Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 985
Filtrar
1.
Sci Rep ; 14(1): 23030, 2024 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-39362931

RESUMEN

Urinary tract infection (UTI) is one of the most common bacterial infections worldwide and the most common cause is uropathogenic Escherichia coli (UPEC). Current research is mostly focused on how UPEC affects host factors, whereas the effect of host factors on UPEC is less studied. Our previous studies have shown that estrogen alters UPEC virulence. However, the effect of this altered UPEC virulence on neutrophils is unknown. The aim of the present study was to investigate how the altered UPEC virulence mediated by estrogen modulates neutrophil responses. We found that estradiol-stimulated CFT073 increased neutrophil phagocytosis, NETs formation and intracellular ROS production. We observed that the total ROS production from neutrophils was reduced by estradiol-stimulated CFT073. We also found that estradiol-stimulated CFT073 induced less cytotoxicity in neutrophils. Additionally, we found that several cytokines and chemokines like IL-8, IL-1ß, CXCL6, MCP-1 and MCP-4 were increased upon estradiol-stimulated CFT073 infection. In conclusion, this study demonstrates that the estrogen-mediated alterations to UPEC virulence modulates neutrophil responses, most likely in a host-beneficial manner.


Asunto(s)
Estrógenos , Neutrófilos , Fagocitosis , Especies Reactivas de Oxígeno , Infecciones Urinarias , Escherichia coli Uropatógena , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Escherichia coli Uropatógena/inmunología , Escherichia coli Uropatógena/patogenicidad , Humanos , Estrógenos/farmacología , Estrógenos/metabolismo , Infecciones Urinarias/microbiología , Infecciones Urinarias/inmunología , Fagocitosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estradiol/farmacología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Citocinas/metabolismo , Trampas Extracelulares/metabolismo , Virulencia
2.
Gut Microbes ; 16(1): 2399215, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39284098

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrheal illness in humans and animals, induced by enterotoxins produced by these pathogens. Despite the crucial role of neutrophils in combatting bacterial infections, our understanding of how enterotoxins impact neutrophil function is limited. To address this knowledge gap, we used heat-labile enterotoxin (LT) and heat-stable enterotoxin a (STa) to investigate their impact on the effector functions of neutrophils. Our study reveals that pSTa does not exert any discernible effect on the function of neutrophils. In contrast, LT altered the migration and phagocytosis of neutrophils and induced the production of inflammatory factors via activation of cAMP/PKA and ERK1/2 signaling. LT also attenuated the release of neutrophil extracellular traps by neutrophils via the PKA signaling pathway. Our findings provide novel insights into the impact of LT on neutrophil function, shedding light on the underlying mechanisms that govern its immunoregulatory effects. This might help ETEC in subverting the immune system and establishing infection.


Asunto(s)
Toxinas Bacterianas , Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Escherichia coli Enterotoxigénica , Enterotoxinas , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Neutrófilos , Fagocitosis , Enterotoxinas/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Humanos , AMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/inmunología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Trampas Extracelulares/metabolismo , Trampas Extracelulares/inmunología , Transducción de Señal
3.
PLoS Pathog ; 20(9): e1012458, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39241059

RESUMEN

Uropathogenic Escherichia coli (UPEC) can undergo extensive filamentation in the host during acute urinary tract infections (UTIs). It has been hypothesised that this morphological plasticity allows bacteria to avoid host immune responses such as macrophage engulfment. However, it is still unclear what properties of filaments are important in macrophage-bacteria interactions. The aim of this work was to investigate the contribution of bacterial biophysical parameters, such as cell size and shape, and physiological parameters, such as cell surface and the environment, to macrophage engulfment efficiency. Viable, reversible filaments of known lengths and volumes were produced in the UPEC strain UTI89 using a variety of methods, including exposure to cell-wall targeting antibiotics, genetic manipulation and isolation from an in vitro human bladder cell model. Quantification of the engulfment ability of macrophages using gentamicin-protection assays and fluorescence microscopy demonstrated that the ability of filaments to avoid macrophage engulfment is dependent on a combination of size (length and volume), shape, cell surface and external environmental factors. UTI89 filamentation and macrophage engulfment efficiency were also found to occur independently of the SOS-inducible filamentation genes, sulA and ymfM in both in vivo and in vitro models of infection. Compared to filaments formed via antibiotic inhibition of division, the infection-derived filaments were preferentially targeted by macrophages. With several strains of UPEC now resistant to current antibiotics, our work identifies the importance of bacterial physiological and morphological states during infection.


Asunto(s)
Infecciones por Escherichia coli , Macrófagos , Infecciones Urinarias , Escherichia coli Uropatógena , Macrófagos/microbiología , Macrófagos/inmunología , Humanos , Infecciones Urinarias/microbiología , Infecciones Urinarias/inmunología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/inmunología , Fagocitosis , Ratones , Animales
4.
Proc Natl Acad Sci U S A ; 121(38): e2410679121, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39264739

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of diarrheal illnesses annually ranging from mildly symptomatic cases to severe, life-threatening cholera-like diarrhea. Although ETEC are associated with long-term sequelae including malnutrition, the acute diarrheal illness is largely self-limited. Recent studies indicate that in addition to causing diarrhea, the ETEC heat-labile toxin (LT) modulates the expression of many genes in intestinal epithelia, including carcinoembryonic cell adhesion molecules (CEACAMs) which ETEC exploit as receptors, enabling toxin delivery. Here, however, we demonstrate that LT also enhances the expression of CEACAMs on extracellular vesicles (EV) shed by intestinal epithelia and that CEACAM-laden EV increase in abundance during human infections, mitigate pathogen-host interactions, scavenge free ETEC toxins, and accelerate ETEC clearance from the gastrointestinal tract. Collectively, these findings indicate that CEACAMs play a multifaceted role in ETEC pathogen-host interactions, transiently favoring the pathogen, but ultimately contributing to innate responses that extinguish these common infections.


Asunto(s)
Toxinas Bacterianas , Escherichia coli Enterotoxigénica , Enterotoxinas , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Interacciones Huésped-Patógeno , Escherichia coli Enterotoxigénica/metabolismo , Humanos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Enterotoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Vesículas Extracelulares/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Animales , Ratones , Antígenos CD/metabolismo , Antígenos CD/genética , Antígeno Carcinoembrionario/metabolismo , Antígeno Carcinoembrionario/genética , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Diarrea/microbiología , Diarrea/metabolismo
5.
Poult Sci ; 103(11): 104170, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39154611

RESUMEN

Colibacillosis, a bacterial disease caused by avian pathogenic E. coli (APEC), is a prevalent condition in the poultry industry, resulting in substantial economic losses annually. Previously, we identified PTEN as a crucial candidate gene that may play a significant role in chicken's immune response to APEC infection. Bioinformatics analysis indicated that the PTEN protein was unstable, hydrophilic and nuclear localization, with multiple putative phosphorylation sites and a high degree of similarity to duck and goose PTEN. Moreover, PTEN exhibited high expression levels in various tissues such as the stomach, cecum, small intestine, spleen, thymus, harderian gland, muscle, cerebrum, cerebellum, lung, and liver in comparison to heart tissue. Overexpression of PTEN resulted in a significant promotion of the expression level of pro-apoptosis genes and inflammatory mediators, as well as the production of NO, with or without APEC infection, which led to cellular injury. Furthermore, overexpression of PTEN was found to regulate the expression levels of autophagy related genes, regardless of APEC infection. Additionally, PTEN was a target gene of gga-miR-20a-5p and regulated by gga-miR-20a-5p upon APEC infection. Taken together, these findings establish a foundation for investigating the biological function of chicken PTEN, providing a potential target for future treatments against APEC infection as well as the breeding of genetically resistant poultry.


Asunto(s)
Autofagia , Proteínas Aviares , Pollos , Infecciones por Escherichia coli , MicroARNs , Fosfohidrolasa PTEN , Enfermedades de las Aves de Corral , Animales , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/microbiología , Pollos/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/genética , Macrófagos/inmunología , Inflamación/veterinaria , Inflamación/genética , Escherichia coli/fisiología
6.
Elife ; 132024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39163101

RESUMEN

Sepsis causes millions of deaths per year worldwide and is a current global health priority declared by the WHO. Sepsis-related deaths are a result of dysregulated inflammatory immune responses indicating the need to develop strategies to target inflammation. An important mediator of inflammation is extracellular adenosine triphosphate (ATP) that is released by inflamed host cells and tissues, and also by bacteria in a strain-specific and growth-dependent manner. Here, we investigated the mechanisms by which bacteria release ATP. Using genetic mutant strains of Escherichia coli (E. coli), we demonstrate that ATP release is dependent on ATP synthase within the inner bacterial membrane. In addition, impaired integrity of the outer bacterial membrane notably contributes to ATP release and is associated with bacterial death. In a mouse model of abdominal sepsis, local effects of bacterial ATP were analyzed using a transformed E. coli bearing an arabinose-inducible periplasmic apyrase hydrolyzing ATP to be released. Abrogating bacterial ATP release shows that bacterial ATP suppresses local immune responses, resulting in reduced neutrophil counts and impaired survival. In addition, bacterial ATP has systemic effects via its transport in outer membrane vesicles (OMV). ATP-loaded OMV are quickly distributed throughout the body and upregulated expression of genes activating degranulation in neutrophils, potentially contributing to the exacerbation of sepsis severity. This study reveals mechanisms of bacterial ATP release and its local and systemic roles in sepsis pathogenesis.


Sepsis is a severe condition often caused by the body's immune system overreacting to bacterial infections. This can lead to excessive inflammation which damages organs and requires urgent medical care. With sepsis claiming millions of lives each year, new and improved ways to treat this condition are urgently needed. One potential strategy for treating sepsis is to target the underlying mechanisms controlling inflammation. Inflamed and dying cells release molecules called ATP (the energy carrier of all living cells), which strongly influence the immune system, including during sepsis. In the early stages of an infection, ATP acts as a danger signal warning the body that something is wrong. However, over time, it can worsen infections by disturbing the immune response. Similar to human cells, bacteria release their own ATP, which can have different impacts depending on the type of bacteria and where they are located in the body. However, it is not well understood how bacterial ATP influences severe infections like sepsis. To investigate this question, Spari et al analysed how ATP is released from Escherichia coli, a type of bacteria that causes severe infections. This revealed that the bacteria secrete ATP directly in to their environment and via small membrane-bound structures called vesicles. Spari et al. then probed a mouse model of abdominal sepsis which had been infected with E. coli that release either normal or low levels of ATP. They found that the ATP released from E. coli impaired the mice's survival and lowered the number of neutrophils (immune cells which are important for defending against bacteria) at the site of the infection. The ATP secreted via vesicles also altered the role of neutrophils but in more distant regions, and it is possible that these changes may be contributing to the severity of sepsis. These findings provide a better understanding of how ATP released from bacteria impacts the immune system during sepsis. While further investigation is needed, these findings may offer new therapeutic targets for treating sepsis.


Asunto(s)
Adenosina Trifosfato , Escherichia coli , Inflamación , Sepsis , Animales , Adenosina Trifosfato/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Sepsis/microbiología , Sepsis/metabolismo , Ratones , Inflamación/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/inmunología
7.
Sci Immunol ; 9(97): eadm7908, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996009

RESUMEN

Infections and neurodegenerative diseases induce neuroinflammation, but affected individuals often show nonneural symptoms including muscle pain and muscle fatigue. The molecular pathways by which neuroinflammation causes pathologies outside the central nervous system (CNS) are poorly understood. We developed multiple models to investigate the impact of CNS stressors on motor function and found that Escherichia coli infections and SARS-CoV-2 protein expression caused reactive oxygen species (ROS) to accumulate in the brain. ROS induced expression of the cytokine Unpaired 3 (Upd3) in Drosophila and its ortholog, IL-6, in mice. CNS-derived Upd3/IL-6 activated the JAK-STAT pathway in skeletal muscle, which caused muscle mitochondrial dysfunction and impaired motor function. We observed similar phenotypes after expressing toxic amyloid-ß (Aß42) in the CNS. Infection and chronic disease therefore activate a systemic brain-muscle signaling axis in which CNS-derived cytokines bypass the connectome and directly regulate muscle physiology, highlighting IL-6 as a therapeutic target to treat disease-associated muscle dysfunction.


Asunto(s)
Encéfalo , COVID-19 , Músculo Esquelético , Transducción de Señal , Animales , Encéfalo/inmunología , Encéfalo/metabolismo , Transducción de Señal/inmunología , Ratones , Músculo Esquelético/inmunología , Músculo Esquelético/metabolismo , COVID-19/inmunología , Enfermedad Crónica , Interleucina-6/metabolismo , Interleucina-6/inmunología , Infecciones por Escherichia coli/inmunología , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/inmunología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/inmunología , Proteínas de Drosophila/genética , SARS-CoV-2/inmunología , Drosophila melanogaster/inmunología , Péptidos beta-Amiloides/metabolismo , Humanos , Ratones Endogámicos C57BL
8.
BMC Immunol ; 25(1): 46, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39034396

RESUMEN

OBJECTIVES: The pathogenic microorganisms that cause intestinal diseases can significantly jeopardize people's health. Currently, there are no authorized treatments or vaccinations available to combat the germs responsible for intestinal disease. METHODS: Using immunoinformatics, we developed a potent multi-epitope Combination (combo) vaccine versus Salmonella and enterohemorrhagic E. coli. The B and T cell epitopes were identified by performing a conservancy assessment, population coverage analysis, physicochemical attributes assessment, and secondary and tertiary structure assessment of the chosen antigenic polypeptide. The selection process for vaccine development included using several bioinformatics tools and approaches to finally choose two linear B-cell epitopes, five CTL epitopes, and two HTL epitopes. RESULTS: The vaccine had strong immunogenicity, cytokine production, immunological properties, non-toxicity, non-allergenicity, stability, and potential efficacy against infections. Disulfide bonding, codon modification, and computational cloning were also used to enhance the stability and efficacy of expression in the host E. coli. The vaccine's structure has a strong affinity for the TLR4 ligand and is very durable, as shown by molecular docking and molecular modeling. The results of the immunological simulation demonstrated that both B and T cells had a heightened response to the vaccination component. CONCLUSIONS: The comprehensive in silico analysis reveals that the proposed vaccine will likely elicit a robust immune response against pathogenic bacteria that cause intestinal diseases. Therefore, it is a promising option for further experimental testing.


Asunto(s)
Epítopos de Linfocito B , Epítopos de Linfocito T , Vacunología , Humanos , Epítopos de Linfocito T/inmunología , Vacunología/métodos , Epítopos de Linfocito B/inmunología , Vacunas Combinadas/inmunología , Genómica/métodos , Escherichia coli Enterohemorrágica/inmunología , Salmonella/inmunología , Animales , Biología Computacional/métodos , Simulación del Acoplamiento Molecular , Vacunas contra Escherichia coli/inmunología , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/inmunología , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/prevención & control , Antígenos Bacterianos/inmunología , Desarrollo de Vacunas/métodos , Vacunas Bacterianas/inmunología
9.
Anim Reprod Sci ; 266: 107513, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38843662

RESUMEN

Escherichia coli (E. coli), a Gram-negative bacterium, is the primary pathogen responsible for endometritis in dairy cattle. The outer membrane components of E. coli, namely lipopolysaccharide (LPS) and bacterial lipoprotein, have the capacity to trigger the host's innate immune response through pattern recognition receptors (PRRs). Tolerance to bacterial cell wall components, including LPS, may play a crucial role as an essential regulatory mechanism during bacterial infection. However, the precise role of Braun lipoprotein (BLP) tolerance in E. coli-induced endometritis in dairy cattle remains unclear. In this study, we aimed to investigate the impact of BLP on the regulation of E. coli infection-induced endometritis in dairy cattle. The presence of BLP was found to diminish the expression and release of proinflammatory cytokines (IL-8 and IL-6), while concurrently promoting the expression and release of the anti-inflammatory cytokine IL-10 in endometrial epithelial cells (EECs). Furthermore, BLP demonstrated the ability to impede the activation of MAPK (ERK and p38) and NF-κB (p65) signaling pathways, while simultaneously enhancing signaling through the STAT3 pathway in EECs. Notably, BLP exhibited a dual role, acting both as an activator of TLR2 and as a regulator of TLR2 activation in LPS- and E. coli-treated EECs. In E. coli-infected endometrial explants, the presence of BLP was noted to decrease the release of proinflammatory cytokines and the expression of HMGB1, while simultaneously enhancing the release of anti-inflammatory cytokines. Collectively, our findings provide evidence that the bacterial component BLP plays a protective role in E. coli-induced endometritis in dairy cattle.


Asunto(s)
Enfermedades de los Bovinos , Endometrio , Infecciones por Escherichia coli , Escherichia coli , Animales , Femenino , Bovinos , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/inmunología , Endometrio/metabolismo , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/metabolismo , Enfermedades de los Bovinos/inmunología , Lipoproteínas/metabolismo , Endometritis/veterinaria , Endometritis/microbiología , Endometritis/metabolismo , Endometritis/inmunología , Citocinas/metabolismo , Citocinas/genética , Tolerancia Inmunológica
10.
Microbiology (Reading) ; 170(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38916198

RESUMEN

Bacterial infection is a dynamic process resulting in a heterogenous population of infected and uninfected cells. These cells respond differently based on their bacterial load and duration of infection. In the case of infection of macrophages with Crohn's disease (CD) associated adherent-invasive Escherichia coli (AIEC), understanding the drivers of pathogen success may allow targeting of cells where AIEC replicate to high levels. Here we show that stratifying immune cells based on their bacterial load identifies novel pathways and therapeutic targets not previously associated with AIEC when using a traditional homogeneous infected population approach. Using flow cytometry-based cell sorting we stratified cells into those with low or high intracellular pathogen loads, or those which were bystanders to infection. Immune cells transcriptomics revealed a diverse response to the varying levels of infection while pathway analysis identified novel intervention targets that were directly related to increasing intracellular AIEC numbers. Chemical inhibition of identified targets reduced AIEC intracellular replication or inhibited secretion of tumour necrosis factor alpha (TNFα), a key cytokine associated with AIEC infection. Our results have identified new avenues of intervention in AIEC infection that may also be applicable to CD through the repurposing of already available inhibitors. Additionally, they highlight the applicability of immune cell stratification post-infection as an effective approach for the study of microbial pathogens.


Asunto(s)
Enfermedad de Crohn , Infecciones por Escherichia coli , Escherichia coli , Macrófagos , Factor de Necrosis Tumoral alfa , Enfermedad de Crohn/microbiología , Enfermedad de Crohn/inmunología , Macrófagos/microbiología , Macrófagos/inmunología , Humanos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/inmunología , Escherichia coli/genética , Factor de Necrosis Tumoral alfa/metabolismo , Carga Bacteriana , Adhesión Bacteriana , Interacciones Huésped-Patógeno
11.
Autophagy ; 20(10): 2186-2204, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-38818900

RESUMEN

Escherichia coli strains producing the genotoxin colibactin, designated as CoPEC (colibactin-producing E. coli), have emerged as an important player in the etiology of colorectal cancer (CRC). Here, we investigated the role of macroautophagy/autophagy in myeloid cells, an important component of the tumor microenvironment, in the tumorigenesis of a susceptible mouse model infected with CoPEC. For that, a preclinical mouse model of CRC, the ApcMin/+ mice, with Atg16l1 deficiency specifically in myeloid cells (ApcMin/+/Atg16l1[∆MC]) and the corresponding control mice (ApcMin/+), were infected with a clinical CoPEC strain 11G5 or its isogenic mutant 11G5∆clbQ that does not produce colibactin. We showed that myeloid cell-specific Atg16l1 deficiency led to an increase in the volume of colonic tumors in ApcMin/+ mice under infection with 11G5, but not with 11G5∆clbQ. This was accompanied by increased colonocyte proliferation, enhanced inflammasome activation and IL1B/IL-1ß secretion, increased neutrophil number and decreased total T cell and cytotoxic CD8+ T cell numbers in the colonic mucosa and tumors. In bone marrow-derived macrophages (BMDMs), compared to uninfected and 11G5∆clbQ-infected conditions, 11G5 infection increased inflammasome activation and IL1B secretion, and this was further enhanced by autophagy deficiency. These data indicate that ATG16L1 in myeloid cells was necessary to inhibit colonic tumor growth in CoPEC-infected ApcMin/+ mice via inhibiting colibactin-induced inflammasome activation and modulating immune cell response in the tumor microenvironment. Abbreviation: AOM, azoxymethane; APC, APC regulator of WNT signaling pathway; ATG, autophagy related; Atg16l1[∆MC] mice, mice deficient for Atg16l1 specifically in myeloid cells; CASP1, caspase 1; BMDM, bone marrow-derived macrophage; CFU, colony-forming unit; CoPEC, colibactin-producing Escherichia coli; CRC, colorectal cancer; CXCL1/KC, C-X-C motif chemokine ligand 1; ELISA, enzyme-linked immunosorbent assay; IL, interleukin; MC, myeloid cell; MOI, multiplicity of infection; PBS, phosphate-buffered saline; pks, polyketide synthase; qRT-PCR, quantitative real-time reverse-transcription polymerase chain reaction; siRNA, small interfering RNA; TME, tumor microenvironment; TNF/TNF-α, tumor necrosis factor.


Asunto(s)
Proteínas Relacionadas con la Autofagia , Neoplasias Colorrectales , Escherichia coli , Inflamasomas , Células Mieloides , Péptidos , Policétidos , Animales , Policétidos/metabolismo , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/genética , Inflamasomas/metabolismo , Ratones , Péptidos/metabolismo , Células Mieloides/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Autofagia/genética , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Infecciones por Escherichia coli/metabolismo , Ratones Endogámicos C57BL , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Proliferación Celular , Microambiente Tumoral/inmunología
12.
J Innate Immun ; 16(1): 283-294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38744252

RESUMEN

INTRODUCTION: The ribonuclease (RNase) A superfamily encodes cationic antimicrobial proteins with potent microbicidal activity toward uropathogenic bacteria. Ribonuclease 6 (RNase6) is an evolutionarily conserved, leukocyte-derived antimicrobial peptide with potent microbicidal activity toward uropathogenic Escherichia coli (UPEC), the most common cause of bacterial urinary tract infections (UTIs). In this study, we generated Rnase6-deficient mice to investigate the hypothesis that endogenous RNase 6 limits host susceptibility to UTI. METHODS: We generated a Rnase6EGFP knock-in allele to identify cellular sources of Rnase6 and determine the consequences of homozygous Rnase6 deletion on antimicrobial activity and UTI susceptibility. RESULTS: We identified monocytes and macrophages as the primary cellular sources of Rnase6 in bladders and kidneys of Rnase6EGFP/+ mice. Rnase6 deficiency (i.e., Rnase6EGFP/EGFP) resulted in increased upper urinary tract UPEC burden during experimental UTI, compared to Rnase6+/+ controls. UPEC displayed increased intracellular survival in Rnase6-deficient macrophages. CONCLUSION: Our findings establish that RNase6 prevents pyelonephritis by promoting intracellular UPEC killing in monocytes and macrophages and reinforce the overarching contributions of endogenous antimicrobial RNase A proteins to host UTI defense.


Asunto(s)
Infecciones por Escherichia coli , Macrófagos , Ratones Noqueados , Ribonucleasas , Infecciones Urinarias , Escherichia coli Uropatógena , Animales , Infecciones Urinarias/inmunología , Infecciones Urinarias/microbiología , Ratones , Escherichia coli Uropatógena/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Infecciones por Escherichia coli/inmunología , Ribonucleasas/metabolismo , Ribonucleasas/genética , Ratones Endogámicos C57BL , Humanos , Monocitos/inmunología , Modelos Animales de Enfermedad , Femenino , Células Cultivadas
13.
PeerJ ; 12: e17336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784397

RESUMEN

Background: Urinary tract infections (UTIs) are very common worldwide. According to their symptomatology, these infections are classified as pyelonephritis, cystitis, or asymptomatic bacteriuria (AB). Approximately 75-95% of UTIs are caused by uropathogenic Escherichia coli (UPEC), which is an extraintestinal bacterium that possesses virulence factors for bacterial adherence and invasion in the urinary tract. In addition, UPEC possesses type 6 secretion systems (T6SS) as virulence mechanisms that can participate in bacterial competition and in bacterial pathogenicity. UPEC UMN026 carries three genes, namely, ECUMN_0231, ECUMN_0232, and ECUMN_0233, which encode three uncharacterized proteins related to the T6SS that are conserved in strains from phylogroups B2 and D and have been proposed as biomarkers of UTIs. Aim: To analyze the frequency of the ECUMN_0231, ECUMN_0232, ECUMN_0233, and vgrG genes in UTI isolates, as well as their expression in Luria Bertani (LB) medium and urine; to determine whether these genes are related to UTI symptoms or bacterial competence and to identify functional domains on the putative proteins. Methods: The frequency of the ECUMN and vgrG genes in 99 clinical isolates from UPEC was determined by endpoint PCR. The relationship between gene presence and UTI symptomatology was determined using the chi2 test, with p < 0.05 considered to indicate statistical significance. The expression of the three ECUMN genes and vgrG was analyzed by RT-PCR. The antibacterial activity of strain UMN026 was determined by bacterial competence assays. The identification of functional domains and the docking were performed using bioinformatic tools. Results: The ECUMN genes are conserved in 33.3% of clinical isolates from patients with symptomatic and asymptomatic UTIs and have no relationship with UTI symptomatology. Of the ECUMN+ isolates, only five (15.15%, 5/33) had the three ECUMN and vgrG genes. These genes were expressed in LB broth and urine in UPEC UMN026 but not in all the clinical isolates. Strain UMN026 had antibacterial activity against UPEC clinical isolate 4014 (ECUMN-) and E. faecalis but not against isolate 4012 (ECUMN+). Bioinformatics analysis suggested that the ECUMN genes encode a chaperone/effector/immunity system. Conclusions: The ECUMN genes are conserved in clinical isolates from symptomatic and asymptomatic patients and are not related to UTI symptoms. However, these genes encode a putative chaperone/effector/immunity system that seems to be involved in the antibacterial activity of strain UMN026.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Chaperonas Moleculares , Infecciones Urinarias , Escherichia coli Uropatógena , Escherichia coli Uropatógena/inmunología , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/patogenicidad , Humanos , Infecciones Urinarias/microbiología , Infecciones Urinarias/inmunología , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/inmunología , Proteínas de Escherichia coli/metabolismo , Femenino , Factores de Virulencia/genética , Factores de Virulencia/inmunología , Masculino , Persona de Mediana Edad , Adulto
14.
Sci Rep ; 14(1): 11053, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744900

RESUMEN

This study investigated the influence of polyunsaturated fatty acid composition and vitamin E supplementation on oxidative status and immune responses in weanling piglets pre- and post-E. coli challenge. Suckling piglets (n = 24) were randomly selected from two litters for an oral supplementation (1 mL/day) with fish oil or hemp oil and vitamin E supplementation (60 mg natural vitamin E/mL oil) from day 10 to 28 of age. At day 29 and 30 of age, each piglet was orally inoculated with 6.7 × 108 and 3.96 × 108 CFU of F4 and F18 E. coli, respectively. Blood was sampled from all piglets on day 28 before E. coli challenge and on day 35 of age to investigate immunological and oxidative stress markers in plasma. One week after weaning and exposure to E. coli, a general reduction in the α-tocopherol concentration and activity of GPX1 was obtained. Vitamin E supplementation lowered the extent of lipid peroxidation and improved the antioxidative status and immune responses after E. coli challenge. Hemp oil had the greatest effect on antioxidant enzyme activity. Provision of hemp oil and vitamin E to suckling piglets may reduce the incidence of post-weaning diarrhea.


Asunto(s)
Cannabis , Suplementos Dietéticos , Infecciones por Escherichia coli , Escherichia coli , Aceites de Pescado , Oxidación-Reducción , Vitamina E , Animales , Vitamina E/farmacología , Porcinos , Aceites de Pescado/farmacología , Aceites de Pescado/administración & dosificación , Cannabis/química , Oxidación-Reducción/efectos de los fármacos , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/prevención & control , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Oxidativo/efectos de los fármacos , Destete , Peroxidación de Lípido/efectos de los fármacos , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/tratamiento farmacológico
15.
Arch Microbiol ; 206(6): 249, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713385

RESUMEN

Escherichia coli (E. coli) can induce severe clinical bovine mastitis, which is to blame for large losses experienced by dairy farms. Macrophage polarization into various states is in response to pathogen infections. Lycopene, a naturally occurring hydrocarbon carotenoid, relieved inflammation by controlling M1/M2 status of macrophages. Thus, we wanted to explore the effect of lycopene on polarization states of macrophages in E. coli-induced mastitis. Macrophages were cultivated with lycopene for 24, before E. coli inoculation for 6 h. Lycopene (0.5 µmol/L) significantly enhanced cell viabilities and significantly reduced lactic dehydrogenase (LDH) levels in macrophages, whereas 2 and 3 µmol/L lycopene significantly enhanced LDH activities. Lycopene treatment significantly reduced the increase in LDH release, iNOS, CD86, TNF-α, IL-1ß and phosphatase and tensin homolog (PTEN) expressions in E. coli group. 0.5 µmol/L lycopene significantly increased E. coli-induced downregulation of CD206, arginase I (ARG1), indoleamine 2,3-dioxygenase (IDO), chitinase 3-like 3 (YM1), PI3K, AKT, p-AKT, mammalian target of rapamycin (mTOR), p-mTOR, jumonji domain-containing protein-3 (JMJD3) and interferon regulatory factor 4 (IRF4) levels. Moreover, Ginkgolic acid C17:1 (a specific PTEN inhibitor), 740YPDGFR (a specific PI3K activator), SC79 (a specific AKT activator) or CHPG sodium salt (a specific NF-κB activator) significantly decreased CD206, AGR1, IDO and YM1 expressions in lycopene and E. coli-treated macrophages. Therefore, lycopene increased M2 macrophages via inhibiting NOTCH1-PI3K-mTOR-NF-κB-JMJD3-IRF4 pathway in response to E. coli infection in macrophages. These results contribute to revealing the pathogenesis of E. coli-caused bovine mastitis, providing the new angle of the prevention and management of mastitis.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Licopeno , Macrófagos , Transducción de Señal , Animales , Bovinos , Femenino , Ratones , Línea Celular , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/inmunología , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Licopeno/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Macrófagos/inmunología , Macrófagos/metabolismo , Mastitis Bovina/microbiología , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Receptor Notch1/metabolismo , Receptor Notch1/genética , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
16.
Front Immunol ; 15: 1368099, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665923

RESUMEN

Early increase in the level of endothelial progenitor cells (EPCs) in the systemic circulation occurs in patients with septic infection/sepsis. The significance and underlying mechanisms of this response remain unclear. This study investigated the bone marrow EPC response in adult mice with septic infection induced by intravenous injection (i.v.) of Escherichia coli. For in vitro experiments, sorted marrow stem/progenitor cells (SPCs) including lineage(lin)-stem cell factor receptor (c-kit)+stem cell antigen-1 (Sca-1)-, lin-c-kit+, and lin- cells were cultured with or without lipopolysaccharides (LPSs) and recombinant murine vascular endothelial growth factor (VEGF) in the absence and presence of anti-Sca-1 crosslinking antibodies. In a separate set of experiments, marrow lin-c-kit+ cells from green fluorescence protein (GFP)+ mice, i.v. challenged with heat-inactivated E. coli or saline for 24 h, were subcutaneously implanted in Matrigel plugs for 5 weeks. Marrow lin-c-kit+ cells from Sca-1 knockout (KO) mice challenged with heat-inactivated E. coli for 24 h were cultured in the Matrigel medium for 8 weeks. The marrow pool of EPCs bearing the lin-c-kit+Sca-1+VEGF receptor 2 (VEGFR2)+ (LKS VEGFR2+) and LKS CD133+VEGFR2+ surface markers expanded rapidly following septic infection, which was supported by both proliferative activation and phenotypic conversion of marrow stem/progenitor cells. Increase in marrow EPCs and their reprogramming for enhancing angiogenic activity correlated with cell-marked upregulation of Sca-1 expression. Sca-1 was coupled with Ras-related C3 botulinum toxin substrate 2 (Rac2) in signaling the marrow EPC response. Septic infection caused a substantial increase in plasma levels of IFN-γ, VEGF, G-CSF, and SDF-1. The early increase in circulating EPCs was accompanied by their active homing and incorporation into pulmonary microvasculature. These results demonstrate that the marrow EPC response is a critical component of the host defense system. Sca-1 signaling plays a pivotal role in the regulation of EPC response in mice with septic infection.


Asunto(s)
Células Progenitoras Endoteliales , Proteínas de la Membrana , Sepsis , Animales , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/inmunología , Sepsis/inmunología , Sepsis/metabolismo , Ratones , Ratones Noqueados , Escherichia coli/inmunología , Infecciones por Escherichia coli/inmunología , Ratones Endogámicos C57BL , Factor A de Crecimiento Endotelial Vascular/metabolismo , Antígenos Ly/metabolismo , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/inmunología , Células Cultivadas , Masculino
17.
J Leukoc Biol ; 116(3): 632-643, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38484156

RESUMEN

B-1a cells, a regulatory subset of B lymphocytes, produce natural IgM and interleukin-10. Neutrophil extracellular traps (NETs) play a crucial role in pathogen defense, but their excessive formation during sepsis can cause further inflammation and tissue damage. In sepsis, extracellular cold-inducible RNA-binding protein (eCIRP), a damage-associated molecular pattern, is released to induce NET formation. We hypothesize that B-1a cells clear NETs to prevent sepsis-induced injury. Sepsis in mice was induced by injecting 1 × 107 and 5 × 107 colony-forming units of Escherichia coli intraperitoneally. After 4 and 20 h, we assessed the number of B-1a cells in the peritoneal cavity using flow cytometry. Our results showed that the number of peritoneal B-1a cells was significantly decreased in E. coli sepsis mice. Importantly, replenishing B-1a cells via intraperitoneal injection in sepsis mice significantly decreased NETs in peritoneal neutrophils. We also observed a decrease in serum inflammation and injury markers and a significant increase in the overall survival rate in B-1a cell-treated septic mice. To understand the mechanism, we cocultured bone marrow-derived neutrophils with peritoneal B-1a cells in a contact or noncontact condition using an insert and stimulated them with eCIRP. After 4 h, we found that eCIRP significantly increased NET formation in bone marrow-derived neutrophils. Interestingly, we observed that B-1a cells inhibited NETs by 67% in a contact-dependent manner. Surprisingly, when B-1a cells were cultured in inserts, there was no significant decrease in NET formation, suggesting that direct cell-to-cell contact is crucial for this inhibitory effect. We further determined that B-1a cells promoted NET phagocytosis, and this was mediated through natural IgM, as blocking the IgM receptor attenuated the engulfment of NETs by B-1a cells. Finally, we identified that following their engulfment, NETs were localized into the lysosomal compartment for lysis. Thus, our study suggests that B-1a cells decrease NET content in eCIRP-treated neutrophils and E. coli sepsis mice.


Asunto(s)
Trampas Extracelulares , Neutrófilos , Sepsis , Animales , Sepsis/inmunología , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Ratones , Neutrófilos/inmunología , Neutrófilos/metabolismo , Masculino , Fagocitosis , Ratones Endogámicos C57BL , Subgrupos de Linfocitos B/inmunología , Infecciones por Escherichia coli/inmunología , Escherichia coli , Proteínas de Unión al ARN/metabolismo
18.
Fish Shellfish Immunol ; 149: 109526, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554743

RESUMEN

In teleost blood, red blood cells (RBCs) are the most common type of cell, and they differ from mammalian RBCs in having a nucleus and other organelles. As nucleated cells, teleost RBCs contribute to the immune response against pathogens, but their antibacterial mechanism remains unclear. Here, we utilized RNA-Seq to analyze gene expression patterns of grass carp (Ctenopharyngodon idellus) RBCs (GcRBCs) stimulated by Aeromonas hydrophila, Escherichia coli, and Staphylococcus aureus. Our transcriptomic data showed that bacterial stimulation generated many differentially expressed genes (DEGs). Furthermore, several inflammatory pathways responded to bacterial activation, and the TLR, IL-17, and tumor necrosis factor (TNF) signaling pathways were significantly activated based on Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Furthermore, the findings of qRT-PCR showed markedly elevated expression of various cytokines, including IL-1ß, IL4, IL6, IL8, IL12, and TNFα, in GcRBCs after incubation with bacteria. Reactive oxygen species (ROS) production in GcRBCs was markedly increased after the cells were stimulated with the three bacteria, and the expression of superoxide dismutase, glutathione peroxidase, and antioxidant enzymes, including catalase, was altered. Flow cytometry analysis showed that the apoptosis rate of GcRBCs was enhanced after stimulation with the three bacteria for different times. In summary, our findings reveal that bacterial stimulation activates the immune response of GcRBCs by regulating ROS release, cytokine expression, and the antioxidant system, leading to apoptosis of GcRBCs.


Asunto(s)
Aeromonas hydrophila , Carpas , Eritrocitos , Escherichia coli , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Inmunidad Innata , Animales , Carpas/inmunología , Carpas/genética , Enfermedades de los Peces/inmunología , Eritrocitos/inmunología , Aeromonas hydrophila/fisiología , Inmunidad Innata/genética , Escherichia coli/inmunología , Escherichia coli/fisiología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Staphylococcus aureus/fisiología , Staphylococcus aureus/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/veterinaria , Transcriptoma/inmunología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/veterinaria
19.
Cell Rep ; 43(4): 114004, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38522070

RESUMEN

During infections, host cells are exposed to pathogen-associated molecular patterns (PAMPs) and virulence factors that stimulate multiple signaling pathways that interact additively, synergistically, or antagonistically. The net effect of such higher-order interactions is a vital determinant of the outcome of host-pathogen interactions. Here, we demonstrate one such complex interplay between bacterial exotoxin- and PAMP-induced innate immune pathways. We show that two caspases activated during enterohemorrhagic Escherichia coli (EHEC) infection by lipopolysaccharide (LPS) and Shiga toxin (Stx) interact in a functionally antagonistic manner; cytosolic LPS-activated caspase-11 cleaves full-length gasdermin D (GSDMD), generating an active pore-forming N-terminal fragment (NT-GSDMD); subsequently, caspase-3 activated by EHEC Stx cleaves the caspase-11-generated NT-GSDMD to render it nonfunctional, thereby inhibiting pyroptosis and interleukin-1ß maturation. Bacteria typically subvert inflammasomes by targeting upstream components such as NLR sensors or full-length GSDMD but not active NT-GSDMD. Thus, our findings uncover a distinct immune evasion strategy where a bacterial toxin disables active NT-GSDMD by co-opting caspase-3.


Asunto(s)
Caspasa 3 , Gasderminas , Péptidos y Proteínas de Señalización Intracelular , Macrófagos , Proteínas de Unión a Fosfato , Piroptosis , Piroptosis/efectos de los fármacos , Proteínas de Unión a Fosfato/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Caspasa 3/metabolismo , Humanos , Animales , Ratones , Proteínas Reguladoras de la Apoptosis/metabolismo , Toxinas Bacterianas/metabolismo , Caspasas/metabolismo , Lipopolisacáridos/farmacología , Escherichia coli Enterohemorrágica/metabolismo , Escherichia coli Enterohemorrágica/patogenicidad , Caspasas Iniciadoras/metabolismo , Inflamasomas/metabolismo , Ratones Endogámicos C57BL , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/inmunología , Interleucina-1beta/metabolismo
20.
Am J Hum Biol ; 35(8): e23897, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36951242

RESUMEN

INTRODUCTION: Multiple studies have reported that milk immune content increases for infants experiencing infectious disease (ID) episodes, suggesting that the immune system of milk (ISOM) offers enhanced protection when needed to combat ID. METHODS: To test the hypothesis that ISOM content and/or activity increases during an infant's ID episode, we characterized milk secretory immunoglobulin A (sIgA; a major ISOM constituent) and in vitro interleukin-6 (IL-6) responses to Salmonella enterica and Escherichia coli, as system-level biomarkers of ISOM activity, in a prospective study among 96 mother-infant dyads in Kilimanjaro, Tanzania. RESULTS: After control for covariates, no milk immune variables (sIgA, Coef: 0.03; 95% CI -0.25, 0.32; in vitro IL-6 response to S. enterica, Coef: 0.23; 95% CI: -0.67, 1.13; IL-6 response to E. coli, Coef: -0.11; 95% CI: -0.98, 0.77) were associated with prevalent ID (diagnosed at the initial participation visit). Among infants experiencing an incident ID (diagnosed subsequent to the initial participation), milk immune content and responses were not substantially higher or lower than the initial visit (sIgA, N: 61; p: 0.788; IL-6 response to S. enterica, N: 56; p: 0.896; IL-6 response to E. coli, N: 36; p: 0.683); this was unchanged by exclusion of infants with ID at the time of initial participation. CONCLUSION: These findings are not consistent with the hypothesis that milk delivers enhanced immune protection when infants experience ID. In environments with a high burden of ID, dynamism may be less valuable to maternal reproductive success than stability in the ISOM.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Inmunoglobulina A Secretora , Interleucina-6 , Leche Humana , Infecciones por Salmonella , Salmonella enterica , Humanos , Femenino , Leche Humana/química , Interleucina-6/análisis , Interleucina-6/inmunología , Salmonella enterica/fisiología , Infecciones por Salmonella/inmunología , Escherichia coli/fisiología , Infecciones por Escherichia coli/inmunología , Recién Nacido , Lactante , Tanzanía , Estudios Prospectivos , Adulto , Estudios Transversales , Técnicas para Inmunoenzimas , Inmunoglobulina A Secretora/análisis , Inmunoglobulina A Secretora/inmunología , Estudios Longitudinales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA