Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.042
Filtrar
1.
Brain Behav ; 14(7): e3608, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38956886

RESUMEN

INTRODUCTION: Cerebral ischemia reperfusion injury (CIRI) often leads to deleterious complications after stroke patients receive reperfusion therapy. Exercise preconditioning (EP) has been reported to facilitate brain function recovery. We aim to explore the specific mechanism of EP in CIRI. METHODS: Sprague-Dawley rats were randomized into Sham, middle cerebral artery occlusion (MCAO), and EP groups (n = 11). The rats in the EP group received adaptive training for 3 days (10 m/min, 20 min/day, with a 0° incline) and formal training for 3 weeks (6 days/week, 25 m/min, 30 min/day, with a 0° incline). Then, rats underwent MCAO surgery to establish CIRI models. After 48 h, neurological deficits and cerebral infarction of the rats were measured. Neuronal death and apoptosis in the cerebral cortices were detected. Furthermore, RNA sequencing was conducted to investigate the specific mechanism of EP on CIRI, and qPCR and Western blotting were further applied to confirm RNA sequencing results. RESULTS: EP improved neurological deficit scores and reduced cerebral infarction in MCAO rats. Additionally, pre-ischemic exercise also alleviated neuronal death and apoptosis of the cerebral cortices in MCAO rats. Importantly, 17 differentially expressed genes (DEGs) were identified through RNA sequencing, and these DEGs were mainly enriched in the HIF-1 pathway, cellular senescence, proteoglycans in cancer, and so on. qPCR and Western blotting further confirmed that EP could suppress TIMP1, SOCS3, ANGPTL4, CDO1, and SERPINE1 expressions in MCAO rats. CONCLUSION: EP can improve CIRI in vivo, the mechanism may relate to TIMP1 expression and HIF-1 pathway, which provided novel targets for CIRI treatment.


Asunto(s)
Infarto de la Arteria Cerebral Media , Condicionamiento Físico Animal , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Daño por Reperfusión/terapia , Ratas , Masculino , Condicionamiento Físico Animal/fisiología , Infarto de la Arteria Cerebral Media/terapia , Infarto de la Arteria Cerebral Media/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Análisis de Secuencia de ARN , Modelos Animales de Enfermedad , Apoptosis , Precondicionamiento Isquémico/métodos
2.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38928069

RESUMEN

An ischemic stroke, one of the leading causes of morbidity and mortality, is caused by ischemia and hemorrhage resulting in impeded blood supply to the brain. According to many studies, blueberries have been shown to have a therapeutic effect in a variety of diseases. Therefore, in this study, we investigated whether blueberry-treated mesenchymal stem cell (MSC)-derived extracellular vesicles (B-EVs) have therapeutic effects in in vitro and in vivo stroke models. We isolated the extracellular vesicles using cryo-TEM and characterized the particles and concentrations using NTA. MSC-derived extracellular vesicles (A-EVs) and B-EVs were round with a lipid bilayer structure and a diameter of ~150 nm. In addition, A-EVs and B-EVs were shown to affect angiogenesis, cell cycle, differentiation, DNA repair, inflammation, and neurogenesis following KEGG pathway and GO analyses. We investigated the protective effects of A-EVs and B-EVs against neuronal cell death in oxygen-glucose deprivation (OGD) cells and a middle cerebral artery occlusion (MCAo) animal model. The results showed that the cell viability was increased with EV treatment in HT22 cells. In the animal, the size of the cerebral infarction was decreased, and the behavioral assessment was improved with EV injections. The levels of NeuN and neurofilament heavy chain (NFH)-positive cells were also increased with EV treatment yet decreased in the MCAo group. In addition, the number of apoptotic cells was decreased with EV treatment compared with ischemic animals following TUNEL and Bax/Bcl-2 staining. These data suggested that EVs, especially B-EVs, had a therapeutic effect and could reduce apoptotic cell death after ischemic injury.


Asunto(s)
Arándanos Azules (Planta) , Vesículas Extracelulares , Accidente Cerebrovascular Isquémico , Células Madre Mesenquimatosas , Vesículas Extracelulares/metabolismo , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ratones , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/terapia , Accidente Cerebrovascular Isquémico/patología , Arándanos Azules (Planta)/química , Masculino , Modelos Animales de Enfermedad , Supervivencia Celular/efectos de los fármacos , Línea Celular , Infarto de la Arteria Cerebral Media/terapia , Infarto de la Arteria Cerebral Media/metabolismo
3.
Neuroreport ; 35(12): 780-789, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38935074

RESUMEN

This study aims to investigate how electroacupuncture regulates the learning and memory abilities of poststroke cognitive impairment (PSCI) rats through the TLR4/NF-κB/NLRP3 signaling pathway on the hippocampal microglia. Thirty male rats were randomly divided into three groups: sham surgery group, PSCI model group, and electroacupuncture group, with 10 rats in each group. Middle cerebral artery occlusion was used to establish the PSCI model. The Zea Longa method was used to score the rats' neurological function. Electroacupuncture was utilized for 21 days to improve PSCI. The learning and memory abilities of rats were tested using the Morris water maze. Hematoxylin-eosin staining and immunofluorescence were used to find the hippocampus' pathological changes. The concentration of interleukin-1ß, interleukin-6, tumor necrosis factor-α, and interleukin-18 were detected by ELISA. The mRNA expression levels of associated inflammatory corpuscles were measured by quantitative real-time PCR. The protein expression levels of TLR4, MyD88, NF-κB, and NLRP3 were measured using western blotting. Electroacupuncture improved not only the learning and memory abilities of PSCI rats but also hippocampal morphology. Electroacupuncture inhibited the activation of microglia and the TLR4/NF-κB/NLRP3 signaling pathway. Electroacupuncture also reduced proinflammatory factors and restrained the mRNA levels of NLRP3-associated inflammatory cytokines. Its mechanism was related to inhibiting the expression of the TLR4/NF-κB/NLRP3 signaling pathway, attenuating the release of inflammatory factors, and regulating the activation of hippocampal microglia in the brain.


Asunto(s)
Electroacupuntura , Hipocampo , Microglía , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas Sprague-Dawley , Transducción de Señal , Receptor Toll-Like 4 , Animales , Electroacupuntura/métodos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptor Toll-Like 4/metabolismo , Masculino , Hipocampo/metabolismo , Ratas , FN-kappa B/metabolismo , Microglía/metabolismo , Transducción de Señal/fisiología , Memoria/fisiología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/terapia , Infarto de la Arteria Cerebral Media/terapia , Infarto de la Arteria Cerebral Media/metabolismo
4.
Biosci Rep ; 44(7)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38864508

RESUMEN

Obesity and Type 2 diabetes (T2D) are known to exacerbate cerebral injury caused by stroke. Metabolomics can provide signatures of metabolic disease, and now we explored whether the analysis of plasma metabolites carries biomarkers of how obesity and T2D impact post-stroke recovery. Male mice were fed a high-fat diet (HFD) for 10 months leading to development of obesity with T2D or a standard diet (non-diabetic mice). Then, mice were subjected to either transient middle cerebral artery occlusion (tMCAO) or sham surgery and allowed to recover on standard diet for 2 months before serum samples were collected. Nuclear magnetic resonance (NMR) spectroscopy of serum samples was used to investigate metabolite signals and metabolic pathways that were associated with tMCAO recovery in either T2D or non-diabetic mice. Overall, after post-stroke recovery there were different serum metabolite profiles in T2D and non-diabetic mice. In non-diabetic mice, which show full neurological recovery after stroke, we observed a reduction of isovalerate, and an increase of kynurenate, uridine monophosphate, gluconate and N6-acetyllysine in tMCAO relative to sham mice. In contrast, in mice with T2D, which show impaired stroke recovery, there was a reduction of N,N-dimethylglycine, succinate and proline, and an increase of 2-oxocaproate in serum of tMCAO versus sham mice. Given the inability of T2D mice to recover from stroke, in contrast with non-diabetic mice, we propose that these specific metabolite changes following tMCAO might be used as biomarkers of neurophysiological recovery after stroke in T2D.


Asunto(s)
Biomarcadores , Diabetes Mellitus Tipo 2 , Modelos Animales de Enfermedad , Espectroscopía de Resonancia Magnética , Obesidad , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangre , Biomarcadores/sangre , Masculino , Obesidad/metabolismo , Obesidad/complicaciones , Obesidad/sangre , Ratones , Espectroscopía de Resonancia Magnética/métodos , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/metabolismo , Dieta Alta en Grasa/efectos adversos , Infarto de la Arteria Cerebral Media/sangre , Infarto de la Arteria Cerebral Media/metabolismo , Ratones Endogámicos C57BL , Metabolómica/métodos , Recuperación de la Función
5.
Brain Res Bull ; 214: 110999, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851436

RESUMEN

Endogenous brain repair occurs following an ischemic stroke but is transient, thus unable to fully mount a neuroprotective response against the evolving secondary cell death. Finding a treatment strategy that may render robust and long-lasting therapeutic effects stands as a clinically relevant therapy for stroke. Extracellular vesicles appear to be upregulated after stroke, which may represent a candidate target for neuroprotection. In this study, we probed whether transplanted stem cells could enhance the expression of extracellular vesicles to afford stable tissue remodeling in the ischemic stroke brain. Aged rats were initially exposed to the established ischemic stroke model of middle cerebral artery occlusion then received intravenous delivery of either bone marrow-derived mesenchymal stem cell transplantation or vehicle. A year later, the animals were assayed for brain damage, inflammation, and extracellular vesicle expression. Our findings revealed that while core infarction was not reduced, the stroke animals transplanted with stem cells displayed a significant reduction in peri-infarct cell loss that coincided with downregulated Iba1-labeled inflammatory cells and upregulated CD63-positive extracellular vesicles that appeared to be co-localized with GFAP-positive astrocytes. Interestingly, grafted stem cells were not detected at one year post-transplantation period, suggesting that the extracellular vesicles likely originated within the host brain. That long-lasting functional benefits persisted in the absence of surviving transplanted stem cells, but with upregulation of endogenous extracellular vesicles, advances the concept that transplantation of stem cells acutely after stroke propels host extracellular vesicles to the ischemic brain, altogether promoting chronic brain remodeling.


Asunto(s)
Encéfalo , Vesículas Extracelulares , Trasplante de Células Madre Mesenquimatosas , Accidente Cerebrovascular , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Ratas , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/terapia , Encéfalo/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Astrocitos/metabolismo
6.
J Cell Mol Med ; 28(11): e18366, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38856956

RESUMEN

Ischemic stroke is one of the main causes of disability and death. However, recanalization of occluded cerebral arteries is effective only within a very narrow time window. Therefore, it is particularly important to find neuroprotective biological targets for cerebral artery recanalization. Here, gene expression profiles of datasets GSE160500 and GSE97537 were downloaded from the GEO database, which were related to ischemic stroke in rats. Olfactory receptor 78 (Olfr78) was screened, and which highly associated with Calcium signalling pathway and MAPK pathway. Interacting protein of Olfr78, Prkaca, was predicted by STRING, and their interaction was validated by Co-IP analysis. Then, a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) and a neuronal cell model stimulated by oxygen-glucose deprivation/reoxygenation (OGD/R) were constructed, and the results showed that expression of Olfr78 and Prkaca was downregulated in MCAO rats and OGD/R-stimulated neurons. Overexpression of Olfr78 or Prkaca inhibited the secretion of inflammatory factors, Ca2+ overload, and OGD/R-induced neuronal apoptosis. Moreover, Overexpression of Prkaca increased protein levels of cAMP, PKA and phosphorylated p38 in OGD/R-stimulated neurons, while SB203580, a p38 inhibitor, treatment inhibited activation of the cAMP/PKA-MAPK pathway and counteracted the effect of Olfr78 overexpression on improvement of neuronal functions. Meanwhile, overexpression of Olfr78 or Prkaca markedly inhibited neuronal apoptosis and improved brain injury in MCAO/R rats. In conclusion, overexpression of Olfr78 inhibited Ca2+ overload and reduced neuronal apoptosis in MCAO/R rats by promoting Prkaca-mediated activation of the cAMP/PKA-MAPK pathway, thereby improving brain injury in cerebral ischaemia-reperfusion.


Asunto(s)
Apoptosis , AMP Cíclico , Ratas Sprague-Dawley , Receptores Odorantes , Daño por Reperfusión , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/genética , Ratas , Masculino , AMP Cíclico/metabolismo , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/etiología , Lesiones Encefálicas/patología , Neuronas/metabolismo , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/metabolismo , Transducción de Señal
7.
Cell Biol Toxicol ; 40(1): 31, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767771

RESUMEN

Mitochondrial dysfunction contributes to cerebral ischemia-reperfusion (CI/R) injury, which can be ameliorated by Sirtuin-3 (SIRT3). Under stress conditions, the SIRT3-promoted mitochondrial functional recovery depends on both its activity and expression. However, the approach to enhance SIRT3 activity after CI/R injury remains unelucidated. In this study, Sprague-Dawley (SD) rats were intracranially injected with either adeno-associated viral Sirtuin-1 (AAV-SIRT1) or AAV-sh_SIRT1 before undergoing transient middle cerebral artery occlusion (tMCAO). Primary cortical neurons were cultured and transfected with lentiviral SIRT1 (LV-SIRT1) and LV-sh_SIRT1 respectively before oxygen-glucose deprivation/reoxygenation (OGD/R). Afterwards, rats and neurons were respectively treated with a selective SIRT3 inhibitor, 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP). The expression, function, and related mechanism of SIRT1 were investigated by Western Blot, flow cytometry, immunofluorescence staining, etc. After CI/R injury, SIRT1 expression decreased in vivo and in vitro. The simulation and immune-analyses reported strong interaction between SIRT1 and SIRT3 in the cerebral mitochondria before and after CI/R. SIRT1 overexpression enhanced SIRT3 activity by increasing the deacetylation of SIRT3, which ameliorated CI/R-induced cerebral infarction, neuronal apoptosis, oxidative stress, neurological and motor dysfunction, and mitochondrial respiratory chain dysfunction, promoted mitochondrial biogenesis, and retained mitochondrial integrity and mitochondrial morphology. Meanwhile, SIRT1 overexpression alleviated OGD/R-induced neuronal death and mitochondrial bioenergetic deficits. These effects were reversed by AAV-sh_SIRT1 and the neuroprotective effects of SIRT1 were partially offset by 3-TYP. These results suggest that SIRT1 restores the structure and function of mitochondria by activating SIRT3, offering neuroprotection against CI/R injury, which signifies a potential approach for the clinical management of cerebral ischemia.


Asunto(s)
Isquemia Encefálica , Mitocondrias , Neuronas , Ratas Sprague-Dawley , Daño por Reperfusión , Sirtuina 1 , Sirtuina 3 , Animales , Sirtuina 1/metabolismo , Sirtuina 1/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Mitocondrias/metabolismo , Masculino , Sirtuina 3/metabolismo , Sirtuina 3/genética , Neuronas/metabolismo , Neuronas/patología , Ratas , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Apoptosis , Sirtuinas
8.
Zhen Ci Yan Jiu ; 49(5): 463-471, 2024 May 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38764117

RESUMEN

OBJECTIVES: To observe the effect of electro-scalp acupuncture (ESA) on the expression of cytochrome P450a1/b1 (CYP27a1/b1), cytochrome P45024a (CYP24a), signal transducer and activator of transcription (STAT)4, STAT6, tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-4 in ischemic cerebral cortex of rats with acute ischemic stroke, so as to explore its mechanism in alleviating inflammatory reaction of ischemic stroke. METHODS: Sixty SD rats were randomly divided into sham-operation, model, vitamin D3 and ESA groups, with 15 rats in each group. The middle cerebral artery occlusion rat model was established with thread ligation according to Zea-Longa's method. Rats in the vitamin D3 group were given 1, 25-VitD3 solution (3 ng·100 g-1·d-1) by gavage, once daily for 7 days. Rats in the ESA group were treated at bilateral anterior parietotemporal slash (MS6) with ESA (2 Hz/100 Hz, 1 mA), 30 min a day for 7 days. Before and after interventions, the neurological deficit score and neurobehavioral score were evaluated. TTC staining was used to detect the volume of cerebral infarction in rats. The positive expressions of CYP24a, CYP27a1 and CYP27b1 in the cerebral cortex of ischemic area were detected by immunofluorescence. The mRNA expressions of STAT4 and STAT6 in the cerebral cortex of ischemic area were detected by quantitative real-time PCR. The protein expression levels of TNF-α, IL-1ß and IL-4 in the cerebral cortex of ischemic area were detected by Western blot. RESULTS: Compared with the sham-operation group, the neurological deficit score, neurobehavioral score, the percentage of cerebral infarction volume, the positive expression level of CYP24a and mRNA expression level of STAT4, protein expression levels of TNF-α and IL-1ß in cerebral cortex were increased (P<0.01), while the positive expression levels of CYP27a1/b1 and STAT6 mRNA, protein expression level of IL-4 were decreased (P<0.01) in the model group. After the treatment and compared with the model group, the neurological deficit score, neurobehavioral score, the percentage of cerebral infarction volume, the positive expression level of CYP24a and mRNA expression level of STAT4, protein expression levels of TNF-α and IL-1ß in cerebral cortex were decreased (P<0.01), while the positive expression levels of CYP27a1/b1 and STAT6 mRNA expression level, protein expression level of IL-4 were increased (P<0.01) in the ESA and vitamin D3 groups. CONCLUSIONS: ESA can alleviate the inflammatory response in ischemic stroke, which maybe related to its function in regulating the balance between CYP27a1/b1 and CYP24a, converting vitamin D into active vitamin D3, inhibiting vitamin D3 degradation, and regulating Th1/Th2 balance.


Asunto(s)
Infarto de la Arteria Cerebral Media , Vitamina D3 24-Hidroxilasa , Animales , Humanos , Masculino , Ratas , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , Puntos de Acupuntura , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Corteza Cerebral/metabolismo , Colestanotriol 26-Monooxigenasa/genética , Colestanotriol 26-Monooxigenasa/metabolismo , Citocinas/metabolismo , Citocinas/genética , Electroacupuntura , Infarto de la Arteria Cerebral Media/terapia , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Vitamina D3 24-Hidroxilasa/genética , Vitamina D3 24-Hidroxilasa/metabolismo
9.
Sci Rep ; 14(1): 11947, 2024 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-38789486

RESUMEN

A research model combining a disease and syndrome can provide new ideas for the treatment of ischemic stroke. In the field of traditional Chinese medicine, blood stasis and toxin (BST) syndrome is considered an important syndrome seen in patients with ischemic stroke (IS). However, the biological basis of IS-BST syndrome is currently not well understood. Therefore, this study aimed to explore the biological mechanism of IS-BST syndrome. This study is divided into two parts: (1) establishment of an animal model of ischemic stroke disease and an animal model of BST syndrome in ischemic stroke; (2) use of omics methods to identify differentially expressed genes and metabolites in the models. We used middle cerebral artery occlusion (MCAO) surgery to establish the disease model, and utilized carrageenan combined with active dry yeast and MCAO surgery to construct the IS-BST syndrome model. Next, we used transcriptomics and metabolomics methods to explore the differential genes and metabolites in the disease model and IS-BST syndrome model. It is found that the IS-BST syndrome model exhibited more prominent characteristics of IS disease and syndrome features. Both the disease model and the IS-BST syndrome model share some common biological processes, such as thrombus formation, inflammatory response, purine metabolism, sphingolipid metabolism, and so on. Results of the "gene-metabolite" network revealed that the IS-BST syndrome model exhibited more pronounced features of complement-coagulation cascade reactions and amino acid metabolism disorders. Additionally, the "F2 (thrombin)-NMDAR/glutamate" pathway was coupled with the formation process of the blood stasis and toxin syndrome. This study reveals the intricate mechanism of IS-BST syndrome, offering a successful model for investigating the combination of disease and syndrome.


Asunto(s)
Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico , Medicina Tradicional China , Metabolómica , Transcriptoma , Animales , Metabolómica/métodos , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/genética , Medicina Tradicional China/métodos , Masculino , Redes Reguladoras de Genes , Ratas , Perfilación de la Expresión Génica , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/genética , Síndrome , Ratas Sprague-Dawley
10.
Cell Biochem Funct ; 42(4): e4059, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38773900

RESUMEN

Cerebral ischemic stroke remains a leading cause of mortality and morbidity worldwide. Toll-like receptor 4 (TLR4) has been implicated in neuroinflammatory responses poststroke, particularly in the infiltration of immune cells and polarization of macrophages. This study aimed to elucidate the impact of TLR4 deficiency on neutrophil infiltration and subsequent macrophage polarization after middle cerebral artery occlusion (MCAO), exploring its role in stroke prognosis. The objective was to investigate how TLR4 deficiency influences neutrophil behavior poststroke, its role in macrophage polarization, and its impact on stroke prognosis using murine models. Wild-type and TLR4-deficient adult male mice underwent MCAO induction, followed by various analyses, including flow cytometry to assess immune cell populations, bone marrow transplantation experiments to evaluate TLR4-deficient neutrophil behaviors, and enzyme-linked immunosorbent assay and Western blot analysis for cytokine and protein expression profiling. Neurobehavioral tests and infarct volume analysis were performed to assess the functional and anatomical prognosis poststroke. TLR4-deficient mice exhibited reduced infarct volumes, increased neutrophil infiltration, and reduced M1-type macrophage polarization post-MCAO compared to wild-type mice. Moreover, the depletion of neutrophils reversed the neuroprotective effects observed in TLR4-deficient mice, suggesting the involvement of neutrophils in mediating TLR4's protective role. Additionally, N1-type neutrophils were found to promote M1 macrophage polarization via neutrophil gelatinase-associated lipocalin (NGAL) secretion, a process blocked by TLR4 deficiency. The study underscores the protective role of TLR4 deficiency in ischemic stroke, delineating its association with increased N2-type neutrophil infiltration, diminished M1 macrophage polarization, and reduced neuroinflammatory responses. Understanding the interplay between TLR4, neutrophils, and macrophages sheds light on potential therapeutic targets for stroke management, highlighting TLR4 as a promising avenue for intervention in stroke-associated neuroinflammation and tissue damage.


Asunto(s)
Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/deficiencia , Ratones , Masculino , Macrófagos/metabolismo , Macrófagos/inmunología , Pronóstico , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Neutrófilos/metabolismo , Neutrófilos/inmunología
11.
Cell Signal ; 120: 111210, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38705503

RESUMEN

Microglia mediated neuroinflammation is one of the major contributors to brain damage in cerebral ischemia reperfusion injury (CI/RI). Recently, RNA modification was found to contribute to the regulation of microglia polarization and the subsequent development of cerebral I/R neuroinflammation. Herein, we investigated the effect and mechanism of m5C RNA modification in the microglia induced CI/RI neuroinflammation. We found that the m5C RNA modification levels decreased in the primary microglia isolated from a mouse model of intraluminal middle cerebral artery occlusion/reperfusion (MCAO/R) and the BV2 microglial cells subjected to oxygen-glucose deprivation and reoxygenation (OGD/R), and this change was accompanied by an increase in the M1/M2 polarization ratio. Furthermore, the expression of m5C demethylase TET1 in microglia increased, which promoted M1 polarization but impeded M2 polarization. Mechanistically, the higher TET1 expression decreased the m5C modification level of RelB and enhanced its mRNA stability, which subsequently increased the M1/M2 polarization ratio. In conclusion, this study provides insight into the role of m5C RNA modification in the pathogenesis of cerebral I/R neuroinflammation and may deepen our understanding on clinical therapy targeting the TET1-RelB axis.


Asunto(s)
Microglía , Enfermedades Neuroinflamatorias , Proteínas Proto-Oncogénicas , Daño por Reperfusión , Factor de Transcripción ReIB , Animales , Microglía/metabolismo , Microglía/patología , Factor de Transcripción ReIB/metabolismo , Factor de Transcripción ReIB/genética , Ratones , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Proteínas Proto-Oncogénicas/metabolismo , Masculino , Ratones Endogámicos C57BL , Polaridad Celular , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/complicaciones , Modelos Animales de Enfermedad , Proteínas de Unión al ADN
12.
J Pharm Biomed Anal ; 246: 116206, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38733762

RESUMEN

Ischemic stroke, accounting for 80 % of all strokes, is a major cause of morbidity and mortality worldwide. However, effective and safe pharmacotherapy options for ischemic injury are limited. This study investigated the therapeutic effects of wogonoside, a compound derived from Radix Scutellariae, on ischemia/reperfusion (I/R) injury. The results showed that wogonoside treatment had significant therapeutic effects in rats with middle cerebral artery occlusion. It effectively reduced mortality rates, neurological deficits, cerebral infarct size, and brain water content. In an in vitro model using PC12 cells, wogonoside activated the Nrf2/Sirt3 signaling pathway. This activation contributed to the attenuation of oxidative damage and inflammation. Metabolomics analysis revealed increased levels of γ-aminobutyric acid (GABA) and glutathione in response to wogonoside treatment, suggesting their potential as therapeutic biomarkers for ischemic stroke. Additionally, wogonoside restored perturbed energy metabolism, including the tricarboxylic acid cycle. Wogonoside has the potential to ameliorate cerebral ischemic injury by targeting GABA-related amino acid metabolism, energy metabolism, and glutathione metabolism, maintaining redox homeostasis, and attenuating oxidative stress. These findings provide valuable insights into the protective mechanisms of wogonoside in cerebral I/R injury and highlight the promising therapeutic approach of wogonoside in the treatment of ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Metabolómica , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Ratas Sprague-Dawley , Daño por Reperfusión , Transducción de Señal , Sirtuina 3 , Espectrometría de Masas en Tándem , Animales , Ratas , Factor 2 Relacionado con NF-E2/metabolismo , Metabolómica/métodos , Transducción de Señal/efectos de los fármacos , Células PC12 , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Masculino , Espectrometría de Masas en Tándem/métodos , Estrés Oxidativo/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Sirtuina 3/metabolismo , Flavanonas/farmacología , Flavanonas/uso terapéutico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Glucósidos/farmacología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Glutatión/metabolismo , Modelos Animales de Enfermedad , Sirtuinas
13.
Biomed Pharmacother ; 176: 116778, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788601

RESUMEN

The incidence of cerebral infarction triggered by abnormal glucose tolerance has increased; however, the relationship between glucose concentration in the brain and the detailed mechanism of post ischemic cell death remains unclear. Nicotinamide phosphoribosyltransferase (NAMPT), an adipocytokine, is the rate-limiting enzyme for NAD+ synthesis in the salvage pathway. Although NAMPT activation prevents neuronal injury, the relationship between NAMPT activity, glucose metabolism disorders, and cerebral ischemia-induced neuronal cell death is unknown. In this study, we determined changes in NAMPT on cerebral ischemic injuries with diabetes using a db/db mouse model of type 2 diabetes and then identified the underlying mechanisms using Neuro2a cells. The expression of inflammatory cytokine mRNAs was increased in db/db and db/+ middle cerebral artery occlusion and reperfusion (MCAO/R) mice. Although NeuN-positive cells were decreased after MCAO/R, the number of NAMPT and NeuN double-positive cells in NeuN-positive neuronal cells increased in db/db MCAO/R mice. Next, the role of NAMPT in Neuro2a cells under conditions of high glucose (HGC) and oxygen-glucose deprivation (OGD), which mimics diabetes-complicated cerebral infarction, was examined. Treatment with P7C3-A20, a NAMPT activator, suppressed the decrease in cell viability caused by HGC/OGD; however, there were no significant differences in the levels of cleaved caspase-3 and Bax proteins. Moreover, increased FoxO3a and LC3-II levels after HGC/OGD were inhibited by P7C3-A20 treatment. Our findings indicate that NAMPT activation is associated with neuronal survival under ischemic conditions with abnormal glucose tolerance through the regulation of FoxO3a/LC3.


Asunto(s)
Isquemia Encefálica , Supervivencia Celular , Proteína Forkhead Box O3 , Glucosa , Neuronas , Nicotinamida Fosforribosiltransferasa , Transducción de Señal , Animales , Nicotinamida Fosforribosiltransferasa/metabolismo , Proteína Forkhead Box O3/metabolismo , Glucosa/metabolismo , Glucosa/deficiencia , Neuronas/metabolismo , Neuronas/patología , Neuronas/efectos de los fármacos , Masculino , Ratones , Supervivencia Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Citocinas/metabolismo , Ratones Endogámicos C57BL , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/metabolismo , Línea Celular Tumoral , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones
14.
PLoS One ; 19(5): e0303213, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753710

RESUMEN

Ischemic stroke causes a lack of oxygen and glucose supply to brain, eventually leads to severe neurological disorders. Retinoic acid is a major metabolic product of vitamin A and has various biological effects. The PI3K-Akt signaling pathway is an important survival pathway in brain. Phosphorylated Akt is important in regulating survival and apoptosis. We examined whether retinoic acid has neuroprotective effects in stroke model by regulating Akt and its downstream protein, Bad. Moreover, we investigated the relationship between retinoic acid and Bcl-2 family protein interactions. Animals were intraperitoneally administered vehicle or retinoic acid (5 mg/kg) for four days before surgery and ischemic stroke was induced by middle cerebral artery occlusion (MCAO) surgery. Neurobehavioral tests were performed 24 h after MCAO and cerebral cortical tissues were collected. Cresyl violet staining and TUNEL histochemistry were performed, Western blot and immunoprecipitation analysis were performed to elucidate the expression of various proteins. Retinoic acid reduced neurological deficits and histopathological changes, decreased the number of TUNEL-positive cells, and alleviated reduction of phospho-PDK1, phospho-Akt, and phospho-Bad expression caused by MCAO damage. Immunoprecipitation analysis showed that MCAO damage reduced the interaction between phospho-Bad and 14-3-3, which was attenuated by retinoic acid. Furthermore, retinoic acid mitigated the increase in Bcl-2/Bad and Bcl-xL/Bad binding levels and the reduction in Bcl-2/Bax and Bcl-xL/Bax binding levels caused by MCAO damage. Retinoic acid alleviated MCAO-induced increase of caspase-3 and cleaved caspase-3 expression. We demonstrate that retinoic acid prevented apoptosis against cerebral ischemia through phosphorylation of Akt and Bad, maintenance of phospho-Bad and 14-3-3 binding, and regulation of Bcl-2 family protein interactions. .


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-bcl-2 , Tretinoina , Proteína Letal Asociada a bcl , Animales , Masculino , Ratas , Apoptosis/efectos de los fármacos , Proteína Letal Asociada a bcl/metabolismo , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/patología , Fármacos Neuroprotectores/farmacología , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Tretinoina/farmacología
15.
Exp Gerontol ; 192: 112453, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723916

RESUMEN

Social isolation (SI) after stroke reduces recovery. The aim of this study was to evaluate the effects of SI on corticosterone release and recovery after stroke in aged rats. A total of 64 male Wistar rats (aged 24 months) were used in the present study. All rats were housed in pairs for two weeks. After two weeks, rats were randomly assigned to one of four groups: (1) rats underwent sham surgery and kept socially isolated (control/social isolated (CO/SI) group); (2) rats underwent sham surgery and kept pair housed (control/pair housed (CO/PH) group); (3) rats underwent middle cerebral artery occlusion (MCAO) surgery and kept socially isolated (stroke/isolated (ST/SI) group); (4) rats underwent MCAO surgery and kept pair housed (stroke/pair housed (ST/PH)) group. Behaviors were assessed using the adhesive removal test, rotarod test and social interaction test at 1st, 7th, 14th and 21st days after stroke. Serum biochemical analysis was also performed on the behavioral testing days. Results showed THAT serum corticosterone and MDA levels in CO/PH group were significantly lower than CO/SI group. Serum BDNF levels in CO/PH group was significantly higher than CO/SI group. Serum corticosterone and MDA levels in ST/PH group were lower than ST/SI group. In ST/PH group, serum Total antioxidant capacity (TAC) and BDNF levels were significantly higher than ST/SI group. Biochemical analysis of certain regions of the brain (hippocampus, striatum and cerebral cortex) was performed on 21st day after stroke. In the hippocampus of CO/PH group, BDNF and TAC levels were significantly higher than CO/SI group. The hippocampal MDA level of CO/PH group were significantly lower than CO/SI group. BDNF and TAC levels in the hippocampus, striatum and cerebral cortex of ST/PH group were significantly higher and MDA level was significantly lower as compared with ST/SI group. Both ischemic groups showed sensorimotor recovery over a 21-day period, but recovery of ST/PH group was significantly greater than ST/SI group. Total social interaction time in ST/PH group was significantly longer than ST/SI group. Based on the results of this study, social interaction after stroke enhances histologic and sensorimotor recovery through reduction of HPA activity and corticosterone release, leading to increased TAC and BDNF levels.


Asunto(s)
Conducta Animal , Factor Neurotrófico Derivado del Encéfalo , Corticosterona , Infarto de la Arteria Cerebral Media , Ratas Wistar , Aislamiento Social , Animales , Aislamiento Social/psicología , Corticosterona/sangre , Masculino , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/sangre , Infarto de la Arteria Cerebral Media/metabolismo , Ratas , Recuperación de la Función , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/psicología , Malondialdehído/metabolismo , Modelos Animales de Enfermedad , Envejecimiento/fisiología , Envejecimiento/metabolismo , Estrés Oxidativo
16.
Brain Res ; 1839: 148999, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761845

RESUMEN

BACKGROUND: Microglia are damaged during cerebral ischemia-reperfusion (I/R). This study was performed to investigate the regulatory effect of tAR DNA-binding protein-43 (TDP-43) on microglia after cerebral I/R in vitro and in vivo. METHOD: The hypoxia/reoxygenation (H/R) treated microglia and rats with middle cerebral artery occlusion surgery were constructed respectively. The TDP-43 expression in brain tissues and microglia of each group was evaluated by qPCR and western blotting methods. Cell viability and cell apoptosis were combined to evaluate the degree of cell injury. As for animal experiments, neurological score and infarct volume were obtained to evaluate neurological injury. RESULTS: The levels of TDP-43 in the brain tissues of I/R group were higher than that in sham group. Both TDP-43 and Iba1, a typical microglia marker, were expressed in the brain tissues. TDP-43 was also elevated in microglia with H/R treatment. Inhibition of TDP-43 significantly down-regulated neurological deficit scores of rats after I/R surgery, and weakened the H/R treatment induced injury by promoting cell viability, inhibiting cell apoptosis, down-regulating IL-6 and iNOS levels, and up-regulating Arg-1 and IL-10 levels. Inactivation of cGAS pathway mediated by TDP-43 knockdown protects microglia from H/R treatment induced injury. CONCLUSION: The highly expressed TDP-43 level is associated with cerebral I/R, and inhibition of TDP-43 protects microglia from H/R induced injury through cGAS pathway in vitro and in vivo.


Asunto(s)
Apoptosis , Proteínas de Unión al ADN , Microglía , Nucleotidiltransferasas , Ratas Sprague-Dawley , Daño por Reperfusión , Transducción de Señal , Animales , Microglía/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Transducción de Señal/fisiología , Daño por Reperfusión/metabolismo , Ratas , Masculino , Apoptosis/fisiología , Nucleotidiltransferasas/metabolismo , Supervivencia Celular/fisiología , Infarto de la Arteria Cerebral Media/metabolismo , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo
17.
Brain Res Bull ; 211: 110948, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614406

RESUMEN

BACKGROUND: The treatment for cerebral ischemia remains limited, and new therapeutic strategies are urgently needed. Exosome has shown great promise for the treatment of cerebral ischemia. Steroid receptor coactivator-3 (SRC-3) was reported to be involved in neurological performances. In this study, we aimed to investigate the protective effects of mesenchymal stem cell (MSC)-derived exosomes overexpressing SRC-3 on cerebral ischemia in mice. METHODS: The mice were treated with an intracerebroventricular injection of GFP-overexpressed exosomes (GFP-exo) and SRC-3-overexpressed exosomes (SRC3-exo) in a middle cerebral artery occlusion (MCAO) model of cerebral ischemia. RESULTS: The results showed that SRC3-exo treatment significantly inhibited lipid peroxidation and ferroptosis of the neurons subjected to oxygen-glucose deprivation. It further suppressed the activation of microglia and astrocytes, and decreased the production of pro-inflammatory cytokines in the brains of MCAO mice. Furthermore, SRC3-exo treatment reduced the water content of brain tissue and infarct size, which alleviated the neurological damage and improved neurological performances in the MCAO mice. CONCLUSIONS: Our results suggest that MSC-derived exosomes expressing SRC3 can be a therapeutic strategy for cerebral ischemia by inhibiting ferroptosis.


Asunto(s)
Isquemia Encefálica , Exosomas , Ferroptosis , Infarto de la Arteria Cerebral Media , Células Madre Mesenquimatosas , Coactivador 3 de Receptor Nuclear , Animales , Exosomas/metabolismo , Exosomas/trasplante , Ratones , Ferroptosis/fisiología , Células Madre Mesenquimatosas/metabolismo , Masculino , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Coactivador 3 de Receptor Nuclear/metabolismo , Coactivador 3 de Receptor Nuclear/genética , Infarto de la Arteria Cerebral Media/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Modelos Animales de Enfermedad , Astrocitos/metabolismo , Encéfalo/metabolismo
18.
Shock ; 62(1): 85-94, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38661181

RESUMEN

ABSTRACT: Background: Cerebral ischemia-reperfusion (I/R) injury (CIRI) have severe consequences on brain function, and the exciting evidence has revealed protective role of acyl-CoA synthetase long chain family member 4 (Lin28a) against cerebral ischemia-reperfusion injury. The present work aims to reveal its molecular mechanism in regulating CIRI, with the hope of providing a therapeutic method for cerebral I/R injury. We hypothesized that the exosomal nuclear factor erythroid 2-related factor 2 (NRF2) derived from bone marrow mesenchymal stromal cells could transcriptionally activate Lin28a and thereby alleviate cerebral ischemia-reperfusion injury. This hypothesis was validated in the present work. Methods: Middle cerebral artery occlusion (MCAO) model was established using C57BL/6J mice, and the neurological deficit, infarct volume, and brain water content were assessed to evaluate neuron injury. Human glioblastoma cells (A172) were subjected to oxygen-glucose deprivation and reoxygenation (OGD/R) treatment to mimic a cerebral I/R injury cell model. Exosome isolation reagent was used to isolate exosomes from cell supernatant of bone marrow mesenchymal stromal cells through sequential centrifugation and filtration steps. mRNA expression level of Lin28a was detected by quantitative real-time polymerase chain reaction. Protein expression was analyzed by western blotting assay. TUNEL cell apoptosis detection kit was used to analyze cell apoptosis in brain tissues. Enzyme-linked immunosorbent assays and commercial kits were used to detect levels of inflammatory markers and oxidative stress markers. Ferrous Iron Colorimetric Assay Kit and Fe 2+ colorimetric assay kit were used to analyze Fe 2+ level. The association of Lin28a and NRF2 was identified by chromatin immunoprecipitation assay and dual-luciferase reporter assay. Results: The treatment of MCAO substantially augmented infarct volume in mice, impaired neurological function, and elevated brain water content. Lin28a was lowly expressed in brain tissues of mice with CIRI, and its overexpression protected against cerebral I/R injury of MCAO mice. Moreover, Lin28a overexpression protected A172 cells against OGD/R treatment-induced injury. Additionally, NRF2 transcriptionally activated Lin28a in A172 cells. Bone marrow mesenchymal stromal cell-derived exosomes increased Lin28a expression in a NRF2-dependent manner. Bone marrow mesenchymal stromal cell-derived exosomal NRF2 improved OGD/R-induced A172 cell injury by inducing Lin28a production. Conclusion: Bone marrow mesenchymal stromal cell-derived exosomal NRF2 improved CIRI by transcriptionally activating Lin28a.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , Proteínas de Unión al ARN , Daño por Reperfusión , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Células Madre Mesenquimatosas/metabolismo , Ratones , Daño por Reperfusión/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Exosomas/metabolismo , Masculino , Humanos , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo
19.
Brain Res Bull ; 211: 110939, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574865

RESUMEN

PURPOSE: To evaluate the potential efficacy of Triptolide (TP) on cerebral ischemia/reperfusion injury (CIRI) and to uncover the underlying mechanism through which TP regulates CIRI. METHODS: We constructed a middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model to simulate CIRI, and established a lipopolysaccharide (LPS)-stimulated BV-2 cell model to mimic the inflammatory state during CIRI. The neurological deficits score (NS) of mice were measured for assessment of neurologic functions. Both the severity of cerebral infarction and the apoptosis level in mouse brain tissues or cells were respectively evaluated using corresponding techniques. The expression levels of Ionized calcium binding adapter molecule 1 (IBA-1), Inductible Nitric Oxide Synthase (iNOS), Arginase 1 (Arg-1), Tumor necrosis factor-α (TNF-α), Interleukin 1ß (IL-1ß), Cysteine histoproteinase S (CTSS), Fractalkine, chemokine C-X3-C motif receptor 1 (CX3CR1), BCL-2-associated X protein (BAX), and antiapoptotic proteins (Bcl-2) were detected using immunofluorescence, qRT-PCR as well as Western blot, respectively. RESULTS: Relative to the Sham group, treatment with TP attenuated the increased NS, infarct area and apoptosis levels observed in MCAO/R mice. Upregulated expression levels of IBA-1, iNOS, Arg-1, TNF-α and IL-1ß were found in MCAO/R mice, while TP suppressed iNOS, TNF-α and IL-1ß expression, and enhanced Arg-1 expression in both MCAO/R mice and LPS-stimulated BV-2 cells. Besides, TP inhibited the CTSS/Fractalkine/CX3CR1 pathway activation in both MCAO/R mice and LPS-induced BV-2 cells, while overexpression of CTSS reversed such effect. Co-culturing HT-22 cells with TP+LPS-treated BV-2 cells led to enhanced cell viability and decreased apoptosis levels. However, overexpression of CTSS further aggravated HT-22 cell injury. CONCLUSION: TP inhibits not only microglia polarization towards the M1 phenotype by suppressing the CTSS/Fractalkine/CX3CR1 pathway activation, but also HT-22 apoptosis by crosstalk with BV-2 cells, thereby ameliorating CIRI. These findings reveal a novel mechanism of TP in improving CIRI, and offer potential implications for addressing the preventive and therapeutic strategies of CIRI.


Asunto(s)
Isquemia Encefálica , Diterpenos , Compuestos Epoxi , Infarto de la Arteria Cerebral Media , Fenantrenos , Daño por Reperfusión , Transducción de Señal , Animales , Masculino , Ratones , Apoptosis/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Quimiocina CX3CL1/efectos de los fármacos , Quimiocina CX3CL1/metabolismo , Receptor 1 de Quimiocinas CX3C/efectos de los fármacos , Receptor 1 de Quimiocinas CX3C/metabolismo , Modelos Animales de Enfermedad , Diterpenos/farmacología , Compuestos Epoxi/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Fármacos Neuroprotectores/farmacología , Fenantrenos/farmacología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
20.
eNeuro ; 11(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38604775

RESUMEN

A sublethal ischemic episode [termed preconditioning (PC)] protects neurons in the brain against a subsequent severe ischemic injury. This phenomenon is known as brain ischemic tolerance and has received much attention from researchers because of its robust neuroprotective effects. We have previously reported that PC activates astrocytes and subsequently upregulates P2X7 receptors, thereby leading to ischemic tolerance. However, the downstream signals of P2X7 receptors that are responsible for PC-induced ischemic tolerance remain unknown. Here, we show that PC-induced P2X7 receptor-mediated lactate release from astrocytes has an indispensable role in this event. Using a transient focal cerebral ischemia model caused by middle cerebral artery occlusion, extracellular lactate levels during severe ischemia were significantly increased in mice who experienced PC; this increase was dependent on P2X7 receptors. In addition, the intracerebroventricular injection of lactate protected against cerebral ischemic injury. In in vitro experiments, although stimulation of astrocytes with the P2X7 receptor agonist BzATP had no effect on the protein levels of monocarboxylate transporter (MCT) 1 and MCT4 (which are responsible for lactate release from astrocytes), BzATP induced the plasma membrane translocation of these MCTs via their chaperone CD147. Importantly, CD147 was increased in activated astrocytes after PC, and CD147-blocking antibody abolished the PC-induced facilitation of astrocytic lactate release and ischemic tolerance. Taken together, our findings suggest that astrocytes induce ischemic tolerance via P2X7 receptor-mediated lactate release.


Asunto(s)
Astrocitos , Precondicionamiento Isquémico , Ácido Láctico , Ratones Endogámicos C57BL , Transportadores de Ácidos Monocarboxílicos , Receptores Purinérgicos P2X7 , Animales , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Precondicionamiento Isquémico/métodos , Ácido Láctico/metabolismo , Ácido Láctico/farmacología , Receptores Purinérgicos P2X7/metabolismo , Masculino , Transportadores de Ácidos Monocarboxílicos/metabolismo , Basigina/metabolismo , Isquemia Encefálica/metabolismo , Simportadores/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Modelos Animales de Enfermedad , Proteínas Musculares/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Ratones , Células Cultivadas , Encéfalo/metabolismo , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA