a strategy for the generation of conditional HDAC knock-in mice.


Asunto(s)
Blastocisto/enzimología , Cromatina/metabolismo , Epigénesis Genética , Vectores Genéticos/metabolismo , Histona Desacetilasa 1/genética , Células Madre Embrionarias de Ratones/enzimología , Animales , Blastocisto/citología , Southern Blotting , Sistemas CRISPR-Cas , Cromatina/química , Cromosomas Artificiales Bacterianos/química , Cromosomas Artificiales Bacterianos/metabolismo , Cruzamientos Genéticos , Femenino , Técnicas de Sustitución del Gen , Vectores Genéticos/química , Histona Desacetilasa 1/deficiencia , Recombinación Homóloga , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Embrionarias de Ratones/citología , Especificidad de Órganos , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
11.
Methods Mol Biol ; 1510: 193-209, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27761822

RESUMEN

The protein sequences of class I HDACs in mice and humans are 96-99 % identical. These highly conserved proteins have crucial roles in biological processes, such as proliferation and development, which is reflected in the lethality that occurs in conventional whole body knockout mice. Therefore, conditional knockouts are inevitable to investigate the functions of class I HDACs in mice. Here, we describe the generation of conditional class I Hdac knockout mice, using Hdac1 as an example. We explain a relatively quick procedure to generate the necessary target vectors by recombination-mediated genetic engineering and gateway techniques. Furthermore, we show how to culture, target, and screen for positively recombined ES cells. Additionally, we present a dual recombination system, which allows the deletion of class I Hdacs at any time by a tamoxifen inducible Cre.


Asunto(s)
Blastocisto/enzimología , Epigénesis Genética , Vectores Genéticos/metabolismo , Histona Desacetilasa 1/genética , Recombinación Homóloga , Células Madre Embrionarias de Ratones/enzimología , Animales , Blastocisto/citología , Southern Blotting , Cruzamientos Genéticos , Femenino , Vectores Genéticos/química , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Histona Desacetilasa 1/deficiencia , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Embrionarias de Ratones/citología , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tamoxifeno/farmacología
12.
Med Sci Monit ; 22: 1291-6, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27086779

RESUMEN

BACKGROUND HDAC1 has been shown to be closely associated with the occurrence of tumors. We aimed to investigate the effects of siRNA-mediated HDAC1 knockdown on the biological behavior of esophageal carcinoma cell lines. MATERIAL AND METHODS HDAC1 expression in esophageal cancer cell lines TE-1, Eca109, and EC9706 was compared by Western blot analysis. These cells were transfected with siRNA-HDAC1 and cell proliferation was evaluated by MTT assay to select the optimum cell line for subsequent experiments. The effects of siRNA-HDAC1 on the migration and invasion of the selected cell line were assessed by transwell assay. The expression of cell cycle-related proteins cyclinD1, p21 and p27, and epithelial-mesenchymal transition (EMT)-related protein zonula occludens-1 (ZO-1), E-cadherin and vimentin was determined by Western blot analysis. RESULTS HDAC1 expression in TE-1, Eca109 and EC9706 cells was significantly higher compared with normal esophageal cell line HEEC (P<0.01). MTT assay, Western blot and RT-PCR analyses demonstrated that the inhibitory effects of siRNA on HDAC1 expression and cell viability in TE-1 cells were the highest among all cell lines, which was therefore used in subsequent experiments. After TE-1 cells were transfected with siRNA-HDAC1, their migration and invasion were significantly lower compared with the controls (P<0.01). CyclinD1 and vimentin expression was significantly lower compared with the controls (P<0.01), whereas the expression of p21, p27, ZO-1 and E-cadherin was significantly higher (P<0.01). CONCLUSIONS The siRNA-mediated HDAC1 knockdown significantly inhibited the proliferation, migration and invasion of TE-1 cells probably by regulating the expression of cell cycle- and EMT-related proteins.


Asunto(s)
Carcinoma de Células Escamosas/enzimología , Neoplasias Esofágicas/enzimología , Neoplasias Esofágicas/patología , Histona Desacetilasa 1/deficiencia , Histona Desacetilasa 1/genética , Apoptosis/fisiología , Western Blotting , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Ciclo Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Regulación hacia Abajo , Neoplasias Esofágicas/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Histona Desacetilasa 1/metabolismo , Humanos , ARN Mensajero/metabolismo , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Transfección
13.
Exp Gerontol ; 86: 124-128, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-26927903

RESUMEN

The epigenetic regulation of DNA structure and function is essential for changes in gene expression involved in development, growth, and maintenance of cellular function. Epigenetic changes include histone modifications such as methylation, acetylation, ubiquitination, and phosphorylation. Histone deacetylase (HDAC) proteins have a major role in epigenetic regulation of chromatin structure. HDACs are enzymes that catalyze the removal of acetyl groups from lysine residues within histones, as well as a range of other proteins including transcriptional factors. HDACs are highly conserved proteins divided into two families and based on sequence similarity in four classes. Here we will discuss the roles of Rpd3 in physiology and longevity with emphasis on its role in flies. Rpd3, the Drosophila HDAC1 homolog, is a class I lysine deacetylase and a member of a large family of HDAC proteins. Rpd3 has multiple functions including control of proliferation, development, metabolism, and aging. Pharmacological and dietary HDAC inhibitors have been used as therapeutics in psychiatry, cancer, and neurology.


Asunto(s)
Proteínas de Drosophila/fisiología , Histona Desacetilasa 1/fisiología , Longevidad/fisiología , Envejecimiento/fisiología , Animales , Dieta , Drosophila/genética , Drosophila/metabolismo , Drosophila/fisiología , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Epigénesis Genética/fisiología , Histona Desacetilasa 1/deficiencia , Histona Desacetilasa 1/genética , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/fisiología , Sirtuinas/fisiología
14.
J Cell Physiol ; 231(2): 436-48, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26174178

RESUMEN

The intestinal epithelium responds to and transmits signals from the microbiota and the mucosal immune system to insure intestinal homeostasis. These interactions are in part conveyed by epigenetic modifications, which respond to environmental changes. Protein acetylation is an epigenetic signal regulated by histone deacetylases, including Hdac1 and Hdac2. We have previously shown that villin-Cre-inducible intestinal epithelial cell (IEC)-specific Hdac1 and Hdac2 deletions disturb intestinal homeostasis. To determine the role of Hdac1 and Hdac2 in the regulation of IEC function and the establishment of the dual knockout phenotype, we have generated villin-Cre murine models expressing one Hdac1 allele without Hdac2, or one Hdac2 allele without Hdac1. We have also investigated the effect of short-term deletion of both genes in naphtoflavone-inducible Ah-Cre and tamoxifen-inducible villin-Cre(ER) mice. Mice with one Hdac1 allele displayed normal tissue architecture, but increased sensitivity to DSS-induced colitis. In contrast, mice with one Hdac2 allele displayed intestinal architecture defects, increased proliferation, decreased goblet cell numbers as opposed to Paneth cells, increased immune cell infiltration associated with fibrosis, and increased sensitivity to DSS-induced colitis. In comparison to dual knockout mice, intermediary activation of Notch, mTOR, and Stat3 signaling pathways was observed. While villin-Cre(ER) Hdac1 and Hdac2 deletions led to an impaired epithelium and differentiation defects, Ah-Cre-mediated deletion resulted in blunted proliferation associated with the induction of a DNA damage response. Our results suggest that IEC determination and intestinal homeostasis are highly dependent on Hdac1 and Hdac2 activity levels, and that changes in the IEC acetylome may alter the mucosal environment.


Asunto(s)
Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Mucosa Intestinal/enzimología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Colitis/enzimología , Colitis/genética , Colitis/patología , Daño del ADN , Modelos Animales de Enfermedad , Células Epiteliales/enzimología , Células Caliciformes/citología , Células Caliciformes/enzimología , Histona Desacetilasa 1/deficiencia , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/deficiencia , Histona Desacetilasa 2/genética , Homeostasis , Inmunidad Mucosa , Mucosa Intestinal/anomalías , Mucosa Intestinal/citología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Notch/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
15.
FEBS Lett ; 589(19 Pt B): 2776-83, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26297832

RESUMEN

By using acetyl-CoA as a substrate, acetyltransferases and histone deacetylases regulate protein acetylation by adding or removing an acetyl group on lysines. Nuclear-located Hdac1 is a regulator of intestinal homeostasis. We have previously shown that Hdac1 define specific intestinal epithelial cell basal and inflammatory-dependent gene expression patterns and control cell proliferation. We show here that Hdac1 depletion in cellulo leads to increased histone acetylation after metabolic stresses, and to metabolic disturbances resulting in impaired responses to oxidative stresses, AMPK kinase activation and mitochondrial biogenesis. Thus, nuclear Hdac1 may control intestinal epithelial cell metabolism by regulating the supply of acetyl groups.


Asunto(s)
Células Epiteliales/metabolismo , Histona Desacetilasa 1/deficiencia , Intestinos/citología , Proteínas Quinasas Activadas por AMP/metabolismo , Acetilación , Animales , Línea Celular , Proliferación Celular , Activación Enzimática , Células Epiteliales/citología , Técnicas de Silenciamiento del Gen , Histona Desacetilasa 1/genética , Histonas/metabolismo , Biogénesis de Organelos , Estrés Oxidativo , ARN Interferente Pequeño/genética , Ratas , Transducción de Señal
16.
ASN Neuro ; 7(3)2015.
Artículo en Inglés | MEDLINE | ID: mdl-26129908

RESUMEN

Histones deacetylases (HDACs), besides their function as epigenetic regulators, deacetylate and critically regulate the activity of nonhistone targets. In particular, HDACs control partially the proapoptotic activity of p53 by balancing its acetylation state. HDAC inhibitors have revealed neuroprotective properties in different models, but the exact mechanisms of action remain poorly understood. We have generated a conditional knockout mouse model targeting retinal ganglion cells (RGCs) to investigate specifically the functional role of HDAC1 and HDAC2 in an acute model of optic nerve injury. Our results demonstrate that combined HDAC1 and HDAC2 ablation promotes survival of axotomized RGCs. Based on global gene expression analyses, we identified the p53-PUMA apoptosis-inducing axis to be strongly activated in axotomized mouse RGCs. Specific HDAC1/2 ablation inhibited this apoptotic pathway by impairing the crucial acetylation status of p53 and reducing PUMA expression, thereby contributing to the ensuing enhanced neuroprotection due to HDAC1/2 depletion. HDAC1/2 inhibition and the affected downstream signaling components emerge as specific targets for developing therapeutic strategies in neuroprotection.


Asunto(s)
Supervivencia Celular/fisiología , Genes p53 , Histona Desacetilasa 1/deficiencia , Histona Desacetilasa 2/deficiencia , Neuroprotección , Traumatismos del Nervio Óptico/enzimología , Células Ganglionares de la Retina/enzimología , Células Ganglionares de la Retina/fisiología , Acetilación , Enfermedad Aguda , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Axotomía , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/genética , Sistema de Señalización de MAP Quinasas , Ratones Noqueados , Traumatismos del Nervio Óptico/patología , Células Ganglionares de la Retina/patología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
17.
Oncol Rep ; 34(2): 663-72, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26035691

RESUMEN

Overexpression of histone deacetylases (HDACs) is associated with higher metastatic rates and a poor prognosis in gastric cancer. However, the underlying mechanisms involved remain unclear. The present study aimed to investigate the molecular pathways that are involved in HDAC1-mediated metastatic activities in gastric cancer cells. First we used a microRNA (miRNA or miR) microarray to screen potential miRNAs whose expression can be altered by HDAC1 depletion. Of these miRNAs, miR-34a is important as it is often inactivated in cancer cells and acts as a tumor suppressor for various types of cancer. The reverse transcription-quantitative polymerase chain reaction (RT­qPCR) results confirmed that miR-34a was upregulated by HDAC1 knockdown. Cells depleted of HDAC1 had lower abilities to migrate, invade and adhere, which were restored by a miR-34a antagomiR. Depletion of HDAC1 also resulted in impaired microfilaments and microtubules, while co-transfection of the miR-34a antagomiR attenuated these changes in the cellular cytoskeleton. The HDAC1/miR-34a axis regulated the expression and activation of CD44 and its downstream factors including Bcl-2, Ras homolog family member A (RhoA), LIM domain kinase 1 (LIMK-1) and matrix metalloproteinase (MMP)-2. The latter three proteins were responsible for the organization of tubulin and actin cytoskeleton and the formation of cellular pseudopodia. In conclusion, results of the present study indicated that HDAC1 depletion inhibits the metastatic abilities of gastric cancer cells by regulating the miRNA-34a/CD44 pathway, which may be a potential target for the treatment of gastric cancer.


Asunto(s)
Histona Desacetilasa 1/deficiencia , Receptores de Hialuranos/genética , MicroARNs/genética , Neoplasias Gástricas/patología , Línea Celular Tumoral , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasa 1/metabolismo , Humanos , Receptores de Hialuranos/metabolismo , MicroARNs/metabolismo , Metástasis de la Neoplasia , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
18.
Haematologica ; 99(8): 1292-303, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24763403

RESUMEN

Class I histone deacetylases are critical regulators of gene transcription by erasing lysine acetylation. Targeting histone deacetylases using relative non-specific small molecule inhibitors is of major interest in the treatment of cancer, neurological disorders and acquired immune deficiency syndrome. Harnessing the therapeutic potential of histone deacetylase inhibitors requires full knowledge of individual histone deacetylases in vivo. As hematologic malignancies show increased sensitivity towards histone deacetylase inhibitors we targeted deletion of class I Hdac1 and Hdac2 to hematopoietic cell lineages. Here, we show that Hdac1 and Hdac2 together control hematopoietic stem cell homeostasis, in a cell-autonomous fashion. Simultaneous loss of Hdac1 and Hdac2 resulted in loss of hematopoietic stem cells and consequently bone marrow failure. Bone-marrow-specific deletion of Sin3a, a major Hdac1/2 co-repressor, phenocopied loss of Hdac1 and Hdac2 indicating that Sin3a-associated HDAC1/2-activity is essential for hematopoietic stem cell homeostasis. Although Hdac1 and Hdac2 show compensatory and overlapping functions in hematopoiesis, mice expressing mono-allelic Hdac1 or Hdac2 revealed that Hdac1 and Hdac2 contribute differently to the development of specific hematopoietic lineages.


Asunto(s)
Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Histona Desacetilasa 1/deficiencia , Histona Desacetilasa 2/deficiencia , Homeostasis/fisiología , Proteínas Represoras/deficiencia , Animales , Células de la Médula Ósea/fisiología , Linaje de la Célula/fisiología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Complejo Correpresor Histona Desacetilasa y Sin3
19.
Am J Physiol Gastrointest Liver Physiol ; 306(7): G594-605, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24525021

RESUMEN

Histone deacetylases (Hdac) remove acetyl groups from proteins, influencing global and specific gene expression. Hdacs control inflammation, as shown by Hdac inhibitor-dependent protection from dextran sulfate sodium (DSS)-induced murine colitis. Although tissue-specific Hdac knockouts show redundant and specific functions, little is known of their intestinal epithelial cell (IEC) role. We have shown previously that dual Hdac1/Hdac2 IEC-specific loss disrupts cell proliferation and determination, with decreased secretory cell numbers and altered barrier function. We thus investigated how compound Hdac1/Hdac2 or Hdac2 IEC-specific deficiency alters the inflammatory response. Floxed Hdac1 and Hdac2 and villin-Cre mice were interbred. Compound Hdac1/Hdac2 IEC-deficient mice showed chronic basal inflammation, with increased basal disease activity index (DAI) and deregulated Reg gene colonic expression. DSS-treated dual Hdac1/Hdac2 IEC-deficient mice displayed increased DAI, histological score, intestinal permeability, and inflammatory gene expression. In contrast to double knockouts, Hdac2 IEC-specific loss did not affect IEC determination and growth, nor result in chronic inflammation. However, Hdac2 disruption protected against DSS colitis, as shown by decreased DAI, intestinal permeability and caspase-3 cleavage. Hdac2 IEC-specific deficient mice displayed increased expression of IEC gene subsets, such as colonic antimicrobial Reg3b and Reg3g mRNAs, and decreased expression of immune cell function-related genes. Our data show that Hdac1 and Hdac2 are essential IEC homeostasis regulators. IEC-specific Hdac1 and Hdac2 may act as epigenetic sensors and transmitters of environmental cues and regulate IEC-mediated mucosal homeostatic and inflammatory responses. Different levels of IEC Hdac activity may lead to positive or negative outcomes on intestinal homeostasis during inflammation.


Asunto(s)
Colitis/enzimología , Colon/enzimología , Células Epiteliales/enzimología , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Mucosa Intestinal/enzimología , Animales , Colitis/genética , Colitis/inmunología , Colitis/patología , Colon/inmunología , Colon/patología , Sulfato de Dextran , Modelos Animales de Enfermedad , Epigénesis Genética , Células Epiteliales/inmunología , Células Epiteliales/patología , Regulación de la Expresión Génica , Genotipo , Histona Desacetilasa 1/deficiencia , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/deficiencia , Histona Desacetilasa 2/genética , Homeostasis , Inmunidad Mucosa , Mediadores de Inflamación/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Ratones , Ratones Noqueados , Permeabilidad , Fenotipo , Factores de Tiempo
20.
Hepatology ; 58(6): 2089-98, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23744762

RESUMEN

UNLABELLED: Histone deacetylases 1 and 2 (HDAC1 and HDAC2) are ubiquitously expressed in tissues, including the liver, and play critical roles in numerous physiopathological processes. Little is known regarding the role of HDAC1 and HDAC2 in liver regeneration. In this study we generated mice in which Hdac1, Hdac2 or both genes were selectively knocked out in hepatocytes to investigate the role of these genes in liver regeneration following hepatic injury induced by partial hepatectomy or carbon tetrachloride administration. The loss of HDAC1 and/or HDAC2 (HDAC1/2) protein resulted in impaired liver regeneration. HDAC1/2 inactivation did not decrease hepatocytic 5-bromo-2-deoxyuridine uptake or the expression of proliferating cell nuclear antigen, cyclins, or cyclin-dependent kinases. However, the levels of Ki67, a mitotic marker that is expressed from the mid-G1 phase to the end of mitosis and is closely involved in the regulation of mitotic progression, were greatly decreased, and abnormal mitosis lacking Ki67 expression was frequently observed in HDAC1/2-deficient livers. The down-regulation of either HDAC1/2 or Ki67 in the mouse liver cancer cell line Hepa1-6 resulted in similar mitotic defects. Finally, both HDAC1 and HDAC2 proteins were associated with the Ki67 gene mediated by CCAAT/enhancer-binding protein ß. CONCLUSION: Both HDAC1 and HDAC2 play crucial roles in the regulation of liver regeneration. The loss of HDAC1/2 inhibits Ki67 expression and results in defective hepatocyte mitosis and impaired liver regeneration.


Asunto(s)
Histona Desacetilasa 1/deficiencia , Histona Desacetilasa 2/deficiencia , Antígeno Ki-67/biosíntesis , Regeneración Hepática/fisiología , Animales , Apoptosis , Intoxicación por Tetracloruro de Carbono , Línea Celular Tumoral , Regulación hacia Abajo , Hepatectomía , Masculino , Ratones , Ratones Noqueados , Mitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA