Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34445342

RESUMEN

Epigenetic regulation by histone deacetylase (HDAC) is associated with synaptic plasticity and memory formation, and its aberrant expression has been linked to cognitive disorders, including Alzheimer's disease (AD). This study aimed to investigate the role of class IIa HDAC expression in AD and monitor it in vivo using a novel radiotracer, 6-(tri-fluoroacetamido)-1-hexanoicanilide ([18F]TFAHA). A human neural cell culture model with familial AD (FAD) mutations was established and used for in vitro assays. Positron emission tomography (PET) imaging with [18F]TFAHA was performed in a 3xTg AD mouse model for in vivo evaluation. The results showed a significant increase in HDAC4 expression in response to amyloid-ß (Aß) deposition in the cell model. Moreover, treatment with an HDAC4 selective inhibitor significantly upregulated the expression of neuronal memory-/synaptic plasticity-related genes. In [18F]TFAHA-PET imaging, whole brain or regional uptake was significantly higher in 3xTg AD mice compared with WT mice at 8 and 11 months of age. Our study demonstrated a correlation between class IIa HDACs and Aßs, the therapeutic benefit of a selective inhibitor, and the potential of using [18F]TFAHA as an epigenetic radiotracer for AD, which might facilitate the development of AD-related neuroimaging approaches and therapies.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Inhibidores de Histona Desacetilasas/farmacocinética , Histona Desacetilasas/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Anilidas/química , Anilidas/farmacocinética , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/fisiología , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacocinética , Fluoroacetatos/química , Fluoroacetatos/farmacocinética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/clasificación , Histona Desacetilasas/genética , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroimagen/métodos , Tomografía de Emisión de Positrones/métodos , Células Tumorales Cultivadas
2.
Biomolecules ; 10(10)2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096729

RESUMEN

Nuclear factor erythroid-2-related factor 2 (Nrf2) is a protein of the leucine zipper family, which mitigates inflammation and employs cytoprotective effects. Attempting to unravel the epigenetic regulation of type 2 diabetes mellitus (T2DM) and diabetic foot ulcer (DFU), we profiled the expression of eleven isoform-specific histone deacetylases (HDACs) and correlated them with NRF2 and cytokines. This study recruited a total of 60 subjects and categorized into DFU patients (n = 20), T2DM patients (n = 20), and healthy controls (n = 20). The DFU patients were subcategorized into uninfected and infected DFU (n = 10 each). We observed a progressive decline in the expression of NRF2 and its downstream targets among T2DM and DFU subjects. The inflammatory markers IL-6 and TNF-α were significantly upregulated, whereas anti-inflammatory marker IL-10 was significantly downregulated in DFU. Of note, a significant upregulation of HDAC1, 3, 4, 11, SIRT3 and downregulation of HDAC2,8, SIRT1, SIRT2, SIRT3, SIRT7 among DFU patients were observed. The significant positive correlation between NRF2 and SIRT1 in DFU patients suggested the vital role of NRF2/SIRT1 in redox homeostasis and angiogenesis. In contrast, the significant negative correlation between NRF2 and HDAC1, 3 and 4, implied an imbalance in NRF2-HDAC1, 3, 4 circuit. Furthermore, a significant positive correlation was observed between HDAC4 and IL-6, and the negative correlation between SIRT1 and IL-6 suggested the pro-inflammatory role of HDAC4 and the anti-inflammatory role of SIRT1 in NRF2 signaling. In conclusion, the epigenetic changes such as upregulation of HDAC1, 3, 4, 11, SIRT3 and downregulation of HDAC2, 8, SIRT1, SIRT2, SIRT6, SIRT7 and their association with NRF2 as well as inflammatory markers are suggestive of their roles in pathophysiology of T2DM and DFU.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Pie Diabético/genética , Histona Desacetilasas/genética , Factor 2 Relacionado con NF-E2/genética , Diabetes Mellitus Tipo 2/patología , Pie Diabético/patología , Epigénesis Genética/genética , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Regulación Enzimológica de la Expresión Génica/genética , Histona Desacetilasas/clasificación , Humanos , Inflamación/genética , Inflamación/patología , Masculino , Persona de Mediana Edad , Oxidación-Reducción , Sirtuinas/genética
3.
Nutrients ; 10(6)2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29882797

RESUMEN

Cancer initiation and progression are the result of genetic and/or epigenetic alterations. Acetylation-mediated histone/non-histone protein modification plays an important role in the epigenetic regulation of gene expression. Histone modification is controlled by the balance between histone acetyltransferase and (HAT) and histone deacetylase (HDAC) enzymes. Imbalance between the activities of these two enzymes is associated with various forms of cancer. Histone deacetylase inhibitors (HDACi) regulate the activity of HDACs and are being used in cancer treatment either alone or in combination with other chemotherapeutic drugs/radiotherapy. The Food and Drug Administration (FDA) has already approved four compounds, namely vorinostat, romidepsin, belinostat, and panobinostat, as HDACi for the treatment of cancer. Several other HDACi of natural and synthetic origin are under clinical trial for the evaluation of efficiency and side-effects. Natural compounds of plant, fungus, and actinomycetes origin, such as phenolics, polyketides, tetrapeptide, terpenoids, alkaloids, and hydoxamic acid, have been reported to show potential HDAC-inhibitory activity. Several HDACi of natural and dietary origin are butein, protocatechuic aldehyde, kaempferol (grapes, green tea, tomatoes, potatoes, and onions), resveratrol (grapes, red wine, blueberries and peanuts), sinapinic acid (wine and vinegar), diallyl disulfide (garlic), and zerumbone (ginger). HDACi exhibit their antitumor effect by the activation of cell cycle arrest, induction of apoptosis and autophagy, angiogenesis inhibition, increased reactive oxygen species generation causing oxidative stress, and mitotic cell death in cancer cells. This review summarizes the HDACs classification, their aberrant expression in cancerous tissue, structures, sources, and the anticancer mechanisms of HDACi, as well as HDACi that are either FDA-approved or under clinical trials.


Asunto(s)
Antineoplásicos/uso terapéutico , Descubrimiento de Drogas/métodos , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Neoplasias/tratamiento farmacológico , Acetilación , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/síntesis química , Inhibidores de Histona Desacetilasas/efectos adversos , Inhibidores de Histona Desacetilasas/síntesis química , Histona Desacetilasas/clasificación , Histona Desacetilasas/genética , Humanos , Terapia Molecular Dirigida , Mutación , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Especificidad por Sustrato
4.
Sci Rep ; 8(1): 5209, 2018 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-29581526

RESUMEN

The human fungal pathogen Cryptococcus neoformans undergoes many phenotypic changes to promote its survival in specific ecological niches and inside the host. To explore the role of chromatin remodeling on the expression of virulence-related traits, we identified and deleted seven genes encoding predicted class I/II histone deacetylases (HDACs) in the C. neoformans genome. These studies demonstrated that individual HDACs control non-identical but overlapping cellular processes associated with virulence, including thermotolerance, capsule formation, melanin synthesis, protease activity and cell wall integrity. We also determined the HDAC genes necessary for C. neoformans survival during in vitro macrophage infection and in animal models of cryptococcosis. Our results identified the HDA1 HDAC gene as a central mediator controlling several cellular processes, including mating and virulence. Finally, a global gene expression profile comparing the hda1Δ mutant versus wild-type revealed altered transcription of specific genes associated with the most prominent virulence attributes in this fungal pathogen. This study directly correlates the effects of Class I/II HDAC-mediated chromatin remodeling on the marked phenotypic plasticity and virulence potential of this microorganism. Furthermore, our results provide insights into regulatory mechanisms involved in virulence gene expression that are likely shared with other microbial pathogens.


Asunto(s)
Criptococosis/genética , Cryptococcus neoformans/enzimología , Histona Desacetilasas/genética , Virulencia/genética , Animales , Pared Celular , Criptococosis/enzimología , Criptococosis/microbiología , Cryptococcus neoformans/patogenicidad , Modelos Animales de Enfermedad , Regulación Enzimológica de la Expresión Génica/genética , Genoma Fúngico/genética , Histona Desacetilasas/clasificación , Humanos , Macrófagos/microbiología , Macrófagos/patología
5.
Curr Cancer Drug Targets ; 18(8): 720-736, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28669336

RESUMEN

Histone deacetylase inhibitors (HDACi) have been demonstrated as an emerging class of anticancer drugs involved in regulation of gene expression and chromatin remodeling thus indicating valid targets for different types of cancer therapeutics. The pan-deacetylase inhibitor panobinostat (Farydac®, LBH589) is developed by Novartis Pharmaceuticals and a newly US FDA approved drug for the multiple myeloma. It is under clinical investigation for a range of hematological and solid tumors worldwide in both oral and intravenous formulations. Panobinostat inhibits tumor cell growth by interacting with acetylation of histones and nonhistone proteins as well as various apoptotic, autophagy-mediated targets and various tumorigenesis pathways involved in the development of cancer. The current article summarizes the status of panobinostat in gastrointestinal cancers. Preclinical and clinical data suggest that panobinostat has potential inhibitory activity in hepatocellular, pancreatic, colorectal, gastric and gastrointestinal stromal tumors. Clinical evaluations of panobinostat are currently underway. Herein, we have also reviewed the rationale behind the combination therapy under the trials and possible future prospective for the treatment of GI tumors.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias del Sistema Digestivo/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/uso terapéutico , Panobinostat/uso terapéutico , Inhibidores de Proteasoma/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Acetilación , Animales , Antineoplásicos/efectos adversos , Combinación de Medicamentos , Quimioterapia Combinada , Inhibidores de Histona Desacetilasas/efectos adversos , Histona Desacetilasas/clasificación , Histona Desacetilasas/fisiología , Histonas/metabolismo , Humanos , Ratones , Panobinostat/efectos adversos , Resultado del Tratamiento
6.
J Med Chem ; 60(12): 4780-4804, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28241112

RESUMEN

Current therapies for human parasite infections rely on a few drugs, most of which have severe side effects, and their helpfulness is being seriously compromised by the drug resistance problem. Globally, this is pushing discovery research of antiparasitic drugs toward new agents endowed with new mechanisms of action. By using a "drug repurposing" strategy, histone deacetylase inhibitors (HDACi), which are presently clinically approved for cancer use, are now under investigation for various parasite infections. Because parasitic Zn2+- and NAD+-dependent HDACs play crucial roles in the modulation of parasite gene expression and many of them are pro-survival for several parasites under various conditions, they are now emerging as novel potential antiparasitic targets. This Perspective summarizes the state of knowledge of HDACi (both class I/II HDACi and sirtuin inhibitors) targeted to the main human parasitic diseases (schistosomiasis, malaria, trypanosomiasis, leishmaniasis, and toxoplasmosis) and provides visions into the main issues that challenge their development as antiparasitic agents.


Asunto(s)
Antiparasitarios/farmacología , Proteínas del Helminto/metabolismo , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Proteínas Protozoarias/metabolismo , Animales , Reposicionamiento de Medicamentos , Histona Desacetilasas/clasificación , Histona Desacetilasas/metabolismo , Humanos , Leishmania/enzimología , Leishmania/patogenicidad , Plasmodium/enzimología , Plasmodium/patogenicidad , Schistosoma/enzimología , Schistosoma/patogenicidad , Toxoplasma/enzimología , Toxoplasma/patogenicidad , Trypanosoma/enzimología , Trypanosoma/parasitología
7.
Exp Dermatol ; 25(11): 831-838, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27792246

RESUMEN

Histone deacetylases (HDACs) are critically involved in epigenetic gene regulation through alterations of the chromatin status of DNA. Aberrant expression, dysregulation of their enzymatic activity or imbalances between HDACs and histone acetyltransferases are likely involved in the development and progression of cancer. Pharmacologic inhibition of HDACs shows potent antitumor activity in a panel of malignancies such as colon or gastric cancer and multiple myeloma. In this review, we summarize the current knowledge of HDACs in melanoma and evaluate the application of HDAC inhibition from an experimental and clinical perspective. The molecular functions of HDACs can be classified into histone and non-histone effects with diverse implications in proliferation, cell cycle progression and apoptosis. HDAC inhibition results in G1 cell cycle arrest, induces apoptosis and increases the immunogenicity of melanoma cells. Some studies proposed that HDAC inhibition may overcome the resistance of melanoma cells to BRAF inhibition. Several inhibitors such as vorinostat, entinostat and valproic acid have recently been tested in phase I and early phase II trials, yet most agents show limited efficacy and tolerability as single agents. The most frequent adverse events of HDAC inhibition comprise haematological toxicity, fatigue, nausea and laboratory abnormalities. Existing evidence supports the hypothesis that HDAC inhibitors (HDACi) may sensitize melanoma cells to immunotherapy and targeted therapy and hence bear therapeutic potential concurrent with immune checkpoint blockade or BRAF and MEK inhibition.


Asunto(s)
Inhibidores de Histona Desacetilasas/uso terapéutico , Melanoma/tratamiento farmacológico , Animales , Ensayos Clínicos como Asunto , Histona Desacetilasas/clasificación , Histona Desacetilasas/metabolismo , Humanos , Melanoma/enzimología
8.
Epigenomics ; 8(2): 251-69, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26791815

RESUMEN

In response to environmental cues, enzymes that influence the functions of proteins, through reversible post-translational modifications supervise the coordination of cell behavior like orchestral conductors. Class IIa histone deacetylases (HDACs) belong to this category. Even though in vertebrates these deacetylases have discarded the core enzymatic activity, class IIa HDACs can assemble into multiprotein complexes devoted to transcriptional reprogramming, including but not limited to epigenetic changes. Class IIa HDACs are subjected to variegated and interconnected layers of regulation, which reflect the wide range of biological responses under the scrutiny of this gene family. Here, we discuss about the key mechanisms that fine tune class IIa HDACs activities.


Asunto(s)
Histona Desacetilasas/clasificación , Histona Desacetilasas/metabolismo , Animales , Calcio/metabolismo , Activación Enzimática , Regulación de la Expresión Génica , Genoma , Histona Desacetilasas/genética , Humanos , Espacio Intracelular/metabolismo , MicroARNs/genética , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Quinasas/metabolismo , Transporte de Proteínas , Proteolisis , Interferencia de ARN , Estabilidad del ARN , ARN Mensajero/genética , Transcripción Genética
9.
Crit Rev Oncog ; 20(1-2): 1-17, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25746101

RESUMEN

Besides the genetic information thath is encoded by DNA, heritable information can also be passed on without relying on changes in the nucleotide sequence of DNA, a phenomenon known as epigenetics. Gene expression in eukaryotes is partly regulated by epigenetic mechanisms both at the DNA and histone protein levels. Chromatin structure can be influenced by various modifications, including the reversible posttranslational processes of acetylation and deacetylation of DNA-binding proteins. Histone acetyl transferase (HAT) is referred to as the writer of this process, whereas histone deacetylase (HDAC) is the eraser of this lysine modification. Dysregulation of gene expression and changes in the HDAC expression profile have been associated with carcinogenesis, and HDAC inhibitors are already approved for the treatment of cutaneous T-cell lymphoma and peripheral T-cell lymphoma. These inhibitors are able to influence epigenetic processes by targeting HDAC activity, increasing nuclear histone acetylation status, and contributing to chromatin remodeling, thereby affecting gene expression. In addition, HDACs also act on a plethora of cytosolic proteins with many cellular functions, including angiogenesis, immune responses, and autophagy. In this review, we will give an overview of histone deacetylase and how it can regulate gene expression at the chromatin level.


Asunto(s)
Cromatina/metabolismo , Epigénesis Genética/fisiología , Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Terapia Molecular Dirigida , Acetilación , Animales , Histona Desacetilasas/clasificación , Histona Desacetilasas/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Terapia Molecular Dirigida/tendencias , Neoplasias/genética , Neoplasias/terapia
10.
Crit Rev Oncog ; 20(1-2): 139-54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25746108

RESUMEN

Recent studies have demonstrated that histone deacetylase (HDAC) inhibitors (HDACi) have potential immunomodulatory activity since they affect the immune surveillance by regulating the production of cytokines, alter the activity and function of macrophages and dendritic cells (DC), regulate the transcription of a variety of immune-stimulating genes, and can modulate the activity of immune effector cells of both the innate and adaptive immune system. Besides their immunostimulatory activity, HDACi can induce growth arrest and cell death, and modulate a subset of cellular functions such as cell motility or differentiation. This makes HDACi interesting therapeutic candidates for the treatment of a variety of human diseases like cancer, autoimmune, and graft versus host diseases. Besides these, HDACs have been shown to be involved in virus replication and pathogenesis, and it was recently shown that HDACi provide therapeutic effects in the treatment of oncogenic virus infections and associated malignancies. This review will further give information about the different families of HDACs and their opponents, the histone acetylases (HATs), about the classes and function of specific HDACi, and their use in the treatment of human diseases.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Inmunidad Innata/efectos de los fármacos , Animales , Enfermedades Autoinmunes/tratamiento farmacológico , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Histona Acetiltransferasas/clasificación , Histona Acetiltransferasas/fisiología , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/clasificación , Histona Desacetilasas/fisiología , Humanos , Inmunomodulación/efectos de los fármacos , Inmunomodulación/genética , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Neoplasias/tratamiento farmacológico
11.
Arch Pharm Res ; 38(6): 933-49, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25653088

RESUMEN

Histone deacetylase (HDAC) inhibitors are emerging as promising anticancer drugs. Because aberrant activity and expression of HDACs have been implicated in various cancer types, a wide range of HDAC inhibitors are being investigated as anticancer agents. Furthermore, due to the demonstrable anticancer activity in both in vitro and in vivo studies, numerous HDAC inhibitors have undergone a rapid phase of clinical development in various cancer types, either as a monotherapy or in combination with other anticancer agents. Although preclinical trials show that HDAC inhibitors have a variety of biological effects across multiple pathways, including regulation of gene expression, inducing apoptosis and cell cycle arrest, inhibiting angiogenesis, and regulation of DNA damage and repair, the mechanism by which the clinical activity is mediated remains unclear. Understanding the mechanisms of anticancer activity of HDAC inhibitors is essential not only for rational drug design for targeted therapies, but for the design of optimized clinical protocols. This paper describes the links between HDACs and cancer, and the underlying mechanisms of action of HDAC inhibitors against hematological malignancies and solid tumors. Further, this review presents the clinical outcomes of vorinostat, romidepsin, and belinostat, which are approved by the United States Food and Drug Administration for the treatment of lymphomas.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Hematológicas/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Neoplasias Hematológicas/enzimología , Histona Desacetilasas/clasificación , Histona Desacetilasas/metabolismo , Humanos , Neoplasias/enzimología
12.
Antioxid Redox Signal ; 23(1): 99-126, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24382114

RESUMEN

SIGNIFICANCE: Epigenetic inactivation of pivotal genes involved in cell growth is a hallmark of human pathologies, in particular cancer. Histone acetylation balance obtained through opposing actions of histone deacetylases (HDACs) and histone acetyltransferases is one epigenetic mechanism controlling gene expression and is, thus, associated with disease etiology and progression. Interfering pharmacologically with HDAC activity can correct abnormalities in cell proliferation, migration, vascularization, and death. RECENT ADVANCES: Histone deacetylase inhibitors (HDACi) represent a new class of cytostatic agents that interfere with the function of HDACs and are able to increase gene expression by indirectly inducing histone acetylation. Several HDACi, alone or in combination with DNA-demethylating agents, chemopreventive, or classical chemotherapeutic drugs, are currently being used in clinical trials for solid and hematological malignancies, and are, thus, promising candidates for cancer therapy. CRITICAL ISSUES: (i) Non-specific (off-target) HDACi effects due to activities unassociated with HDAC inhibition. (ii) Advantages/disadvantages of non-selective or isoform-directed HDACi. (iii) Limited number of response-predictive biomarkers. (iv) Toxicity leading to dysfunction of critical biological processes. FUTURE DIRECTIONS: Selective HDACi could achieve enhanced clinical utility by reducing or eliminating the serious side effects associated with current first-generation non-selective HDACi. Isoform-selective and pan-HDACi candidates might benefit from the identification of biomarkers, enabling better patient stratification and prediction of response to treatment.


Asunto(s)
Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/metabolismo , Neoplasias/tratamiento farmacológico , Histona Desacetilasas/clasificación , Humanos
13.
J Cancer Res Ther ; 10(3): 469-78, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25313724

RESUMEN

Epigenetics is the study of heritable alterations in gene expression that are not accompanied by the corresponding change in DNA sequence. Three interlinked epigenetic processes regulate gene expression at the level of chromatin, namely DNA methylation, nucleosomal remodeling and histone covalent modifications. Post-translational modifications that occur on certain amino acid residues of the tails of histone proteins modify chromatin structure and form the basis for "histone code". The enzymes Histone Acetyl Transferase (HAT) and Histone Deacetylase (HDAC) control the level of acetylation of histones and thereby alter gene expression. In many cancers, the balance between HAT and HDAC is altered. HDAC enzymes are grouped into four different classes namely Class I (HDAC1, HDAC2, HDAC3, and HDAC8), Class II (HDAC4, HDAC5, HDAC6, HDAC7, HDAC9, and HDAC10), Class III HDAC and Class IV (HDAC11). Histone Deacetylase Inhibitors (HDACI) exert anticancer activity by promoting acetylation of histones as well as by promoting acetylation of non-histone protein substrates. The effects of HDACI on gene transcription are complex. They cause cell cycle arrest, inhibit DNA repair, induce apoptosis and acetylate non histone proteins causing downstream alterations in gene expression. HDACI are a diverse group of compounds, which vary in structure, biological activity, and specificity. In general, HDACIs contain a zinc-binding domain, a capping group, and a straight chain linker connecting the two. They are classified into four classes namely short chain fatty acids, hydroxamic acids, cyclic peptides and synthetic benzamides. This review describes the clinical utility of HDACI as monotherapy as well as combination therapy with other treatment modalities such as chemotherapy and radiotherapy. Adverse effects and shortcomings of treatment with HDACI are also discussed in detail.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Epigénesis Genética/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Cromatina/genética , Cromatina/metabolismo , Ensayos Clínicos como Asunto , Metilación de ADN/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histona Desacetilasas/clasificación , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Neoplasias/metabolismo , Nucleosomas/metabolismo
14.
Am J Physiol Renal Physiol ; 307(3): F303-16, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24808536

RESUMEN

Activation of histone deacetylases (HDACs) is required for renal epithelial cell proliferation and kidney development. However, their role in renal tubular cell survival and regeneration after acute kidney injury (AKI) remains unclear. In this study, we demonstrated that all class I HDAC isoforms (1, 2, 3, and 8) were expressed in the renal epithelial cells of the mouse kidney. Inhibition of class I HDACs with MS-275, a highly selective inhibitor, resulted in more severe tubular injury in the mouse model of AKI induced by folic acid or rhabdomyolysis, as indicated by worsening renal dysfunction, increased neutrophil gelatinase-associated lipocalin expression, and enhanced apoptosis and caspase-3 activation. Blocking class I HDAC activity also impaired renal regeneration as evidenced by decreased expression of renal Pax-2, vimentin, and proliferating cell nuclear antigen. Injury to the kidney is accompanied by increased phosphorylation of epidermal growth factor receptor (EGFR), signal transducers and activators of transcription 3 (STAT3), and Akt. Inhibition of class I HDACs suppressed EGFR phosphorylation as well as reduced its expression. MS-275 was also effective in inhibiting STAT3 and Akt phosphorylation, but this treatment did not affect their expression levels. Taken together, these data suggest that the class I HDAC activity contributes to renal protection and functional recovery and is required for renal regeneration after AKI. Furthermore, renal EGFR signaling is subject to regulation by this class of HDACs.


Asunto(s)
Lesión Renal Aguda/patología , Lesión Renal Aguda/fisiopatología , Histona Desacetilasas/fisiología , Riñón/patología , Riñón/fisiología , Regeneración/fisiología , Lesión Renal Aguda/etiología , Animales , Proliferación Celular , Supervivencia Celular/fisiología , Modelos Animales de Enfermedad , Células Epiteliales/patología , Receptores ErbB/metabolismo , Ácido Fólico/efectos adversos , Histona Desacetilasas/clasificación , Isoenzimas/clasificación , Isoenzimas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/metabolismo , Rabdomiólisis/complicaciones , Factor de Transcripción STAT3/metabolismo
15.
Cold Spring Harb Perspect Biol ; 6(4): a018713, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24691964

RESUMEN

Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl functional groups from the lysine residues of both histone and nonhistone proteins. In humans, there are 18 HDAC enzymes that use either zinc- or NAD(+)-dependent mechanisms to deacetylate acetyl lysine substrates. Although removal of histone acetyl epigenetic modification by HDACs regulates chromatin structure and transcription, deacetylation of nonhistones controls diverse cellular processes. HDAC inhibitors are already known potential anticancer agents and show promise for the treatment of many diseases.


Asunto(s)
Histona Desacetilasas/fisiología , Arginasa/química , Arginasa/clasificación , Arginasa/fisiología , Regulación de la Expresión Génica , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/metabolismo , Histona Desacetilasas/química , Histona Desacetilasas/clasificación , Histonas/química , Histonas/metabolismo , Humanos , Modelos Biológicos , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/enzimología , Sirtuinas/antagonistas & inhibidores , Sirtuinas/química , Especificidad por Sustrato
16.
Brief Bioinform ; 15(6): 963-72, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23975722

RESUMEN

Lysine acetylation is a common post-translational modification of histone and non-histone proteins. This process has an important function in regulating transcriptional activities and other biological processes. Although several computer programs have been developed to predict protein acetylation sites, deacetylases responsible for known or predicted acetylation sites remain unknown. In this research, Class I histone deacetylases (HDACs) substrates were manually obtained, and sequence features of deacetylation sites were analyzed. We found that three members of Class I HDACs (HDAC1, HDAC2 and HDAC3) shared similar sequence features. Therefore, a method was proposed to identify the substrates of Class I HDACs. We evaluated the efficiency of the prediction based on P-value distribution analysis and leave-one-out test. To validate the result of the prediction, we overexpressed Class I HDACs in cells and detected the acetylation levels of potential substrates. In the experiment, five of the seven predicted proteins were deacetylated by Class I HDACs. These results suggested that our method could effectively predict protein deacetylation sites. The work has been integrated to the website ASEB, which was freely available at http://cmbi.bjmu.edu.cn/huac.


Asunto(s)
Histona Desacetilasas/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Biología Computacional , Células HEK293 , Células Hep G2 , Histona Desacetilasas/clasificación , Histona Desacetilasas/genética , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Internet , Lisina/química , Ratones , Datos de Secuencia Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
17.
Eukaryot Cell ; 12(8): 1087-96, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23729383

RESUMEN

The sirtuins are members of the NAD(+)-dependent histone deacetylase family that contribute to various cellular functions that affect aging, disease, and cancer development in metazoans. However, the physiological roles of the fungus-specific sirtuin family are still poorly understood. Here, we determined a novel function of the fungus-specific sirtuin HstD/Aspergillus oryzae Hst4 (AoHst4), which is a homolog of Hst4 in A. oryzae yeast. The deletion of all histone deacetylases in A. oryzae demonstrated that the fungus-specific sirtuin HstD/AoHst4 is required for the coordination of fungal development and secondary metabolite production. We also show that the expression of the laeA gene, which is the most studied fungus-specific coordinator for the regulation of secondary metabolism and fungal development, was induced in a ΔhstD strain. Genetic interaction analysis of hstD/Aohst4 and laeA clearly indicated that HstD/AoHst4 works upstream of LaeA to coordinate secondary metabolism and fungal development. The hstD/Aohst4 and laeA genes are fungus specific but conserved in the vast family of filamentous fungi. Thus, we conclude that the fungus-specific sirtuin HstD/AoHst4 coordinates fungal development and secondary metabolism via the regulation of LaeA in filamentous fungi.


Asunto(s)
Aspergillus oryzae/crecimiento & desarrollo , Aspergillus oryzae/metabolismo , Sirtuinas/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Aspergillus oryzae/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Histona Desacetilasas/clasificación , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Filogenia , Sirtuinas/clasificación , Sirtuinas/genética
18.
Mol Oncol ; 6(6): 637-56, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23141799

RESUMEN

Abnormal epigenetic control is a common early event in tumour progression, and aberrant acetylation in particular has been implicated in tumourigenesis. One of the most promising approaches towards drugs that modulate epigenetic processes has been seen in the development of inhibitors of histone deacetylases (HDACs). HDACs regulate the acetylation of histones in nucleosomes, which mediates changes in chromatin conformation, leading to regulation of gene expression. HDACs also regulate the acetylation status of a variety of other non-histone substrates, including key tumour suppressor proteins and oncogenes. Histone deacetylase inhibitors (HDIs) are potent anti-proliferative agents which modulate acetylation by targeting histone deacetylases. Interest is increasing in HDI-based therapies and so far, two HDIs, vorinostat (SAHA) and romidepsin (FK228), have been approved for treating cutaneous T-cell lymphoma (CTCL). Others are undergoing clinical trials. Treatment with HDIs prompts tumour cells to undergo apoptosis, and cell-based studies have shown a number of other outcomes to result from HDI treatment, including cell-cycle arrest, cell differentiation, anti-angiogenesis and autophagy. However, our understanding of the key pathways through which HDAC inhibitors affect tumour cell growth remains incomplete, which has hampered progress in identifying malignancies other than CTCL which are likely to respond to HDI treatment.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/clasificación , Histona Desacetilasas/genética , Humanos , Neoplasias/genética
19.
Mol Oncol ; 6(6): 579-89, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22963873

RESUMEN

Reversible acetylation of histone and non-histone proteins is one of the most abundant post-translational modifications in eukaryotic cells. Protein acetylation and deacetylation are achieved by the antagonistic actions of two families of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). Aberrant protein acetylation, particularly on histones, has been related to cancer while abnormal expression of HDACs has been found in a broad range of cancer types. Therefore, HDACs have emerged as promising targets in cancer therapeutics, and the development of HDAC inhibitors (HDIs), a rapidly evolving area of clinical research. However, the contributions of specific HDACs to a given cancer type remain incompletely understood. The aim of this review is to summarize the current knowledge concerning the role of HDACs in cancer with special emphasis on what we have learned from the analysis of patient samples.


Asunto(s)
Histona Desacetilasas/metabolismo , Neoplasias/enzimología , Acetilación , Animales , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasas/clasificación , Histona Desacetilasas/genética , Histonas/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo
20.
Biochim Biophys Acta ; 1812(10): 1213-8, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20970496

RESUMEN

The roles of epigenetic modulation of gene expression and protein functions in autosomal dominant polycystic kidney disease (ADPKD) have recently become the focus of scientific investigation. Evidence generated to date indicates that one of the epigenetic modifiers, histone deacetylases (HDACs), are important regulators of ADPKD. HDACs are involved in regulating the expression of the Pkd1 gene and are the target of fluid flow-induced calcium signal in kidney epithelial cells. Pharmacological inhibition of HDAC activity has been found to reduce the progression of cyst formation and slow the decline of kidney function in Pkd1 conditional knockout mice and Pkd2 knockout mice, respectively, implicating the potential clinical application of HDAC inhibitors on ADPKD. Since the expression of HDAC6 is upregulated in cystic epithelial cells, the potential roles of HDAC6 in regulating cilia resorption and epidermal growth factor receptor (EGFR) trafficking through deacetylating α-tubulin and regulating Wnt signaling through deacetylating ß-catenin are also discussed. This article is part of a Special Issue entitled: Polycystic Kidney Disease.


Asunto(s)
Epigénesis Genética , Riñón Poliquístico Autosómico Dominante/genética , Animales , Modelos Animales de Enfermedad , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/clasificación , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Ratones , Modelos Biológicos , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/etiología , Riñón Poliquístico Autosómico Dominante/metabolismo , Transducción de Señal , Canales Catiónicos TRPP/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA