Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.983
Filtrar
Más filtros











Intervalo de año de publicación
1.
Carbohydr Polym ; 339: 122251, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823918

RESUMEN

In this study, the disulfide-linked hyaluronic acid (HA) hydrogels were optimised for potential application as a scaffold in tissue engineering through the Quality by Design (QbD) approach. For this purpose, HA was first modified by incorporating the cysteine moiety into the HA backbone, which promoted the formation of disulfide cross-linked HA hydrogel at physiological pH. Utilising a Design of Experiments (DoE) methodology, the critical factors to achieve stable biomaterials, i.e. the degree of HA substitution, HA molecular weight, and coupling agent ratio, were explored. To establish a design space, the DoE was performed with 65 kDa, 138 kDa and 200 kDa HA and variable concentrations of coupling agent to optimise conditions to obtain HA hydrogel with improved rheological properties. Thus, HA hydrogel with a 12 % degree of modification, storage modulus of ≈2321 Pa and loss modulus of ≈15 Pa, was achieved with the optimum ratio of coupling agent. Furthermore, biocompatibility assessments in C28/I2 chondrocyte cells demonstrated the non-toxic nature of the hydrogel, underscoring its potential for tissue regeneration. Our findings highlight the efficacy of the QbD approach in designing HA hydrogels with tailored properties for biomedical applications.


Asunto(s)
Materiales Biocompatibles , Condrocitos , Disulfuros , Ácido Hialurónico , Hidrogeles , Reología , Ingeniería de Tejidos , Ácido Hialurónico/química , Hidrogeles/química , Hidrogeles/síntesis química , Disulfuros/química , Condrocitos/efectos de los fármacos , Condrocitos/citología , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno
2.
Carbohydr Polym ; 339: 122174, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823938

RESUMEN

Segmental bone defects can arise from trauma, infection, metabolic bone disorders, or tumor removal. Hydrogels have gained attention in the field of bone regeneration due to their unique hydrophilic properties and the ability to customize their physical and chemical characteristics to serve as scaffolds and carriers for growth factors. However, the limited mechanical strength of hydrogels and the rapid release of active substances have hindered their clinical utility and therapeutic effectiveness. With ongoing advancements in material science, the development of injectable and biofunctionalized hydrogels holds great promise for addressing the challenges associated with segmental bone defects. In this study, we incorporated lyophilized platelet-rich fibrin (LPRF), which contains a multitude of growth factors, into a genipin-crosslinked gelatin/hyaluronic acid (GLT/HA-0.5 % GP) hydrogel to create an injectable and biofunctionalized composite material. Our findings demonstrate that this biofunctionalized hydrogel possesses optimal attributes for bone tissue engineering. Furthermore, results obtained from rabbit model with segmental tibial bone defects, indicate that the treatment with this biofunctionalized hydrogel resulted in increased new bone formation, as confirmed by imaging and histological analysis. From a translational perspective, this biofunctionalized hydrogel provides innovative and bioinspired capabilities that have the potential to enhance bone repair and regeneration in future clinical applications.


Asunto(s)
Regeneración Ósea , Liofilización , Gelatina , Ácido Hialurónico , Hidrogeles , Iridoides , Fibrina Rica en Plaquetas , Animales , Iridoides/química , Iridoides/farmacología , Gelatina/química , Conejos , Hidrogeles/química , Hidrogeles/farmacología , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Regeneración Ósea/efectos de los fármacos , Fibrina Rica en Plaquetas/química , Ingeniería de Tejidos/métodos , Reactivos de Enlaces Cruzados/química , Andamios del Tejido/química , Tibia/efectos de los fármacos , Tibia/cirugía
3.
Biol Pharm Bull ; 47(6): 1072-1078, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38825460

RESUMEN

In previous studies, my group developed cell-adhesive peptide-polysaccharide complexes as biomaterials for tissue engineering. Having a wide variety of cell-adhesive peptides is important as the biological functions of peptide-polysaccharide complexes are highly dependent on the biological activity of peptides. This paper reviews the biological activities of two types of recently characterized cell-adhesive peptides. The first is peptides rich in basic amino acids originating from octaarginine. We analyzed the relationships between the amino acid composition of basic peptides and cell adhesion, elongation, and proliferation and identified the most suitable peptide for cell culture. The second was arginine-glycine-aspartic acid (RGD)-containing peptides that promote the adhesion of induced pluripotent stem cells (iPSCs). We identified the RGD-surrounding sequences necessary for iPSC adhesion, clarified the underlying mechanism, and improved cell adhesion by modifying the structure-activity relationships. The novel cell-adhesive peptides identified in our previous studies may aid in the development of novel peptide-based biomaterials.


Asunto(s)
Materiales Biocompatibles , Adhesión Celular , Péptidos , Adhesión Celular/efectos de los fármacos , Materiales Biocompatibles/química , Humanos , Péptidos/farmacología , Péptidos/química , Animales , Oligopéptidos/química , Oligopéptidos/farmacología , Ingeniería de Tejidos/métodos , Células Madre Pluripotentes Inducidas/citología
4.
Sci Rep ; 14(1): 12945, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839791

RESUMEN

Extrusion-based bioprinting is an established method in biofabrication. Suitable bioinks have fundamentally different compositions and characteristics, which should be examined, in order to find a perfect model system. Here, we investigate the effect of two alginate-based, yet unalike 3D-printed bioinks, pre-crosslinked alginate-dialdehyde gelatin (ADA-GEL) and a mixture of alginate, hyaluronic acid, and gelatin (Alg/HA/Gel), on the melanoma cell line Mel Im and vice versa in terms of stiffness, shrinkage, cellular behavior and colony formation over 15 days. Rheological stiffness measurements revealed two soft gels with similar storage moduli. The cells did not have a significant impact on the overall stiffness, whereas ADA-GEL (2.5/2.5%) was significantly stiffer than Alg/HA/Gel (0.5/0.1/3%). Regarding the shrinkage of printed constructs, cells had a significant influence, especially in ADA-GEL, which has covalent bonds between the oxidized alginate and gelatin. Multi-photon microscopy exhibited proliferation, cell spreading and migration in ADA-GEL with cell-cell and cell-matrix interaction, dissimilarly to Alg/HA/Gel, in which cells formed spherical, encapsulated colonies. Scanning electron microscopy and histology showed degradation and multi-layered growth on ADA-GEL and fewer examples of escaped cells on Alg/HA/Gel. Both gels serve as proliferation bioink for melanoma with more necrosis in deeper Alg/HA/Gel colonies and differences in spreading and matrix interaction. These findings show the importance of proper characterization of the bioinks for different applications.


Asunto(s)
Alginatos , Bioimpresión , Proliferación Celular , Gelatina , Melanoma , Impresión Tridimensional , Alginatos/química , Melanoma/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Gelatina/química , Bioimpresión/métodos , Humanos , Tinta , Ácido Hialurónico/química , Reología , Andamios del Tejido/química , Ingeniería de Tejidos/métodos
5.
Sci Rep ; 14(1): 12721, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830871

RESUMEN

Surface structure plays a crucial role in determining cell behavior on biomaterials, influencing cell adhesion, proliferation, differentiation, as well as immune cells and macrophage polarization. While grooves and ridges stimulate M2 polarization and pits and bumps promote M1 polarization, these structures do not accurately mimic the real bone surface. Consequently, the impact of mimicking bone surface topography on macrophage polarization remains unknown. Understanding the synergistic sequential roles of M1 and M2 macrophages in osteoimmunomodulation is crucial for effective bone tissue engineering. Thus, exploring the impact of bone surface microstructure mimicking biomaterials on macrophage polarization is critical. In this study, we aimed to sequentially activate M1 and M2 macrophages using Poly-L-Lactic acid (PLA) membranes with bone surface topographical features mimicked through the soft lithography technique. To mimic the bone surface topography, a bovine femur was used as a model surface, and the membranes were further modified with collagen type-I and hydroxyapatite to mimic the bone surface microenvironment. To determine the effect of these biomaterials on macrophage polarization, we conducted experimental analysis that contained estimating cytokine release profiles and characterizing cell morphology. Our results demonstrated the potential of the hydroxyapatite-deposited bone surface-mimicked PLA membranes to trigger sequential and synergistic M1 and M2 macrophage polarizations, suggesting their ability to achieve osteoimmunomodulatory macrophage polarization for bone tissue engineering applications. Although further experimental studies are required to completely investigate the osteoimmunomodulatory effects of these biomaterials, our results provide valuable insights into the potential advantages of biomaterials that mimic the complex microenvironment of bone surfaces.


Asunto(s)
Macrófagos , Poliésteres , Propiedades de Superficie , Animales , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Bovinos , Poliésteres/química , Ratones , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ingeniería de Tejidos/métodos , Durapatita/química , Citocinas/metabolismo , Huesos/citología , Diferenciación Celular/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Células RAW 264.7 , Polaridad Celular/efectos de los fármacos , Fémur , Colágeno Tipo I/metabolismo
6.
Sci Rep ; 14(1): 12750, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830952

RESUMEN

The current practice of restoring the anatomical structure in the treatment of pelvic floor dysfunction includes implantation of synthetic sling, which carries potential complications. This study aimed to develop biological substitutes to improve tissue function using scaffolds as a support to the host cells, through formation of new tissue. Human amniotic fluid stem cells (hAFSCs) were seeded on synthetic mesh-scaffold of AlloDerm Regenerative Tissue Matrix (RTM), Poly-DL-lactico-glycolic acid (PLGA) mesh (VICRYL) and Polydioxanone (PDS) meshes. In vitro study evaluates the metabolic activity of hAFSCs seeded mesh-scaffolds. In vivo study involving Sprague-Dawley rats was performed by assigning into 7 groups of sham control with fascia operation, AlloDerm implant, PDS implant, PLGA implant, AlloDerm harvest with hAFSC (AlloDerm-SC), PDS harvest with hAFSC(PDS-SC) and PLGS harvest with hAFSC (PGLA-SC). In vitro study reveals cell viability and proliferation of hAFSC on mesh scaffolds varies between meshes, with AlloDerm growing the fastest. The biomechanical properties of tissue-mesh-complex tension strength declined over time, showing highest tension strength on week-1, deteriorated similar to control group on week-12. All hAFSC-seeded mesh provides higher tension strength, compared to without. This study shed the potential of synthetic mesh as a scaffold for hAFSC for the surgical treatment of pelvic floor dysfunction.


Asunto(s)
Líquido Amniótico , Ratas Sprague-Dawley , Células Madre , Andamios del Tejido , Animales , Andamios del Tejido/química , Humanos , Líquido Amniótico/citología , Ratas , Células Madre/citología , Femenino , Procedimientos de Cirugía Plástica/métodos , Ingeniería de Tejidos/métodos , Mallas Quirúrgicas , Proliferación Celular , Diafragma Pélvico/cirugía , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química
7.
Clin Oral Investig ; 28(7): 361, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847929

RESUMEN

OBJECTIVES: To assess gingival crevicular fluid (GCF) levels of inflammatory and bone remodelling related biomarkers following transplantation of a tissue-engineered biocomplex into intrabony defects at several time-points over 12-months. MATERIALS AND METHODS: Group-A (n = 9) received the Minimal Access Flap (MAF) surgical technique combined with a biocomplex of autologous clinical-grade alveolar bone-marrow mesenchymal stem cells in collagen scaffolds enriched with an autologous fibrin/platelet lysate (aFPL). Group-B (n = 10) received the MAF surgery, with collagen scaffolds enriched with aFPL and Group-C (n = 8) received the MAF surgery alone. GCF was collected from the osseous defects of subjects via paper strips/30 sec at baseline, 6-weeks, 3-, 6-, 9-, 12-months post-surgery. Levels of inflammatory and bone remodelling-related biomarkers in GCF were determined by ELISA. RESULTS: Group-A demonstrated significantly higher GCF levels of BMP-7 at 6-9 months than baseline, with gradually decreasing levels of pro-inflammatory and pro-osteoclastogenic markers (TNF-α, RANKL) over the study-period; and an overall decrease in the RANKL/OPG ratio at 9-12 months than baseline (all p < 0.001). In comparison, only modest interim changes were observed in Groups-B and -C. CONCLUSIONS: At the protein level, the approach of MAF and biocomplex transplantation provided greater tissue regeneration potential as cell-based therapy appeared to modulate inflammation and bone remodelling in residual periodontal defects. CLINICAL RELEVANCE: Transplantation of a tissue engineered construct into periodontal intrabony defects demonstrated a biochemical pattern for inflammatory control and tissue regeneration over 12-months compared to the control treatments. Understanding the biological healing events of stem cell transplantation may facilitate the design of novel treatment strategies. CLINICAL DATABASE REGISTRATION: ClinicalTrials.gov ID: NCT02449005.


Asunto(s)
Biomarcadores , Remodelación Ósea , Líquido del Surco Gingival , Ingeniería de Tejidos , Andamios del Tejido , Humanos , Masculino , Ingeniería de Tejidos/métodos , Femenino , Líquido del Surco Gingival/química , Remodelación Ósea/fisiología , Adulto , Persona de Mediana Edad , Ensayo de Inmunoadsorción Enzimática , Colgajos Quirúrgicos , Resultado del Tratamiento , Colágeno
8.
Stem Cell Res Ther ; 15(1): 135, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715130

RESUMEN

BACKGROUND: Biomaterials used in bone tissue engineering must fulfill the requirements of osteoconduction, osteoinduction, and osseointegration. However, biomaterials with good osteoconductive properties face several challenges, including inadequate vascularization, limited osteoinduction and barrier ability, as well as the potential to trigger immune and inflammatory responses. Therefore, there is an urgent need to develop guided bone regeneration membranes as a crucial component of tissue engineering strategies for repairing bone defects. METHODS: The mZIF-8/PLA membrane was prepared using electrospinning technology and simulated body fluid external mineralization method. Its ability to induce biomimetic mineralization was evaluated through TEM, EDS, XRD, FT-IR, zeta potential, and wettability techniques. The biocompatibility, osteoinduction properties, and osteo-immunomodulatory effects of the mZIF-8/PLA membrane were comprehensively evaluated by examining cell behaviors of surface-seeded BMSCs and macrophages, as well as the regulation of cellular genes and protein levels using PCR and WB. In vivo, the mZIF-8/PLA membrane's potential to promote bone regeneration and angiogenesis was assessed through Micro-CT and immunohistochemical staining. RESULTS: The mineralized deposition enhances hydrophilicity and cell compatibility of mZIF-8/PLA membrane. mZIF-8/PLA membrane promotes up-regulation of osteogenesis and angiogenesis related factors in BMSCs. Moreover, it induces the polarization of macrophages towards the M2 phenotype and modulates the local immune microenvironment. After 4-weeks of implantation, the mZIF-8/PLA membrane successfully bridges critical bone defects and almost completely repairs the defect area after 12-weeks, while significantly improving the strength and vascularization of new bone. CONCLUSIONS: The mZIF-8/PLA membrane with dual osteoconductive and immunomodulatory abilities could pave new research paths for bone tissue engineering.


Asunto(s)
Regeneración Ósea , Regeneración Ósea/efectos de los fármacos , Animales , Osteogénesis/efectos de los fármacos , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Ratones , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Membranas Artificiales , Regeneración Tisular Dirigida/métodos , Andamios del Tejido/química , Poliésteres/química , Poliésteres/farmacología , Ratas
9.
Int J Oral Sci ; 16(1): 37, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734663

RESUMEN

Emerging regenerative cell therapies for alveolar bone loss have begun to explore the use of cell laden hydrogels for minimally invasive surgery to treat small and spatially complex maxilla-oral defects. However, the oral cavity presents a unique and challenging environment for in vivo bone tissue engineering, exhibiting both hard and soft periodontal tissue as well as acting as key biocenosis for many distinct microbial communities that interact with both the external environment and internal body systems, which will impact on cell fate and subsequent treatment efficacy. Herein, we design and bioprint a facile 3D in vitro model of a human dentine interface to probe the effect of the dentine surface on human mesenchymal stem cells (hMSCs) encapsulated in a microporous hydrogel bioink. We demonstrate that the dentine substrate induces osteogenic differentiation of encapsulated hMSCs, and that both dentine and ß-tricalcium phosphate substrates stimulate extracellular matrix production and maturation at the gel-media interface, which is distal to the gel-substrate interface. Our findings demonstrate the potential for long-range effects on stem cells by mineralized surfaces during bone tissue engineering and provide a framework for the rapid development of 3D dentine-bone interface models.


Asunto(s)
Diferenciación Celular , Dentina , Células Madre Mesenquimatosas , Osteogénesis , Ingeniería de Tejidos , Humanos , Osteogénesis/fisiología , Ingeniería de Tejidos/métodos , Fosfatos de Calcio , Hidrogeles , Técnicas In Vitro , Bioimpresión , Andamios del Tejido , Propiedades de Superficie , Matriz Extracelular , Células Cultivadas
10.
Ann Med ; 56(1): 2337871, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38738394

RESUMEN

Tendons are fibroblastic structures that link muscle and bone. There are two kinds of tendon injuries, including acute and chronic. Each form of injury or deterioration can result in significant pain and loss of tendon function. The recovery of tendon damage is a complex and time-consuming recovery process. Depending on the anatomical location of the tendon tissue, the clinical outcomes are not the same. The healing of the wound process is divided into three stages that overlap: inflammation, proliferation, and tissue remodeling. Furthermore, the curing tendon has a high re-tear rate. Faced with the challenges, tendon injury management is still a clinical issue that must be resolved as soon as possible. Several newer directions and breakthroughs in tendon recovery have emerged in recent years. This article describes tendon injury and summarizes recent advances in tendon recovery, along with stem cell therapy, gene therapy, Platelet-rich plasma remedy, growth factors, drug treatment, and tissue engineering. Despite the recent fast-growing research in tendon recovery treatment, still, none of them translated to the clinical setting. This review provides a detailed overview of tendon injuries and potential preclinical approaches for treating tendon injuries.


Asunto(s)
Terapia Genética , Traumatismos de los Tendones , Ingeniería de Tejidos , Cicatrización de Heridas , Traumatismos de los Tendones/terapia , Traumatismos de los Tendones/fisiopatología , Humanos , Cicatrización de Heridas/fisiología , Animales , Ingeniería de Tejidos/métodos , Terapia Genética/métodos , Plasma Rico en Plaquetas , Tendones , Trasplante de Células Madre/métodos , Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Péptidos y Proteínas de Señalización Intercelular/metabolismo
11.
Biomed Mater ; 19(4)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38756029

RESUMEN

Hard tissue engineering scaffolds especially 3D printed scaffolds were considered an excellent strategy for craniomaxillofacial hard tissue regeneration, involving crania and facial bones and teeth. Porcine treated dentin matrix (pTDM) as xenogeneic extracellular matrix has the potential to promote the stem cell differentiation and mineralization as it contains plenty of bioactive factors similar with human-derived dentin tissue. However, its application might be impeded by the foreign body response induced by the damage-associated molecular patterns of pTDM, which would cause strong inflammation and hinder the regeneration. Ceria nanoparticles (CNPs) show a great promise at protecting tissue from oxidative stress and influence the macrophages polarization. Using 3D-bioprinting technology, we fabricated a xenogeneic hard tissue scaffold based on pTDM xenogeneic TDM-polycaprolactone (xTDM/PCL) and we modified the scaffolds by CNPs (xTDM/PCL/CNPs). Through series ofin vitroverification, we found xTDM/PCL/CNPs scaffolds held promise at up-regulating the expression of osteogenesis and odontogenesis related genes including collagen type 1, Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein-2, osteoprotegerin, alkaline phosphatase (ALP) and DMP1 and inducing macrophages to polarize to M2 phenotype. Regeneration of bone tissues was further evaluated in rats by conducting the models of mandibular and skull bone defects. Thein vivoevaluation showed that xTDM/PCL/CNPs scaffolds could promote the bone tissue regeneration by up-regulating the expression of osteogenic genes involving ALP, RUNX2 and bone sialoprotein 2 and macrophage polarization into M2. Regeneration of teeth evaluated on beagles demonstrated that xTDM/PCL/CNPs scaffolds expedited the calcification inside the scaffolds and helped form periodontal ligament-like tissues surrounding the scaffolds.


Asunto(s)
Cerio , Matriz Extracelular , Nanopartículas , Osteogénesis , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Animales , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Porcinos , Matriz Extracelular/metabolismo , Cerio/química , Nanopartículas/química , Ratas , Poliésteres/química , Dentina/química , Humanos , Regeneración Ósea/efectos de los fármacos , Odontogénesis , Diferenciación Celular , Regeneración , Macrófagos/metabolismo , Cráneo , Ratas Sprague-Dawley
12.
Biofabrication ; 16(3)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697099

RESUMEN

Rotator cuff tear is one of the most common musculoskeletal disorders, which often results in recurrent shoulder pain and limited movement. Enthesis is a structurally complex and functionally critical interface connecting tendon and bone that plays an essential role in maintaining integrity of the shoulder joint. Despite the availability of advanced surgical procedures for rotator cuff repair, there is a high rate of failure following surgery due to suboptimal enthesis healing and regeneration. Novel strategies based on tissue engineering are gaining popularity in improving tendon-bone interface (TBI) regeneration. Through incorporating physical and biochemical cues into scaffold design which mimics the structure and composition of native enthesis is advantageous to guide specific differentiation of seeding cells and facilitate the formation of functional tissues. In this review, we summarize the current state of research in enthesis tissue engineering highlighting the development and application of biomimetic scaffolds that replicate the gradient TBI. We also discuss the latest techniques for fabricating potential translatable scaffolds such as 3D bioprinting and microfluidic device. While preclinical studies have demonstrated encouraging results of biomimetic gradient scaffolds, the translation of these findings into clinical applications necessitates a comprehensive understanding of their safety and long-term efficacy.


Asunto(s)
Manguito de los Rotadores , Ingeniería de Tejidos , Andamios del Tejido , Humanos , Andamios del Tejido/química , Manguito de los Rotadores/cirugía , Animales , Materiales Biomiméticos/química , Regeneración , Biomimética , Lesiones del Manguito de los Rotadores/cirugía , Impresión Tridimensional
13.
Sci Rep ; 14(1): 11003, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744985

RESUMEN

The future of organ and tissue biofabrication strongly relies on 3D bioprinting technologies. However, maintaining sterility remains a critical issue regardless of the technology used. This challenge becomes even more pronounced when the volume of bioprinted objects approaches organ dimensions. Here, we introduce a novel device called the Flexible Unique Generator Unit (FUGU), which is a unique combination of flexible silicone membranes and solid components made of stainless steel. Alternatively, the solid components can also be made of 3D printed medical-grade polycarbonate. The FUGU is designed to support micro-extrusion needle insertion and removal, internal volume adjustment, and fluid management. The FUGU was assessed in various environments, ranging from custom-built basic cartesian to sophisticated 6-axis robotic arm bioprinters, demonstrating its compatibility, flexibility, and universality across different bioprinting platforms. Sterility assays conducted under various infection scenarios highlight the FUGU's ability to physically protect the internal volume against contaminations, thereby ensuring the integrity of the bioprinted constructs. The FUGU also enabled bioprinting and cultivation of a 14.5 cm3 human colorectal cancer tissue model within a completely confined and sterile environment, while allowing for the exchange of gases with the external environment. This FUGU system represents a significant advancement in 3D bioprinting and biofabrication, paving the path toward the sterile production of implantable tissues and organs.


Asunto(s)
Bioimpresión , Reactores Biológicos , Impresión Tridimensional , Bioimpresión/métodos , Humanos , Ingeniería de Tejidos/métodos , Esterilización , Andamios del Tejido
14.
Invest Ophthalmol Vis Sci ; 65(5): 24, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38748430

RESUMEN

Purpose: Hydrogels derived from decellularized tissues are promising biomaterials in tissue engineering, but their rapid biodegradation can hinder in vitro cultivation. This study aimed to retard biodegradation of a hydrogel derived from porcine decellularized lacrimal glands (dLG-HG) by crosslinking with genipin to increase the mechanical stability without affecting the function and viability of lacrimal gland (LG)-associated cells. Methods: The effect of different genipin concentrations on dLG-HG stiffness was measured rheologically. Cell-dependent biodegradation was quantified over 10 days, and the impact on matrix metalloproteinase (MMP) activity was quantified by gelatin and collagen zymography. The viability of LG epithelial cells (EpCs), mesenchymal stem cells (MSCs), and endothelial cells (ECs) cultured on genipin-crosslinked dLG-HG was assessed after 10 days, and EpC secretory activity was analyzed by ß-hexosaminidase assay. Results: The 0.5-mM genipin increased the stiffness of dLG-HG by about 46%, and concentrations > 0.25 mM caused delayed cell-dependent biodegradation and reduced MMP activity. The viability of EpCs, MSCs, and ECs was not affected by genipin concentrations of up to 0.5 mM after 10 days. Moreover, up to 0.5-mM genipin did not negatively affect EpC secretory activity compared to control groups. Conclusions: A concentration of 0.5-mM genipin increased dLG-HG stiffness, and 0.25-mM genipin was sufficient to prevent MMP-dependent degradation. Importantly, concentrations of up to 0.5-mM genipin did not compromise the viability of LG-associated cells or the secretory activity of EpCs. Thus, crosslinking with genipin improves the properties of dLG-HG for use as a substrate in LG tissue engineering.


Asunto(s)
Supervivencia Celular , Reactivos de Enlaces Cruzados , Hidrogeles , Iridoides , Ingeniería de Tejidos , Animales , Iridoides/farmacología , Iridoides/metabolismo , Porcinos , Ingeniería de Tejidos/métodos , Reactivos de Enlaces Cruzados/farmacología , Células Cultivadas , Células Madre Mesenquimatosas/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Materiales Biocompatibles
15.
PLoS One ; 19(5): e0300902, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38748626

RESUMEN

Tissue engineering predominantly relies on trial and error in vitro and ex vivo experiments to develop protocols and bioreactors to generate functional tissues. As an alternative, in silico methods have the potential to significantly reduce the timelines and costs of experimental programs for tissue engineering. In this paper, we propose a methodology to formulate, select, calibrate, and test mathematical models to predict cell population growth as a function of the biochemical environment and to design optimal experimental protocols for model inference of in silico model parameters. We systematically combine methods from the experimental design, mathematical statistics, and optimization literature to develop unique and explainable mathematical models for cell population dynamics. The proposed methodology is applied to the development of this first published model for a population of the airway-relevant bronchio-alveolar epithelial (BEAS-2B) cell line as a function of the concentration of metabolic-related biochemical substrates. The resulting model is a system of ordinary differential equations that predict the temporal dynamics of BEAS-2B cell populations as a function of the initial seeded cell population and the glucose, oxygen, and lactate concentrations in the growth media, using seven parameters rigorously inferred from optimally designed in vitro experiments.


Asunto(s)
Proliferación Celular , Simulación por Computador , Pulmón , Modelos Biológicos , Humanos , Línea Celular , Pulmón/citología , Pulmón/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Ingeniería de Tejidos/métodos , Glucosa/metabolismo , Oxígeno/metabolismo
16.
Sci Adv ; 10(20): eadk6178, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38748794

RESUMEN

Invasive graft biopsies assess the efficacy of immunosuppression through lagging indicators of transplant rejection. We report on a microporous scaffold implant as a minimally invasive immunological niche to assay rejection before graft injury. Adoptive transfer of T cells into Rag2-/- mice with mismatched allografts induced acute cellular allograft rejection (ACAR), with subsequent validation in wild-type animals. Following murine heart or skin transplantation, scaffold implants accumulate predominantly innate immune cells. The scaffold enables frequent biopsy, and gene expression analyses identified biomarkers of ACAR before clinical signs of graft injury. This gene signature distinguishes ACAR and immunodeficient respiratory infection before injury onset, indicating the specificity of the biomarkers to differentiate ACAR from other inflammatory insult. Overall, this implantable scaffold enables remote evaluation of the early risk of rejection, which could potentially be used to reduce the frequency of routine graft biopsy, reduce toxicities by personalizing immunosuppression, and prolong transplant life.


Asunto(s)
Aloinjertos , Biomarcadores , Rechazo de Injerto , Animales , Rechazo de Injerto/inmunología , Ratones , Trasplante de Piel/efectos adversos , Trasplante de Corazón/efectos adversos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Tejido Subcutáneo/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T/inmunología , Linfocitos T/metabolismo
17.
Nat Commun ; 15(1): 4160, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755128

RESUMEN

The regeneration of critical-size bone defects, especially those with irregular shapes, remains a clinical challenge. Various biomaterials have been developed to enhance bone regeneration, but the limitations on the shape-adaptive capacity, the complexity of clinical operation, and the unsatisfied osteogenic bioactivity have greatly restricted their clinical application. In this work, we construct a mechanically robust, tailorable and water-responsive shape-memory silk fibroin/magnesium (SF/MgO) composite scaffold, which is able to quickly match irregular defects by simple trimming, thus leading to good interface integration. We demonstrate that the SF/MgO scaffold exhibits excellent mechanical stability and structure retention during the degradative process with the potential for supporting ability in defective areas. This scaffold further promotes the proliferation, adhesion and migration of osteoblasts and the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. With suitable MgO content, the scaffold exhibits good histocompatibility, low foreign-body reactions (FBRs), significant ectopic mineralisation and angiogenesis. Skull defect experiments on male rats demonstrate that the cell-free SF/MgO scaffold markedly enhances bone regeneration of cranial defects. Taken together, the mechanically robust, personalised and bioactive scaffold with water-responsive shape-memory may be a promising biomaterial for clinical-size and irregular bone defect regeneration.


Asunto(s)
Materiales Biocompatibles , Regeneración Ósea , Fibroínas , Magnesio , Células Madre Mesenquimatosas , Osteogénesis , Andamios del Tejido , Fibroínas/química , Fibroínas/farmacología , Regeneración Ósea/efectos de los fármacos , Animales , Andamios del Tejido/química , Masculino , Osteogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Ratas , Magnesio/química , Magnesio/farmacología , Materiales Biocompatibles/química , Osteoblastos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Ratas Sprague-Dawley , Agua/química , Proliferación Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Cráneo/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Bombyx
18.
Adv Colloid Interface Sci ; 328: 103163, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38749384

RESUMEN

Repairing and regenerating damaged tissues or organs, and restoring their functioning has been the ultimate aim of medical innovations. 'Reviving healthcare' blends tissue engineering with alternative techniques such as hydrogels, which have emerged as vital tools in modern medicine. Additive manufacturing (AM) is a practical manufacturing revolution that uses building strategies like molding as a viable solution for precise hydrogel manufacturing. Recent advances in this technology have led to the successful manufacturing of hydrogels with enhanced reproducibility, accuracy, precision, and ease of fabrication. Hydrogels continue to metamorphose as the vital compatible bio-ink matrix for AM. AM hydrogels have paved the way for complex 3D/4D hydrogels that can be loaded with drugs or cells. Bio-mimicking 3D cell cultures designed via hydrogel-based AM is a groundbreaking in-vivo assessment tool in biomedical trials. This brief review focuses on preparations and applications of additively manufactured hydrogels in the biomedical spectrum, such as targeted drug delivery, 3D-cell culture, numerous regenerative strategies, biosensing, bioprinting, and cancer therapies. Prevalent AM techniques like extrusion, inkjet, digital light processing, and stereo-lithography have been explored with their setup and methodology to yield functional hydrogels. The perspectives, limitations, and the possible prospects of AM hydrogels have been critically examined in this study.


Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Hidrogeles/química , Humanos , Ingeniería de Tejidos/métodos , Bioimpresión/métodos , Impresión Tridimensional , Animales , Sistemas de Liberación de Medicamentos , Técnicas de Cultivo de Célula , Técnicas de Cultivo Tridimensional de Células/métodos
19.
Sci Rep ; 14(1): 11765, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782958

RESUMEN

In vitro use of articular cartilage on an organ-on-a-chip (OOAC) via microfluidics is challenging owing to the dense extracellular matrix (ECM) composed of numerous protein moieties and few chondrocytes, which has limited proliferation potential and microscale translation. Hence, this study proposes a novel approach for using a combination of biopolymers and decellularised ECM (dECM) as a bioink additive in the development of scalable OOAC using a microfluidic platform. The bioink was tested with native chondrocytes and mesenchymal stem cell-induced chondrocytes using biopolymers of alginate and chitosan composite hydrogels. Two-dimensional (2D) and three-dimensional (3D) biomimetic tissue construction approaches have been used to characterise the morphology and cellular marker expression (by histology and confocal laser scanning microscopy), viability (cell viability dye using flow cytometry), and genotypic expression of ECM-specific markers (by quantitative PCR). The results demonstrated that the bioink had a significant impact on the increase in phenotypic and genotypic expression, with a statistical significance level of p < 0.05 according to Student's t-test. The use of a cell-laden biopolymer as a bioink optimised the niche conditions for obtaining hyaline-type cartilage under culture conditions, paving the way for testing mechano-responsive properties and translating these findings to a cartilage-on-a-chip microfluidics system.


Asunto(s)
Alginatos , Cartílago Articular , Quitosano , Condrocitos , Matriz Extracelular , Ingeniería de Tejidos , Quitosano/química , Alginatos/química , Cartílago Articular/metabolismo , Cartílago Articular/citología , Animales , Matriz Extracelular/metabolismo , Condrocitos/metabolismo , Condrocitos/citología , Ingeniería de Tejidos/métodos , Biopolímeros/química , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Andamios del Tejido/química , Dispositivos Laboratorio en un Chip , Hidrogeles/química , Células Cultivadas , Supervivencia Celular , Sistemas Microfisiológicos
20.
Mol Biol Rep ; 51(1): 675, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787484

RESUMEN

BACKGROUND: Bioscaffolds and cells are two main components in the regeneration of damaged tissues via cell therapy. Umbilical cord stem cells are among the most well-known cell types for this purpose. The main objective of the present study was to evaluate the effect of the pretreatment of the foreskin acellular matrix (FAM) by monophosphoryl lipid A (MPLA) and Lactobacillus casei supernatant (LCS) on the attraction of human umbilical cord mesenchymal stem cells (hucMSC). METHODS AND RESULTS: The expression of certain cell migration genes was studied using qRT-PCR. In addition to cell migration, transdifferentiation of these cells to the epidermal-like cells was evaluated via immunohistochemistry (IHC) and immunocytochemistry (ICC) of cytokeratin 19 (CK19). The hucMSC showed more tissue tropism in the presence of MPLA and LCS pretreated FAM compared to the untreated control group. We confirmed this result by scanning electron microscopy (SEM) analysis, glycosaminoglycan (GAG), collagen, and DNA content. Furthermore, IHC and ICC data demonstrated that both treatments increase the protein expression level of CK19. CONCLUSION: Pretreatment of acellular bioscaffolds by MPLA or LCS can increase the migration rate of cells and also transdifferentiation of hucMSC to epidermal-like cells without growth factors. This strategy suggests a new approach in regenerative medicine.


Asunto(s)
Lacticaseibacillus casei , Lípido A , Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/metabolismo , Lacticaseibacillus casei/metabolismo , Lípido A/metabolismo , Lípido A/análogos & derivados , Movimiento Celular/efectos de los fármacos , Piel/metabolismo , Andamios del Tejido/química , Masculino , Cordón Umbilical/citología , Cordón Umbilical/metabolismo , Prepucio/citología , Transdiferenciación Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Matriz Extracelular/metabolismo , Queratina-19/metabolismo , Queratina-19/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA