Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 528
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38703881

RESUMEN

Intracellular antioxidant glutaredoxin controls cell proliferation and survival. Based on the active site, structure, and conserved domain motifs, it is classified into two classes. Class I contains dithiol Grxs with two cysteines in the consensus active site sequence CXXC, while class II has monothiol Grxs with one cysteine residue in the active site. Monothiol Grxs can also have an additional N-terminal thioredoxin (Trx)-like domain. Previously, we reported the characterization of Grx1 from Hydra vulgaris (HvGrx1), which is a dithiol isoform. Here, we report the molecular cloning, expression, analysis, and characterization of another isoform of Grx, which is the multidomain monothiol glutaredoxin-3 from Hydra vulgaris (HvGrx3). It encodes a protein with 303 amino acids and is significantly larger and more divergent than HvGrx1. In-silico analysis revealed that Grx1 and Grx3 have 22.5% and 9.9% identical nucleotide and amino acid sequences, respectively. HvGrx3 has two glutaredoxin domains and a thioredoxin-like domain at its amino terminus, unlike HvGrx1, which has a single glutaredoxin domain. Like other monothiol glutaredoxins, HvGrx3 failed to reduce glutathione-hydroxyethyl disulfide. In the whole Hydra, HvGrx3 was found to be expressed all over the body column, and treatment with H2O2 led to a significant upregulation of HvGrx3. When transfected in HCT116 (human colon cancer cells) cells, HvGrx3 enhanced cell proliferation and migration, indicating that this isoform could be involved in these cellular functions. These transfected cells also tolerate oxidative stress better.


Asunto(s)
Secuencia de Aminoácidos , Glutarredoxinas , Hydra , Animales , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/química , Hydra/genética , Hydra/metabolismo , Hydra/enzimología , Humanos , Clonación Molecular , Dominios Proteicos , Filogenia , Proliferación Celular
2.
Sci Rep ; 14(1): 8553, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609434

RESUMEN

The Notch-signalling pathway plays an important role in pattern formation in Hydra. Using pharmacological Notch inhibitors (DAPT and SAHM1), it has been demonstrated that HvNotch is required for head regeneration and tentacle patterning in Hydra. HvNotch is also involved in establishing the parent-bud boundary and instructing buds to develop feet and detach from the parent. To further investigate the functions of HvNotch, we successfully constructed NICD (HvNotch intracellular domain)-overexpressing and HvNotch-knockdown transgenic Hydra strains. NICD-overexpressing transgenic Hydra showed a pronounced inhibition on the expression of predicted HvNotch-target genes, suggesting a dominant negative effect of ectopic NICD. This resulted in a "Y-shaped" phenotype, which arises from the parent-bud boundary defect seen in polyps treated with DAPT. Additionally, "multiple heads", "two-headed" and "ectopic tentacles" phenotypes were observed. The HvNotch-knockdown transgenic Hydra with reduced expression of HvNotch exhibited similar, but not identical phenotypes, with the addition of a "two feet" phenotype. Furthermore, we observed regeneration defects in both, overexpression and knockdown strains. We integrated these findings into a mathematical model based on long-range gradients of signalling molecules underlying sharply defined positions of HvNotch-signalling cells at the Hydra tentacle and bud boundaries.


Asunto(s)
Hydra , Animales , Hydra/genética , Inhibidores de Agregación Plaquetaria , Transducción de Señal , Animales Modificados Genéticamente , Pie
3.
Curr Opin Neurobiol ; 86: 102869, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552547

RESUMEN

The cnidarian Hydra vulgaris is a small polyp with a nervous system of few hundred neurons belonging to a dozen cell types, organized in two nerve nets without cephalization or ganglia. Using this simple neural "chassis", Hydra can maintain a stable repertoire of behaviors, even performing complex fixed-action patterns, such as somersaulting and feeding. The ability to image the activity of Hydra's entire neural and muscle tissue has revealed that Hydra's nerve nets are divided into coactive ensembles of neurons, associated with specific movements. These ensembles can be activated by neuropeptides and interact using cross-inhibition circuits and implement integrate-to-threshold algorithms. In addition, Hydra's nervous system can self-assemble from dissociated cells in a stepwise modular architecture. Studies of Hydra and other cnidarians could enable the systematic deciphering of the neural basis of its behavior and help provide perspective on basic principles of neuroscience.


Asunto(s)
Hydra , Neurociencias , Animales , Hydra/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología
4.
Philos Trans R Soc Lond B Biol Sci ; 379(1901): 20230058, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38497265

RESUMEN

The freshwater polyp Hydra uses an elaborate innate immune machinery to maintain its specific microbiome. Major components of this toolkit are conserved Toll-like receptor (TLR)-mediated immune pathways and species-specific antimicrobial peptides (AMPs). Our study harnesses advanced technologies, such as high-throughput sequencing and machine learning, to uncover a high complexity of the Hydra's AMPs repertoire. Functional analysis reveals that these AMPs are specific against diverse members of the Hydra microbiome and expressed in a spatially controlled pattern. Notably, in the outer epithelial layer, AMPs are produced mainly in the neurons. The neuron-derived AMPs are secreted directly into the glycocalyx, the habitat for symbiotic bacteria, and display high selectivity and spatial restriction of expression. In the endodermal layer, in contrast, endodermal epithelial cells produce an abundance of different AMPs including members of the arminin and hydramacin families, while gland cells secrete kazal-type protease inhibitors. Since the endodermal layer lines the gastric cavity devoid of symbiotic bacteria, we assume that endodermally secreted AMPs protect the gastric cavity from intruding pathogens. In conclusion, Hydra employs a complex set of AMPs expressed in distinct tissue layers and cell types to combat pathogens and to maintain a stable spatially organized microbiome. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.


Asunto(s)
Hydra , Microbiota , Humanos , Animales , Hydra/fisiología , Péptidos , Bacterias , Células Epiteliales
5.
Dev Comp Immunol ; 155: 105139, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38325499

RESUMEN

Gasdermin (GSDM) proteins, as the direct executors of pyroptosis, are structurally and functionally conserved among vertebrates and play crucial roles in host defense against infection, inflammation, and cancer. However, the origin of functional GSDMs remains elusive in the animal kingdom. Here, we found that functional GSDME homologs first appeared in the cnidarian. Moreover, these animal GSDME homologs share evolutionarily conserved apoptotic caspase cleavage sites. Thus, we verified the functional conservation of apoptotic caspase-GSDME cascade in Hydra, a representative species of cnidarian. Unlike vertebrate GSDME homologs, HyGSDME could be cleaved by four Hydra caspase homologs with caspase-3 activity at two sites. Furthermore, in vivo activation of Hydra caspases resulted in HyGSDME cleavage to induce pyroptosis, exacerbating injury and restricting bacterial burden, which protects Hydra from pathogen invasion. In conclusion, these results suggest that GSDME-dependent pyroptosis may be an ancient and conserved host defense mechanism, which may contribute to better understanding on the origin and evolution of GSDMs.


Asunto(s)
Hydra , Piroptosis , Animales , Caspasas/genética , Caspasas/metabolismo , Hydra/metabolismo , Gasderminas , Caspasa 3/metabolismo
6.
Elife ; 122024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407174

RESUMEN

The Hydra nervous system is the paradigm of a 'simple nerve net'. Nerve cells in Hydra, as in many cnidarian polyps, are organized in a nerve net extending throughout the body column. This nerve net is required for control of spontaneous behavior: elimination of nerve cells leads to polyps that do not move and are incapable of capturing and ingesting prey (Campbell, 1976). We have re-examined the structure of the Hydra nerve net by immunostaining fixed polyps with a novel antibody that stains all nerve cells in Hydra. Confocal imaging shows that there are two distinct nerve nets, one in the ectoderm and one in the endoderm, with the unexpected absence of nerve cells in the endoderm of the tentacles. The nerve nets in the ectoderm and endoderm do not contact each other. High-resolution TEM (transmission electron microscopy) and serial block face SEM (scanning electron microscopy) show that the nerve nets consist of bundles of parallel overlapping neurites. Results from transgenic lines show that neurite bundles include different neural circuits and hence that neurites in bundles require circuit-specific recognition. Nerve cell-specific innexins indicate that gap junctions can provide this specificity. The occurrence of bundles of neurites supports a model for continuous growth and differentiation of the nerve net by lateral addition of new nerve cells to the existing net. This model was confirmed by tracking newly differentiated nerve cells.


Asunto(s)
Cnidarios , Hydra , Animales , Red Nerviosa , Neuronas , Neuritas
7.
Curr Biol ; 33(24): R1304-R1306, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38113845

RESUMEN

Cnidarians (corals, hydras, jellyfish, sea anemones) are prey-devouring creatures with a simple nervous system, the function of which is largely unknown. A new study on the freshwater polyp Hydra has now uncovered the neuronal circuits that control its feeding behavior.


Asunto(s)
Antozoos , Hydra , Escifozoos , Anémonas de Mar , Animales , Anémonas de Mar/fisiología , Boca
8.
Sci Rep ; 13(1): 19825, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963956

RESUMEN

The inability to control cell proliferation results in the formation of tumors in many multicellular lineages. Nonetheless, little is known about the extent of conservation of the biological traits and ecological factors that promote or inhibit tumorigenesis across the metazoan tree. Particularly, changes in food availability have been linked to increased cancer incidence in humans, as an outcome of evolutionary mismatch. Here, we apply evolutionary oncology principles to test whether food availability, regardless of the multicellular lineage considered, has an impact on tumorigenesis. We used two phylogenetically unrelated model systems, the cnidarian Hydra oligactis and the fish Danio rerio, to investigate the impact of resource availability on tumor occurrence and progression. Individuals from healthy and tumor-prone lines were placed on four diets that differed in feeding frequency and quantity. For both models, frequent overfeeding favored tumor emergence, while lean diets appeared more protective. In terms of tumor progression, high food availability promoted it, whereas low resources controlled it, but without having a curative effect. We discuss our results in light of current ideas about the possible conservation of basic processes governing cancer in metazoans (including ancestral life history trade-offs at the cell level) and in the framework of evolutionary medicine.


Asunto(s)
Cnidarios , Hydra , Neoplasias , Animales , Humanos , Evolución Biológica , Carcinogénesis , Neoplasias/etiología
9.
Dev Comp Immunol ; 149: 104904, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37543221

RESUMEN

Pyroptosis, an inflammatory form of programmed cell death, is directly executed by gasdermin (GSDM) depending on its N-terminal pore-forming fragment-mediated membrane-disrupting, triggering intracellular contents release, which plays important roles in mammalian anti-infection and anti-tumor immune responses. However, whether pyroptosis engages in the regulation of tissue regeneration remains largely unknown. Here, utilizing Hydra vulgaris as the research model, we found that an HyCARD2-HyGSDME-mediated pyroptosis signalling is activated in both head and foot regenerated tips after amputation. Impeding pyroptosis by knocking down the expression of either HyGSDME or HyCARD2 significantly hampered both head and foot regeneration in Hydra. Mechanistically, the activation of HyCARD2-HyGSDME axis at wound sites is dependent of intracellular mitochondrial reactive oxygen species (mtROS), the removing of which hindered Hydra head regeneration. Moreover, the HyCARD2-HyGSDME axis-gated pyroptosis was found to enhance the initial secretion and upregulated expression of Wnt3. Collectively, these findings indicate that gasdermin-gated pyroptosis is critical for the evoking of Wnt signalling to facilitate Hydra tissue regeneration, which provides insights into functional diversification within the gasdermin family in the animal kingdom.


Asunto(s)
Hydra , Piroptosis , Animales , Hydra/metabolismo , Gasderminas , Apoptosis , Vía de Señalización Wnt , Inflamasomas/metabolismo , Mamíferos
10.
Elife ; 122023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37399060

RESUMEN

The freshwater polyp Hydra is a popular biological model system; however, we still do not understand one of its most salient behaviors, the generation of spontaneous body wall contractions. Here, by applying experimental fluid dynamics analysis and mathematical modeling, we provide functional evidence that spontaneous contractions of body walls enhance the transport of chemical compounds from and to the tissue surface where symbiotic bacteria reside. Experimentally, a reduction in the frequency of spontaneous body wall contractions is associated with a changed composition of the colonizing microbiota. Together, our findings suggest that spontaneous body wall contractions create an important fluid transport mechanism that (1) may shape and stabilize specific host-microbe associations and (2) create fluid microhabitats that may modulate the spatial distribution of the colonizing microbes. This mechanism may be more broadly applicable to animal-microbe interactions since research has shown that rhythmic spontaneous contractions in the gastrointestinal tracts are essential for maintaining normal microbiota.


Asunto(s)
Hydra , Microbiota , Animales , Bacterias , Simbiosis , Interacciones Microbianas
11.
Sci Adv ; 9(29): eadh4054, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37478191

RESUMEN

Inflammatory caspases sensing lipopolysaccharide (LPS) to drive gasdermin (GSDM)-mediated pyroptosis is an important immune response mechanism for anti-infection defense in mammals. In this work, we resolved an LPS-induced and GSDM-gated pyroptosis signaling cascade in Cnidarians. Initially, we identified a functional GSDM protein, HyGSDME, in Hydra, executing cytosolic LPS-induced pyroptosis in a caspase-dependent manner. Further, we identified a proinflammatory caspase, HyCaspA, capable of sensing cytosolic LPS by an uncharacterized N-terminal domain relying on its unique hydrophobic property, thereby triggering its oligomerization and self-activation. Subsequently, the LPS-activated HyCaspA cleaved an apoptotic caspase, HyCARD2, to trigger HyGSDME-gated pyroptosis. Last, HyGSDME exhibited an enriched distribution on the ectodermal layer of Hydra polyps, exerting a canonical immune defense function against surface-invading bacteria. Collectively, our work resolved an ancient pyroptosis signaling cascade in Hydra, suggesting that inflammatory caspases sensing cytosolic LPS to initiate GSDM-gated pyroptosis are a conserved immune defense mechanism from Cnidarians to mammals.


Asunto(s)
Caspasas , Hydra , Piroptosis , Caspasas/metabolismo , Hydra/fisiología , Lipopolisacáridos , Gasderminas , Transducción de Señal
12.
Biochemistry (Mosc) ; 88(5): 667-678, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37331712

RESUMEN

Glutaredoxin (Grx) is an antioxidant redox protein that uses glutathione (GSH) as an electron donor. Grx plays a crucial role in various cellular processes, such as antioxidant defense, control of cellular redox state, redox control of transcription, reversible S-glutathionylation of specific proteins, apoptosis, cell differentiation, etc. In the current study, we have isolated and characterized dithiol glutaredoxin from Hydra vulgaris Ind-Pune (HvGrx1). Sequence analysis showed that HvGrx1 belongs to the Grx family with the classical Grx motif (CPYC). Phylogenetic analysis and homology modeling revealed that HvGrx1 is closely related to Grx2 from zebrafish. HvGrx1 gene was cloned and expressed in Escherichia coli cells; the purified protein had a molecular weight of 11.82 kDa. HvGrx1 efficiently reduced ß-hydroxyethyl disulfide (HED) with the temperature optimum of 25°C and pH optimum 8.0. HvGrx1 was ubiquitously expressed in all body parts of Hydra. Expression of HvGrx1 mRNA and enzymatic activity of HvGrx1 were significantly upregulated post H2O2 treatment. When expressed in human cells, HvGrx1 protected the cells from oxidative stress and enhanced cell proliferation and migration. Although Hydra is a simple invertebrate, HvGrx1 is evolutionary closer to its homologs from higher vertebrates (similar to many other Hydra proteins).


Asunto(s)
Glutarredoxinas , Hydra , Animales , Humanos , Glutarredoxinas/genética , Glutarredoxinas/química , Glutarredoxinas/metabolismo , Hydra/genética , Hydra/metabolismo , Antioxidantes/metabolismo , Filogenia , Peróxido de Hidrógeno , Pez Cebra/metabolismo , India , Proteínas/química , Oxidación-Reducción , Glutatión/metabolismo
14.
Cells ; 12(9)2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37174665

RESUMEN

The proto-oncogene myc has been intensively studied primarily in vertebrate cell culture systems. Myc transcription factors control fundamental cellular processes such as cell proliferation, cell cycle control and stem cell maintenance. Myc interacts with the Max protein and Myc/Max heterodimers regulate thousands of target genes. The genome of the freshwater polyp Hydra encodes four myc genes (myc1-4). Previous structural and biochemical characterization showed that the Hydra Myc1 and Myc2 proteins share high similarities with vertebrate c-Myc, and their expression patterns suggested a function in adult stem cell maintenance. In contrast, an additional Hydra Myc protein termed Myc3 is highly divergent, lacking the common N-terminal domain and all conserved Myc-boxes. Single cell transcriptome analysis revealed that the myc3 gene is expressed in a distinct population of interstitial precursor cells committed to nerve- and gland-cell differentiation, where the Myc3 protein may counteract the stemness actions of Myc1 and Myc2 and thereby allow the implementation of a differentiation program. In vitro DNA binding studies showed that Myc3 dimerizes with Hydra Max, and this dimer efficiently binds to DNA containing the canonical Myc consensus motif (E-box). In vivo cell transformation assays in avian fibroblast cultures further revealed an unexpected high potential for oncogenic transformation in the conserved Myc3 C-terminus, as compared to Hydra Myc2 or Myc1. Structure modeling of the Myc3 protein predicted conserved amino acid residues in its bHLH-LZ domain engaged in Myc3/Max dimerization. Mutating these amino acid residues in the human c-Myc (MYC) sequence resulted in a significant decrease in its cell transformation potential. We discuss our findings in the context of oncogenic transformation and cell differentiation, both relevant for human cancer, where Myc represents a major driver.


Asunto(s)
Hydra , Animales , Humanos , Hydra/genética , Secuencia de Aminoácidos , Genes myc , Secuencias Hélice-Asa-Hélice , Aminoácidos
15.
An Acad Bras Cienc ; 95(1): e20211025, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37162082

RESUMEN

Within each ecosystem, organisms and populations maintain a complex set of relationships. These interactions can determine the distribution area of a species and play an essential role in its evolution. Parasites are ubiquitous components of nature and have a high influence on various aspects of the biology and ecology of organisms, affecting the populations of their hosts and, therefore, their communities and ecosystems. Free-living amoebae are unicellular organisms that can be found in water, soil or air. Some species are of great importance in human health. In Hydra, there are several reports of Hydramoeba hydroxena infections. In this work we present a double parasitosis: two concatenated infectious periods in the host polyp of Hydra vulgaris and Hydra vulgaris pedunculata for three freshwater bodies in the province of Buenos Aires, Argentina. Hydramoeba sp. and Acanthoamoeba sp. unchain a series of anatomical lesions that in all cases cause the death of the polyps due to total disintegration. This finding becomes important at a sanitary level due to the appearance of Acanthoamoeba sp. in waters associated with human recreational activities; For the Hydra genus, the importance lies at an ecological and evolutionary level, considering the possible impact on its natural populations.


Asunto(s)
Acanthamoeba , Amoeba , Hydra , Humanos , Animales , Ecosistema , Argentina
16.
Sci Rep ; 13(1): 7449, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156860

RESUMEN

Hydras are freshwater cnidarians widely used as a biological model to study different questions such as senescence or phenotypic plasticity but also tumoral development. The spontaneous tumors found in these organisms have been so far described in two female lab strains domesticated years ago (Hydra oligactis and Pelmatohydra robusta) and the extent to which these tumors can be representative of tumors within the diversity of wild hydras is completely unknown. In this study, we examined individuals isolated from recently sampled wild strains of different sex and geographical origin, which have developed outgrowths looking like tumors. These tumefactions have common features with the tumors previously described in lab strains: are composed of an accumulation of abnormal cells, resulting in a similar enlargement of the tissue layers. However, we also found diversity within these new types of tumors. Indeed, not only females, but also males seem prone to form these tumors. Finally, the microbiota associated to these tumors is different from the one involved in the previous lineages exhibiting tumors. We found that tumorous individuals hosted yet undescribed Chlamydiales vacuoles. This study brings new insights into the understanding of tumor susceptibility and diversity in brown hydras from different origins.


Asunto(s)
Chlamydiales , Hydra , Animales , Masculino , Humanos , Femenino , Agua Dulce
17.
Curr Biol ; 33(10): 1893-1905.e4, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37040768

RESUMEN

The cnidarian Hydra vulgaris has a simple nervous system with a few hundred neurons in distributed networks. Yet Hydra can perform somersaults, a complex acrobatic locomotion. To understand the neural mechanisms of somersaulting we used calcium imaging and found that rhythmical potential 1 (RP1) neurons activate before somersaulting. Decreasing RP1 activity or ablating RP1 neurons reduced somersaulting, while two-photon activation of RP1 neurons induced somersaulting. Hym-248, a peptide synthesized by RP1 cells, selectively generated somersaulting. We conclude that RP1 activity, via release of Hym-248, is necessary and sufficient for somersaulting. We propose a circuit model to explain the sequential unfolding of this locomotion, using integrate-to-threshold decision making and cross-inhibition. Our work demonstrates that peptide-based signaling is used by simple nervous systems to generate behavioral fixed action patterns. VIDEO ABSTRACT.


Asunto(s)
Cnidarios , Hydra , Animales , Hydra/fisiología , Secuencia de Aminoácidos , Péptidos , Sistema Nervioso
18.
Sci Total Environ ; 883: 163447, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37094675

RESUMEN

Mismanaged plastic litter submitted to environmental conditions may breakdown into smaller fragments, eventually reaching nano-scale particles (nanoplastics, NPLs). In this study, pristine beads of four different types of polymers, three oil-based (polypropylene, PP; polystyrene, PS; and low-density polyethylene, LDPE) and one bio-based (polylactic acid, PLA) were mechanically broken down to obtain more environmentally realistic NPLs and its toxicity to two freshwater secondary consumers was assessed. Thus, effects on the cnidarian Hydra viridissima (mortality, morphology, regeneration ability, and feeding behavior) and the fish Danio rerio (mortality, morphological alterations, and swimming behavior) were tested at NPLs concentrations in the 0.001 to 100 mg/L range. Mortality and several morphological alterations were observed on hydras exposed to 10 and 100 mg/L PP and 100 mg/L LDPE, whilst regeneration capacity was overall accelerated. The locomotory activity of D. rerio larvae was affected by NPLs (decreased swimming time, distance or turning frequency) at environmentally realistic concentrations (as low as 0.001 mg/L). Overall, petroleum- and bio-based NPLs elicited pernicious effects on tested model organisms, especially PP, LDPE and PLA. Data allowed the estimation of NPLs effective concentrations and showed that biopolymers may also induce relevant toxic effects.


Asunto(s)
Hydra , Petróleo , Contaminantes Químicos del Agua , Animales , Polímeros/toxicidad , Organismos Acuáticos/metabolismo , Polietileno , Microplásticos , Petróleo/toxicidad , Poliestirenos/toxicidad , Plásticos/toxicidad , Biopolímeros/toxicidad , Pez Cebra/metabolismo , Poliésteres/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
19.
Clin Exp Med ; 23(7): 3125-3145, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37093450

RESUMEN

Ever since the discovery of cancer stem cells (CSCs), they have progressively attracted more attention as a therapeutic target. Like the mythical hydra, this subpopulation of cells seems to contribute to cancer immortality, spawning more cells each time that some components of the cancer cell hierarchy are destroyed. Traditional modalities focusing on cancer treatment have emphasized apoptosis as a route to eliminate the tumor burden. A major problem is that cancer cells are often in varying degrees of dedifferentiation contributing to what is known as the CSCs hierarchy and cells which are known to be resistant to conventional therapy. Differentiation therapy is an experimental therapeutic modality aimed at the conversion of malignant phenotype to a more benign one. Hyperthermia therapy (HT) is a modality exploiting the changes induced in cells by the application of heat produced to aid in cancer therapy. While differentiation therapy has been successfully employed in the treatment of acute myeloid leukemia, it has not been hugely successful for other cancer types. Mounting evidence suggests that hyperthermia therapy may greatly augment the effects of differentiation therapy while simultaneously overcoming many of the hard-to-treat facets of recurrent tumors. This review summarizes the progress made so far in integrating hyperthermia therapy with existing modules of differentiation therapy. The focus is on studies related to the successful application of both hyperthermia and differentiation therapy when used alone or in conjunction for hard-to-treat cancer cell niche with emphasis on combined approaches to target the CSCs hierarchy.


Asunto(s)
Hydra , Hipertermia Inducida , Neoplasias , Animales , Humanos , Neoplasias/tratamiento farmacológico , Diferenciación Celular/genética , Células Madre Neoplásicas/metabolismo
20.
Proc Natl Acad Sci U S A ; 120(13): e2220167120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36947516

RESUMEN

Orientational order, encoded in anisotropic fields, plays an important role during the development of an organism. A striking example of this is the freshwater polyp Hydra, where topological defects in the muscle fiber orientation have been shown to localize to key features of the body plan. This body plan is organized by morphogen concentration gradients, raising the question how muscle fiber orientation, morphogen gradients and body shape interact. Here, we introduce a minimal model that couples nematic orientational order to the gradient of a morphogen field. We show that on a planar surface, alignment to a radial concentration gradient can induce unbinding of topological defects, as observed during budding and tentacle formation in Hydra, and stabilize aster/vortex-like defects, as observed at a Hydra's mouth. On curved surfaces mimicking the morphologies of Hydra in various stages of development-from spheroid to adult-our model reproduces the experimentally observed reorganization of orientational order. Our results suggest how gradient alignment and curvature effects may work together to control orientational order during development and lay the foundations for future modeling efforts that will include the tissue mechanics that drive shape deformations.


Asunto(s)
Hydra , Animales , Anisotropía , Morfogénesis , Hydra/fisiología , Regeneración/fisiología , Tipificación del Cuerpo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA