Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.417
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 6547-6575, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957180

RESUMEN

The development of therapeutic drugs and methods has been greatly facilitated by the emergence of tumor models. However, due to their inherent complexity, establishing a model that can fully replicate the tumor tissue situation remains extremely challenging. With the development of tissue engineering, the advancement of bioprinting technology has facilitated the upgrading of tumor models. This article focuses on the latest advancements in bioprinting, specifically highlighting the construction of 3D tumor models, and underscores the integration of these two technologies. Furthermore, it discusses the challenges and future directions of related techniques, while also emphasizing the effective recreation of the tumor microenvironment through the emergence of 3D tumor models that resemble in vitro organs, thereby accelerating the development of new anticancer therapies.


Asunto(s)
Bioimpresión , Neoplasias , Impresión Tridimensional , Ingeniería de Tejidos , Microambiente Tumoral , Humanos , Bioimpresión/métodos , Ingeniería de Tejidos/métodos , Microambiente Tumoral/efectos de los fármacos , Neoplasias/terapia , Animales , Modelos Biológicos
2.
Sci Rep ; 14(1): 15022, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951570

RESUMEN

Cartilage tissue engineering aims to develop functional substitutes for treating cartilage defects and osteoarthritis. Traditional two-dimensional (2D) cell culture systems lack the complexity of native cartilage, leading to the development of 3D regenerative cartilage models. In this study, we developed a 3D model using Gelatin Methacryloyl (GelMA)-based hydrogels seeded with Y201 cells, a bone marrow mesenchymal stem cell line. The model investigated chondrogenic differentiation potential in response to Wnt3a stimulation within the GelMA scaffold and validated using known chondrogenic agonists. Y201 cells demonstrated suitability for the model, with increased proteoglycan content and upregulated chondrogenic marker expression under chondrogenic conditions. Wnt3a enhanced cell proliferation, indicating activation of the Wnt/ß-catenin pathway, which plays a role in cartilage development. GelMA hydrogels provided an optimal scaffold, supporting cell viability and proliferation. The 3D model exhibited consistent responses to chondrogenic agonists, with TGF-ß3 enhancing cartilage-specific extracellular matrix (ECM) production and chondrogenic differentiation. The combination of Wnt3a and TGF-ß3 showed synergistic effects, promoting chondrogenic differentiation and ECM production. This study presents a 3D regenerative cartilage model with potential for investigating cartilage biology, disease mechanisms, and drug screening. The model provides insights into complex cartilage regeneration mechanisms and offers a platform for developing therapeutic approaches for cartilage repair and osteoarthritis treatment.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Condrogénesis , Hidrogeles , Células Madre Mesenquimatosas , Ingeniería de Tejidos , Proteína Wnt3A , Proteína Wnt3A/metabolismo , Condrogénesis/efectos de los fármacos , Ingeniería de Tejidos/métodos , Proliferación Celular/efectos de los fármacos , Hidrogeles/química , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Humanos , Cartílago/metabolismo , Gelatina/química , Andamios del Tejido/química , Factor de Crecimiento Transformador beta3/metabolismo , Factor de Crecimiento Transformador beta3/farmacología , Línea Celular , Matriz Extracelular/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Condrocitos/metabolismo , Condrocitos/citología , Animales
3.
Stem Cell Res Ther ; 15(1): 194, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956719

RESUMEN

BACKGROUND: Repairation of bone defects remains a major clinical problem. Constructing bone tissue engineering containing growth factors, stem cells, and material scaffolds to repair bone defects has recently become a hot research topic. Nerve growth factor (NGF) can promote osteogenesis of bone marrow mesenchymal stem cells (BMSCs), but the low survival rate of the BMSCs during transplantation remains an unresolved issue. In this study, we investigated the therapeutic effect of BMSCs overexpression of NGF on bone defect by inhibiting pyroptosis. METHODS: The relationship between the low survival rate and pyroptosis of BMSCs overexpressing NGF in localized inflammation of fractures was explored by detecting pyroptosis protein levels. Then, the NGF+/BMSCs-NSA-Sca bone tissue engineering was constructed by seeding BMSCs overexpressing NGF on the allograft bone scaffold and adding the pyroptosis inhibitor necrosulfonamide(NSA). The femoral condylar defect model in the Sprague-Dawley (SD) rat was studied by micro-CT, histological, WB and PCR analyses in vitro and in vivo to evaluate the regenerative effect of bone repair. RESULTS: The pyroptosis that occurs in BMSCs overexpressing NGF is associated with the nerve growth factor receptor (P75NTR) during osteogenic differentiation. Furthermore, NSA can block pyroptosis in BMSCs overexpression NGF. Notably, the analyses using the critical-size femoral condylar defect model indicated that the NGF+/BMSCs-NSA-Sca group inhibited pyroptosis significantly and had higher osteogenesis in defects. CONCLUSION: NGF+/BMSCs-NSA had strong osteogenic properties in repairing bone defects. Moreover, NGF+/BMSCs-NSA-Sca mixture developed in this study opens new horizons for developing novel tissue engineering constructs.


Asunto(s)
Células Madre Mesenquimatosas , Factor de Crecimiento Nervioso , Osteogénesis , Ratas Sprague-Dawley , Andamios del Tejido , Animales , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ratas , Andamios del Tejido/química , Regeneración Ósea , Aloinjertos , Masculino , Ingeniería de Tejidos/métodos , Piroptosis , Sulfonamidas/farmacología , Diferenciación Celular , Trasplante de Células Madre Mesenquimatosas/métodos , Trasplante Óseo/métodos
4.
Sci Rep ; 14(1): 15556, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969656

RESUMEN

Previously, we reported successful cellular expansion of a murine colorectal carcinoma cell line (CT-26) using a three-dimensional (3D) engineered extracellular matrix (EECM) fibrillar scaffold structure. CCL-247 were grown over a limited time period of 8 days on 3D EECM or tissue culture polystyrene (TCPS). Cells were then assayed for growth, electroporation efficiency and Vigil manufacturing release criteria. Using EECM scaffolds, we report an expansion of CCL-247 (HCT116), a colorectal carcinoma cell line, from a starting concentration of 2.45 × 105 cells to 1.9 × 106 cells per scaffold. Following expansion, 3D EECM-derived cells were assessed based on clinical release criteria of the Vigil manufacturing process utilized for Phase IIb trial operation with the FDA. 3D EECM-derived cells passed all Vigil manufacturing release criteria including cytokine expression. Here, we demonstrate successful Vigil product manufacture achieving the specifications necessary for the clinical trial product release of Vigil treatment. Our results confirm that 3D EECM can be utilized for the expansion of human cancer cell CCL-247, justifying further clinical development involving human tissue sample manufacturing including core needle biopsy and minimal ascites samples.


Asunto(s)
Matriz Extracelular , Inmunoterapia , Andamios del Tejido , Humanos , Andamios del Tejido/química , Inmunoterapia/métodos , Ingeniería de Tejidos/métodos , Células HCT116 , Neoplasias Colorrectales/patología , Animales , Ratones , Proliferación Celular , Línea Celular Tumoral , Técnicas de Cultivo Tridimensional de Células/métodos
5.
J Orthop Surg Res ; 19(1): 377, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38926735

RESUMEN

BACKGROUND: Achilles tendon is vital in maintaining the stability and function of ankle joint. It is quite difficult to achieve the structural and functional repair of Achilles tendon in tissue engineering. METHODS: A tissue-engineered tendon micro-tissue was prepared using rat tail tendon extracellular matrix (TECM) combined with rat adipose stem cells (ADSCs) to repair Achilles tendon injuries. The TECM was prepared by repeated freezing and thawing. The in vitro characteristics of TECM and its effect on ADSCs proliferation were detected. This tissue-engineered tendon micro-tissue for Achilles tendon repair in vivo was evaluated based on general characteristics, gait analysis, ultrasound findings, histological analysis, and biomechanical testing. RESULTS: The results showed that the TECM scaffold had good biocompatibility for ADSCs. At 2 weeks post-surgery, collagen types I and III and tenomodulin expression were higher, and vascular endothelial growth factor expression was lower in the micro-tissue group than other groups. At 4 and 8 weeks post-surgery, the results of histological analysis and ultrasound findings showed that the repaired tendon tissue was smooth and lustrous, and was arranged regularly and evenly in the micro-tissue group. Gait analysis confirmed that better motor function recovery was noted in micro-tissue group than other groups. In addition, the mechanical properties of the repaired tendon tissue in micro-tissue group were better than other groups. CONCLUSION: Tissue-engineered tendon micro-tissue fabricated by TECM and ADSCs has good biocompatibility and can promote structural and functional repair of tendon in vivo. This composite biomaterial has broad application prospects in tissue engineering.


Asunto(s)
Tendón Calcáneo , Matriz Extracelular , Ratas Sprague-Dawley , Regeneración , Traumatismos de los Tendones , Ingeniería de Tejidos , Andamios del Tejido , Animales , Ingeniería de Tejidos/métodos , Tendón Calcáneo/lesiones , Tendón Calcáneo/fisiología , Traumatismos de los Tendones/terapia , Regeneración/fisiología , Ratas , Masculino , Tejido Adiposo/citología
6.
J Nanobiotechnology ; 22(1): 376, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926780

RESUMEN

Tissue regeneration technology has been rapidly developed and widely applied in tissue engineering and repair. Compared with traditional approaches like surgical treatment, the rising gene therapy is able to have a durable effect on tissue regeneration, such as impaired bone regeneration, articular cartilage repair and cancer-resected tissue repair. Gene therapy can also facilitate the production of in situ therapeutic factors, thus minimizing the diffusion or loss of gene complexes and enabling spatiotemporally controlled release of gene products for tissue regeneration. Among different gene delivery vectors and supportive gene-activated matrices, advanced gene/drug nanocarriers attract exceptional attraction due to their tunable physiochemical properties, as well as excellent adaptive performance in gene therapy for tissue regeneration, such as bone, cartilage, blood vessel, nerve and cancer-resected tissue repair. This paper reviews the recent advances on nonviral-mediated gene delivery systems with an emphasis on the important role of advanced nanocarriers in gene therapy and tissue regeneration.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética , Regeneración , Ingeniería de Tejidos , Andamios del Tejido , Humanos , Animales , Terapia Genética/métodos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Nanopartículas/química , Portadores de Fármacos/química , Vectores Genéticos
7.
Biomolecules ; 14(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38927024

RESUMEN

Hydrogels are three-dimensional crosslinked functional materials with water-absorbing and swelling properties. Many hydrogels can store a variety of small functional molecules to structurally and functionally mimic the natural extracellular matrix; hence, they have been extensively studied for biomedical applications. Polyamidoamine (PAMAM) dendrimers have an ethylenediamine core and a large number of peripheral amino groups, which can be used to engineer various polymer hydrogels. In this review, an update on the progress of using PAMAM dendrimers for multifunctional hydrogel design was given. The synthesis of these hydrogels, which includes click chemistry reactions, aza-Michael addition, Schiff base reactions, amidation reactions, enzymatic reactions, and radical polymerization, together with research progress in terms of their application in the fields of drug delivery, tissue engineering, drug-free tumor therapy, and other related fields, was discussed in detail. Furthermore, the biomedical applications of PAMAM-engineered nano-hydrogels, which combine the advantages of dendrimers, hydrogels, and nanoparticles, were also summarized. This review will help researchers to design and develop more functional hydrogel materials based on PAMAM dendrimers.


Asunto(s)
Dendrímeros , Hidrogeles , Poliaminas , Ingeniería de Tejidos , Hidrogeles/química , Hidrogeles/síntesis química , Dendrímeros/química , Humanos , Ingeniería de Tejidos/métodos , Poliaminas/química , Sistemas de Liberación de Medicamentos , Animales , Química Clic/métodos , Materiales Biocompatibles/química
8.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(6): 748-754, 2024 Jun 15.
Artículo en Chino | MEDLINE | ID: mdl-38918198

RESUMEN

Objective: To investigate the construction of a novel tissue engineered meniscus scaffold based on low temperature deposition three-dimenisonal (3D) printing technology and evaluate its biocompatibility. Methods: The fresh pig meniscus was decellularized by improved physicochemical method to obtain decellularized meniscus matrix homogenate. Gross observation, HE staining, and DAPI staining were used to observe the decellularization effect. Toluidine blue staining, safranin O staining, and sirius red staining were used to evaluate the retention of mucopolysaccharide and collagen. Then, the decellularized meniscus matrix bioink was prepared, and the new tissue engineered meniscus scaffold was prepared by low temperature deposition 3D printing technology. Scanning electron microscopy was used to observe the microstructure. After co-culture with adipose-derived stem cells, the cell compatibility of the scaffolds was observed by cell counting kit 8 (CCK-8), and the cell activity and morphology were observed by dead/live cell staining and cytoskeleton staining. The inflammatory cell infiltration and degradation of the scaffolds were evaluated by subcutaneous experiment in rats. Results: The decellularized meniscus matrix homogenate appeared as a transparent gel. DAPI and histological staining showed that the immunogenic nucleic acids were effectively removed and the active components of mucopolysaccharide and collagen were remained. The new tissue engineered meniscus scaffolds was constructed by low temperature deposition 3D printing technology and it had macroporous-microporous microstructures under scanning electron microscopy. CCK-8 test showed that the scaffolds had good cell compatibility. Dead/live cell staining showed that the scaffold could effectively maintain cell viability (>90%). Cytoskeleton staining showed that the scaffolds were benefit for cell adhesion and spreading. After 1 week of subcutaneous implantation of the scaffolds in rats, there was a mild inflammatory response, but no significant inflammatory response was observed after 3 weeks, and the scaffolds gradually degraded. Conclusion: The novel tissue engineered meniscus scaffold constructed by low temperature deposition 3D printing technology has a graded macroporous-microporous microstructure and good cytocompatibility, which is conducive to cell adhesion and growth, laying the foundation for the in vivo research of tissue engineered meniscus scaffolds in the next step.


Asunto(s)
Menisco , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Animales , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Porcinos , Ratas , Menisco/citología , Materiales Biocompatibles , Ratas Sprague-Dawley , Células Cultivadas , Meniscos Tibiales/citología , Microscopía Electrónica de Rastreo
9.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(6): 755-762, 2024 Jun 15.
Artículo en Chino | MEDLINE | ID: mdl-38918199

RESUMEN

Objective: To investigate the physicochemical properties, osteogenic properties, and osteogenic ability in rabbit model of femoral condylar defect of acellular dermal matrix (ADM)/dicalcium phosphate (DCP) composite scaffold. Methods: ADM/DCP composite scaffolds were prepared by microfibril technique, and the acellular effect of ADM/DCP composite scaffolds was detected by DNA residue, fat content, and α-1,3-galactosyle (α-Gal) epitopes; the microstructure of scaffolds was characterized by field emission scanning electron microscopy and mercury porosimetry; X-ray diffraction was used to analyze the change of crystal form of scaffold; the solubility of scaffolds was used to detect the pH value and calcium ion content of the solution; the mineralization experiment in vitro was used to observe the surface mineralization. Twelve healthy male New Zealand white rabbits were selected to prepare the femoral condylar defect models, and the left and right defects were implanted with ADM/DCP composite scaffold (experimental group) and skeletal gold ® artificial bone repair material (control group), respectively. Gross observation was performed at 6 and 12 weeks after operation; Micro-CT was used to detect and quantitatively analyze the related indicators [bone volume (BV), bone volume/tissue volume (BV/TV), bone surface/bone volume (BS/BV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), bone mineral density (BMD)], and HE staining and Masson staining were performed to observe the repair of bone defects and the maturation of bone matrix. Results: Gross observation showed that the ADM/DCP composite scaffold was a white spongy solid. Compared with ADM, ADM/DCP composite scaffolds showed a significant decrease in DNA residue, fat content, and α-Gal antigen content ( P<0.05). Field emission scanning electron microscopy showed that the ADM/DCP composite scaffold had a porous structure, and DCP particles were attached to the porcine dermal fibers. The porosity of the ADM/DCP composite scaffold was 76.32%±1.63% measured by mercury porosimetry. X-ray diffraction analysis showed that the crystalline phase of DCP in the ADM/DCP composite scaffolds remained intact. Mineralization results in vitro showed that the hydroxyapatite layer of ADM/DCP composite scaffolds was basically mature. The repair experiment of rabbit femoral condyle defect showed that the incision healed completely after operation without callus or osteophyte. Micro-CT showed that bone healing was complete and a large amount of new bone tissue was generated in the defect site of the two groups, and there was no difference in density between the defect site and the surrounding bone tissue, and the osteogenic properties of the two groups were equivalent. There was no significant difference in BV, BV/TV, BS/BV, Tb.Th, Tb.N, and BMD between the two groups ( P>0.05), except that the Tb.Sp in the experimental group was significantly higher than that in the control group ( P<0.05). At 6 and 12 weeks after operation, HE staining and Masson staining showed that the new bone and autogenous bone fused well in both groups, and the bone tissue tended to be mature. Conclusion: The ADM/DCP composite scaffold has good biocompatibility and osteogenic ability similar to the artificial bone material in repairing rabbit femoral condylar defects. It is a new scaffold material with potential in the field of bone repair.


Asunto(s)
Dermis Acelular , Regeneración Ósea , Sustitutos de Huesos , Fosfatos de Calcio , Osteogénesis , Ingeniería de Tejidos , Andamios del Tejido , Animales , Conejos , Fosfatos de Calcio/química , Masculino , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Sustitutos de Huesos/química , Materiales Biocompatibles/química , Fémur/cirugía , Microscopía Electrónica de Rastreo , Ensayo de Materiales
10.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(6): 763-768, 2024 Jun 15.
Artículo en Chino | MEDLINE | ID: mdl-38918200

RESUMEN

Objective: To review the research progress on the application of three-dimensional (3D) bioprinting technology in auricle repair and reconstruction. Methods: The recent domestic and international research literature on 3D printing and auricle repair and reconstruction was extensively reviewed, and the concept of 3D bioprinting technology and research progress in auricle repair and reconstruction were summarized. Results: The auricle possesses intricate anatomical structure and functionality, necessitating precise tissue reconstruction and morphological replication. Hence, 3D printing technology holds immense potential in auricle reconstruction. In contrast to conventional 3D printing technology, 3D bioprinting technology not only enables the simulation of auricular outer shape but also facilitates the precise distribution of cells within the scaffold during fabrication by incorporating cells into bioink. This approach mimics the composition and structure of natural tissues, thereby favoring the construction of biologically active auricular tissues and enhancing tissue repair outcomes. Conclusion: 3D bioprinting technology enables the reconstruction of auricular tissues, avoiding potential complications associated with traditional autologous cartilage grafting. The primary challenge in current research lies in identifying bioinks that meet both the mechanical requirements of complex tissues and biological criteria.


Asunto(s)
Bioimpresión , Pabellón Auricular , Procedimientos de Cirugía Plástica , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Bioimpresión/métodos , Humanos , Procedimientos de Cirugía Plástica/métodos , Pabellón Auricular/cirugía , Materiales Biocompatibles
11.
Cells ; 13(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38920693

RESUMEN

Bone tissue injuries within oral and dental contexts often present considerable challenges because traditional treatments may not be able to fully restore lost or damaged bone tissue. Novel approaches involving stem cells and targeted 3D scaffolds have been investigated in the search for workable solutions. The use of scaffolds in stem cell-assisted bone regeneration is a crucial component of tissue engineering techniques designed to overcome the drawbacks of traditional bone grafts. This study provides a detailed review of scaffold applications for bone regeneration with stem cells in dentistry. This review focuses on scaffolds and stem cells while covering a broad range of studies explaining bone regeneration in dentistry through the presentation of studies conducted in this field. The role of different stem cells in regenerative medicine is covered in great detail in the reviewed literature. These studies have addressed a wide range of subjects, including the effects of platelet concentrates during dental surgery or specific combinations, such as human dental pulp stem cells with scaffolds for animal model bone regeneration, to promote bone regeneration in animal models. Noting developments, research works consider methods to improve vascularization and explore the use of 3D-printed scaffolds, secretome applications, mesenchymal stem cells, and biomaterials for oral bone tissue regeneration. This thorough assessment outlines possible developments within these crucial regenerative dentistry cycles and provides insights and suggestions for additional study. Furthermore, alternative creative methods for regenerating bone tissue include biophysical stimuli, mechanical stimulation, magnetic field therapy, laser therapy, nutritional supplements and diet, gene therapy, and biomimetic materials. These innovative approaches offer promising avenues for future research and development in the field of bone tissue regeneration in dentistry.


Asunto(s)
Regeneración Ósea , Odontología , Células Madre , Ingeniería de Tejidos , Andamios del Tejido , Humanos , Andamios del Tejido/química , Animales , Células Madre/citología , Odontología/métodos , Ingeniería de Tejidos/métodos , Pulpa Dental/citología , Trasplante de Células Madre/métodos , Medicina Regenerativa/métodos
12.
Biol Pharm Bull ; 47(6): 1072-1078, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38825460

RESUMEN

In previous studies, my group developed cell-adhesive peptide-polysaccharide complexes as biomaterials for tissue engineering. Having a wide variety of cell-adhesive peptides is important as the biological functions of peptide-polysaccharide complexes are highly dependent on the biological activity of peptides. This paper reviews the biological activities of two types of recently characterized cell-adhesive peptides. The first is peptides rich in basic amino acids originating from octaarginine. We analyzed the relationships between the amino acid composition of basic peptides and cell adhesion, elongation, and proliferation and identified the most suitable peptide for cell culture. The second was arginine-glycine-aspartic acid (RGD)-containing peptides that promote the adhesion of induced pluripotent stem cells (iPSCs). We identified the RGD-surrounding sequences necessary for iPSC adhesion, clarified the underlying mechanism, and improved cell adhesion by modifying the structure-activity relationships. The novel cell-adhesive peptides identified in our previous studies may aid in the development of novel peptide-based biomaterials.


Asunto(s)
Materiales Biocompatibles , Adhesión Celular , Péptidos , Adhesión Celular/efectos de los fármacos , Materiales Biocompatibles/química , Humanos , Péptidos/farmacología , Péptidos/química , Animales , Oligopéptidos/química , Oligopéptidos/farmacología , Ingeniería de Tejidos/métodos , Células Madre Pluripotentes Inducidas/citología
13.
Adipocyte ; 13(1): 2347215, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864486

RESUMEN

Adipose tissue plays a crucial role in metabolic syndrome, autoimmune diseases, and many cancers. Because of adipose's role in so many aspects of human health, there is a critical need for in vitro models that replicate adipose architecture and function. Traditional monolayer models, despite their convenience, are limited, showing heterogeneity and functional differences compared to 3D models. While monolayer cultures struggle with detachment and inefficient differentiation, healthy adipocytes in 3D culture accumulate large lipid droplets, secrete adiponectin, and produce low levels of inflammatory cytokines. The shift from monolayer models to more complex 3D models aims to better replicate the physiology of healthy adipose tissue in culture. This study introduces a simple and accessible protocol for generating adipose organoids using a scaffold-free spheroid model. The method, utilizing either 96-well spheroid plates or agarose micromolds, demonstrates increased throughput, uniformity, and ease of handling compared to previous techniques. This protocol allows for diverse applications, including drug testing, toxin screening, tissue engineering, and co-culturing. The choice between the two methods depends on the experimental goals, with the 96-well plate providing individualized control and the micromold offering scale advantages. The outlined protocol covers isolation, expansion, and characterization of stromal vascular fraction cells, followed by detailed steps for spheroid formation and optional downstream analyses.


Asunto(s)
Adipocitos , Tejido Adiposo , Esferoides Celulares , Esferoides Celulares/metabolismo , Esferoides Celulares/citología , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Humanos , Adipocitos/metabolismo , Adipocitos/citología , Técnicas de Cultivo de Célula/métodos , Animales , Ingeniería de Tejidos/métodos , Células Cultivadas , Diferenciación Celular , Ratones
14.
Mol Biol Rep ; 51(1): 781, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913199

RESUMEN

Mesenchymal Stem Cells, mesodermal origin and multipotent stem cells, have ability to differentiate into vascular endothelial cells. The cells are squamous in morphology, inlining, and protecting blood vessel tissue, as well as maintaining homeostatic conditions. ECs are essential in vascularization and blood vessels formation. The differentiation process, generally carried out in 2D culture systems, were relied on growth factors induction. Therefore, an artificial extracellular matrix with relevant mechanical properties is essential to build 3D culture models. Various 3D fabrication techniques, such as hydrogel-based and fibrous scaffolds, scaffold-free, and co-culture to endothelial cells were reviewed and summarized to gain insights. The obtained MSCs-derived ECs are shown by the expression of endothelial gene markers and tubule-like structure. In order to mimicking relevant vascular tissue, 3D-bioprinting facilitates to form more complex microstructures. In addition, a microfluidic chip with adequate flow rate allows medium perfusion, providing mechanical cues like shear stress to the artificial vascular vessels.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Diferenciación Celular , Células Endoteliales , Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Técnicas de Cultivo Tridimensional de Células/métodos , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Animales , Hidrogeles/química , Técnicas de Cultivo de Célula/métodos , Técnicas de Cocultivo/métodos , Matriz Extracelular/metabolismo
15.
Biomed Mater ; 19(5)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38917813

RESUMEN

This study introduces a multi-parameter design methodology to create triply periodic minimal surface (TPMS) scaffolds with predefined geometric characteristics. The level-set constant and unit cell lengths are systematically correlated with targeted porosity and minimum pore sizes. Network and sheet scaffolds featuring diamond, gyroid, and primitive level-set structures are generated. Three radially graded schemes are applied to each of the six scaffold type, accommodating radial variations in porosity and pore sizes. Computer simulations are conducted to assess the biomechanical performance of 18 scaffold models. Results disclose that diamond and gyroid scaffolds exhibit more expansive design ranges than primitive counterparts. While primitive scaffolds display the highest Young's modulus and permeability, their lower yield strength and mesenchymal stem cell (MSC) adhesion render them unsuitable for bone scaffolds. Gyroid scaffolds demonstrate superior mechanical and permeability performances, albeit with slightly lower MSC adhesion than diamond scaffolds. Sheet scaffolds, characterized by more uniform material distribution, exhibit superior mechanical performance in various directions, despite slightly lower permeability. The higher specific surface area of sheet scaffolds contributes to elevated MSC adhesion. The stimulus factor analysis also revealed the superior differentiation potential of sheet scaffolds over network ones. The diamond sheet type demonstrated the optimal differentiation. Introducing radial gradations enhances axial mechanical performance at the expense of radial mechanical performance. Radially decreasing porosity displays the highest permeability, MSC adhesion, and differentiation capability, aligning with the structural characteristics of human bones. This study underscores the crucial need to balance diverse biomechanical properties of TPMS scaffolds for bone tissue engineering.


Asunto(s)
Adhesión Celular , Simulación por Computador , Ensayo de Materiales , Células Madre Mesenquimatosas , Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Porosidad , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos/métodos , Humanos , Fenómenos Biomecánicos , Módulo de Elasticidad , Propiedades de Superficie , Permeabilidad , Diferenciación Celular , Materiales Biocompatibles/química , Huesos , Estrés Mecánico
16.
Biomed Mater ; 19(5)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38917828

RESUMEN

The increasing prevalence of bone replacements and complications associated with bone replacement procedures underscores the need for innovative tissue restoration approaches. Existing synthetic grafts cannot fully replicate bone vascularization and mechanical characteristics. This study introduces a novel strategy utilizing pectin, chitosan, and polyvinyl alcohol to create interpenetrating polymeric network (IPN) scaffolds incorporated with extracellular vesicles (EVs) isolated from human mesenchymal stem cells (hMSCs). We assess the osteointegration and osteoconduction abilities of these modelsin vitrousing hMSCs and MG-63 osteosarcoma cells. Additionally, we confirm exosome properties through Transmission Electron Microscopy (TEM), immunoblotting, and Dynamic Light Scattering (DLS).In vivo, chick allantoic membrane assay investigates vascularization characteristics. The study did not includein vivoanimal experiments. Our results demonstrate that the IPN scaffold is highly porous and interconnected, potentially suitable for bone implants. EVs, approximately 100 nm in size, enhance cell survival, proliferation, alkaline phosphatase activity, and the expression of osteogenic genes. EVs-mediated IPN scaffolds demonstrate promise as precise drug carriers, enabling customized treatments for bone-related conditions and regeneration efforts. Therefore, the EVs-mediated IPN scaffolds demonstrate promise as precise carriers for the transport of drugs, allowing for customized treatments for conditions connected to bone and efforts in regeneration.


Asunto(s)
Regeneración Ósea , Proliferación Celular , Vesículas Extracelulares , Células Madre Mesenquimatosas , Osteogénesis , Andamios del Tejido , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Andamios del Tejido/química , Células Madre Mesenquimatosas/citología , Animales , Línea Celular Tumoral , Transducción de Señal , Supervivencia Celular , Ingeniería de Tejidos/métodos , Quitosano/química , Fosfatasa Alcalina/metabolismo , Oseointegración , Polímeros/química , Porosidad
17.
Biomacromolecules ; 25(7): 4074-4086, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38838242

RESUMEN

The presence of oxidative stress in bone defects leads to delayed regeneration, especially in the aged population and patients receiving cancer treatment. This delay is attributed to the increased levels of reactive oxygen species (ROS) in these populations due to the accumulation of senescent cells. Tissue-engineered scaffolds are emerging as an alternative method to treat bone defects. In this study, we engineered tissue scaffolds tailored to modulate the adverse effects of oxidative stress and promote bone regeneration. We used polycaprolactone to fabricate nanofibrous mats by using electrospinning. We exploited the ROS-scavenging properties of cerium oxide nanoparticles to alleviate the high oxidative stress microenvironment caused by the presence of senescent cells. We characterized the nanofibers for their physical and mechanical properties and utilized an ionization-radiation-based model to induce senescence in bone cells. We demonstrate that the presence of ceria can modulate ROS levels, thereby reducing the level of senescence and promoting osteogenesis. Overall, this study demonstrates that ceria-infused nanofibrous scaffolds can be used for augmenting the osteogenic activity of senescent progenitor cells, which has important implications for engineering bone tissue scaffolds for patients with low regeneration capabilities.


Asunto(s)
Regeneración Ósea , Senescencia Celular , Cerio , Nanofibras , Osteogénesis , Especies Reactivas de Oxígeno , Ingeniería de Tejidos , Andamios del Tejido , Cerio/química , Cerio/farmacología , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Senescencia Celular/efectos de los fármacos , Nanofibras/química , Osteogénesis/efectos de los fármacos , Humanos , Ingeniería de Tejidos/métodos , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Poliésteres/química , Animales , Huesos/efectos de los fármacos
18.
ACS Biomater Sci Eng ; 10(7): 4463-4479, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38848471

RESUMEN

Scaffold-free bone microtissues differentiated from mesenchymal stem cell (MSC) spheroids offer great potential for bottom-up bone tissue engineering as a direct supply of cells and osteogenic signals. Many biomaterials or biomolecules have been incorporated into bone microtissues to enhance their osteogenic abilities, but these materials are far from clinical approval. Here, we aimed to incorporate hydroxyapatite (HAP) nanoparticles, an essential component of bone matrix, into MSC spheroids to instruct their osteogenic differentiation into bone microtissues and further self-organization into bone organoids with a trabecular structure. Furthermore, the biological interaction between HAP nanoparticles and MSCs and the potential molecular mechanisms in the bone development of MSC spheroids were investigated by both in vitro and in vivo studies. As a result, improved cell viability and osteogenic abilities were observed for the MSC spheroids incorporated with HAP nanoparticles at a concentration of 30 µg/mL. HAP nanoparticles could promote the sequential expression of osteogenic markers (Runx2, Osterix, Sclerostin), promote the expression of bone matrix proteins (OPN, OCN, and Collagen I), promote the mineralization of the bone matrix, and thus promote the bone development of MSC spheroids. The differentiated bone microtissues could further self-organize into linear, lamellar, and spatial bone organoids with trabecular structures. More importantly, adding FAK or Akt inhibitors could decrease the level of HAP-induced osteogenic differentiation of bone microtissues. Finally, excellent new bone regeneration was achieved after injecting bone microtissues into cranial bone defect models, which could also be eliminated by the Akt inhibitor. In conclusion, HAP nanoparticles could promote the development of bone microtissues by promoting the osteogenic differentiation of MSCs and the formation and mineralization of the bone matrix via the FAK/Akt pathway. The bone microtissues could act as individual ossification centers and self-organize into macroscale bone organoids, and in this meaning, the bone microtissues could be called microscale bone organoids. Furthermore, the bone microtissues revealed excellent clinical perspectives for injectable cellular therapies for bone defects.


Asunto(s)
Regeneración Ósea , Diferenciación Celular , Durapatita , Células Madre Mesenquimatosas , Nanopartículas , Osteogénesis , Proteínas Proto-Oncogénicas c-akt , Durapatita/química , Durapatita/farmacología , Regeneración Ósea/efectos de los fármacos , Nanopartículas/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Osteogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Diferenciación Celular/efectos de los fármacos , Humanos , Transducción de Señal/efectos de los fármacos , Ingeniería de Tejidos/métodos , Quinasa 1 de Adhesión Focal/metabolismo , Huesos/efectos de los fármacos , Ratones , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo
19.
Int J Biol Macromol ; 273(Pt 1): 132819, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38830498

RESUMEN

The avascular nature of hyaline cartilage results in limited spontaneous self-repair and regenerative capabilities when damaged. Recent advances in three-dimensional bioprinting have enabled the precise dispensing of cell-laden biomaterials, commonly referred to as 'bioinks', which are emerging as promising solutions for tissue regeneration. An effective bioink for cartilage tissue engineering needs to create a micro-environment that promotes cell differentiation and supports neocartilage tissue formation. In this study, we introduced an innovative bioink composed of photocurable acrylated type I collagen (COLMA), thiol-modified hyaluronic acid (THA), and poly(ethylene glycol) diacrylate (PEGDA) for 3D bioprinting cartilage grafts using human nasal chondrocytes. Both collagen and hyaluronic acid, being key components of the extracellular matrix (ECM) in the human body, provide essential biological cues for tissue regeneration. We evaluated three formulations - COLMA, COLMA+THA, and COLMA+THA+PEGDA - for their printability, cell viability, structural integrity, and capabilities in forming cartilage-like ECM. The addition of THA and PEGDA significantly enhanced these properties, showcasing the potential of this bioink in advancing applications in cartilage repair and reconstructive surgery.


Asunto(s)
Ácido Hialurónico , Ingeniería de Tejidos , Andamios del Tejido , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Ingeniería de Tejidos/métodos , Humanos , Andamios del Tejido/química , Condrocitos/citología , Condrocitos/efectos de los fármacos , Polietilenglicoles/química , Bioimpresión/métodos , Colágeno/química , Impresión Tridimensional , Cartílago/citología , Matriz Extracelular/química , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Tinta
20.
Int J Biol Macromol ; 273(Pt 2): 133193, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38885859

RESUMEN

A major problem after tendon injury is adhesion formation to the surrounding tissue leading to a limited range of motion. A viable strategy to reduce adhesion extent is the use of physical barriers that limit the contact between the tendon and the adjacent tissue. The purpose of this study was to fabricate an electrospun bilayered tube of hyaluronic acid/polyethylene oxide (HA/PEO) and biodegradable DegraPol® (DP) to improve the anti-adhesive effect of the implant in a rabbit Achilles tendon full laceration model compared to a pure DP tube. Additionally, the attachment of rabbit tenocytes on pure DP and HA/PEO containing scaffolds was tested and Scanning Electron Microscopy, Fourier-transform Infrared Spectroscopy, Differential Scanning Calorimetry, Water Contact Angle measurements, and testing of mechanical properties were used to characterize the scaffolds. In vivo assessment after three weeks showed that the implant containing a second HA/PEO layer significantly reduced adhesion extent reaching levels comparable to native tendons, compared with a pure DP implant that reduced adhesion formation only by 20 %. Tenocytes were able to attach to and migrate into every scaffold, but cell number was reduced over two weeks. Implants containing HA/PEO showed better mechanical properties than pure DP tubes and with the ability to entirely reduce adhesion extent makes this implant a promising candidate for clinical application in tendon repair.


Asunto(s)
Ácido Hialurónico , Polietilenglicoles , Andamios del Tejido , Animales , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Conejos , Polietilenglicoles/química , Andamios del Tejido/química , Tenocitos/efectos de los fármacos , Tenocitos/metabolismo , Tendón Calcáneo/efectos de los fármacos , Traumatismos de los Tendones/terapia , Adhesión Celular/efectos de los fármacos , Adherencias Tisulares/prevención & control , Tendones/efectos de los fármacos , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Poliésteres/química , Poliuretanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA