Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70.698
Filtrar
Más filtros











Intervalo de año de publicación
1.
Food Res Int ; 188: 114504, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823880

RESUMEN

(Poly)phenols inhibit α-amylase by directly binding to the enzyme and/or by forming starch-polyphenol complexes. Conventional methods using starch as the substrate measure inhibition from both mechanisms, whereas the use of shorter oligosaccharides as substrates exclusively measures the direct interaction of (poly)phenols with the enzyme. In this study, using a chromatography-based method and a short oligosaccharide as the substrate, we investigated the detailed structural prerequisites for the direct inhibition of human salivary and pancreatic α-amylases by over 50 (poly)phenols from the (poly)phenol groups: flavonols, flavones, flavanones, flavan-3-ols, polymethoxyflavones, isoflavones, anthocyanidins and phenolic acids. Despite being structurally very similar (97% sequence homology), human salivary and pancreatic α-amylases were inhibited to different extents by the tested (poly)phenols. The most potent human salivary α-amylase inhibitors were luteolin and pelargonidin, while the methoxylated anthocyanidins, peonidin and petunidin, significantly blocked pancreatic enzyme activity. B-ring methoxylation of anthocyanidins increased inhibition against both human α-amylases while hydroxyl groups at C3 and B3' acted antagonistically in human salivary inhibition. C4 carbonyl reduction, or the positive charge on the flavonoid structure, was the key structural feature for human pancreatic inhibition. B-ring glycosylation did not affect salivary enzyme inhibition, but increased pancreatic enzyme inhibition when compared to its corresponding aglycone. Overall, our findings indicate that the efficacy of interaction with human α-amylase is mainly influenced by the type and placement of functional groups rather than the number of hydroxyl groups and molecular weight.


Asunto(s)
alfa-Amilasas Pancreáticas , Polifenoles , alfa-Amilasas Salivales , Humanos , Relación Estructura-Actividad , Polifenoles/farmacología , Polifenoles/química , alfa-Amilasas Salivales/metabolismo , alfa-Amilasas Salivales/antagonistas & inhibidores , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , alfa-Amilasas Pancreáticas/metabolismo , Antocianinas/química , Antocianinas/farmacología , Antocianinas/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , alfa-Amilasas/química , Saliva/enzimología , Saliva/química
2.
Appl Microbiol Biotechnol ; 108(1): 360, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836914

RESUMEN

In the fight against hospital-acquired infections, the challenge posed by methicillin-resistant Staphylococcus aureus (MRSA) necessitates the development of novel treatment methods. This study focused on undermining the virulence of S. aureus, especially by targeting surface proteins crucial for bacterial adherence and evasion of the immune system. A primary aspect of our approach involves inhibiting sortase A (SrtA), a vital enzyme for attaching microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) to the bacterial cell wall, thereby reducing the pathogenicity of S. aureus. Verbascoside, a phenylethanoid glycoside, was found to be an effective SrtA inhibitor in our research. Advanced fluorescence quenching and molecular docking studies revealed a specific interaction between verbascoside and SrtA, pinpointing the critical active sites involved in this interaction. This molecular interaction significantly impedes the SrtA-mediated attachment of MSCRAMMs, resulting in a substantial reduction in bacterial adhesion, invasion, and biofilm formation. The effectiveness of verbascoside has also been demonstrated in vivo, as shown by its considerable protective effects on pneumonia and Galleria mellonella (wax moth) infection models. These findings underscore the potential of verbascoside as a promising component in new antivirulence therapies for S. aureus infections. By targeting crucial virulence factors such as SrtA, agents such as verbascoside constitute a strategic and potent approach for tackling antibiotic resistance worldwide. KEY POINTS: • Verbascoside inhibits SrtA, reducing S. aureus adhesion and biofilm formation. • In vivo studies demonstrated the efficacy of verbascoside against S. aureus infections. • Targeting virulence factors such as SrtA offers new avenues against antibiotic resistance.


Asunto(s)
Aminoaciltransferasas , Antibacterianos , Adhesión Bacteriana , Proteínas Bacterianas , Biopelículas , Cisteína Endopeptidasas , Glucósidos , Staphylococcus aureus Resistente a Meticilina , Simulación del Acoplamiento Molecular , Fenoles , Infecciones Estafilocócicas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Aminoaciltransferasas/antagonistas & inhibidores , Aminoaciltransferasas/metabolismo , Cisteína Endopeptidasas/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Glucósidos/farmacología , Animales , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Fenoles/farmacología , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Mariposas Nocturnas/microbiología , Virulencia/efectos de los fármacos , Modelos Animales de Enfermedad , Factores de Virulencia/metabolismo , Inhibidores Enzimáticos/farmacología , Polifenoles
3.
J Med Life ; 17(1): 87-98, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38737655

RESUMEN

This study aimed to identify novel Glyoxalase-I (Glo-I) inhibitors with potential anticancer properties, focusing on anthraquinone amide-based derivatives. We synthesized a series of these derivatives and conducted in silico docking studies to predict their binding interactions with Glo-I. In vitro assessments were performed to evaluate the anti-Glo-I activity of the synthesized compounds. A comprehensive structure-activity relationship (SAR) analysis identified key features responsible for specific binding affinities of anthraquinone amide-based derivatives to Glo-I. Additionally, a 100 ns molecular dynamics simulation assessed the stability of the most potent compound compared to a co-crystallized ligand. Compound MQ3 demonstrated a remarkable inhibitory effect against Glo-I, with an IC50 concentration of 1.45 µM. The inhibitory potency of MQ3 may be attributed to the catechol ring, amide functional group, and anthraquinone moiety, collectively contributing to a strong binding affinity with Glo-I. Anthraquinone amide-based derivatives exhibit substantial potential as Glo-I inhibitors with prospective anticancer activity. The exceptional inhibitory efficacy of compound MQ3 indicates its potential as an effective anticancer agent. These findings underscore the significance of anthraquinone amide-based derivatives as a novel class of compounds for cancer therapy, supporting further research and advancements in targeting the Glo-I enzyme to combat cancer.


Asunto(s)
Amidas , Antraquinonas , Inhibidores Enzimáticos , Lactoilglutatión Liasa , Simulación del Acoplamiento Molecular , Antraquinonas/farmacología , Antraquinonas/química , Humanos , Amidas/química , Amidas/farmacología , Lactoilglutatión Liasa/antagonistas & inhibidores , Lactoilglutatión Liasa/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Relación Estructura-Actividad , Simulación de Dinámica Molecular , Antineoplásicos/farmacología , Antineoplásicos/química
4.
Bioorg Chem ; 147: 107392, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723423

RESUMEN

Diabetes mellitus is a metabolic disease characterized by hyperglycemia, which can be counteracted by the inhibition of α-glucosidase (α-Glu) and α-amylase (α-Amy), enzymes responsible for the hydrolysis of carbohydrates. In recent decades, many natural compounds and their bioinspired analogues have been studied as α-Glu and α-Amy inhibitors. However, no studies have been devoted to the evaluation of α-Glu and α-Amy inhibition by the neolignan obovatol (1). In this work, we report the synthesis of 1 and a library of new analogues. The synthesis of these compounds was achieved by implementing methodologies based on: phenol allylation, Claisen/Cope rearrangements, methylation, Ullmann coupling, demethylation, phenol oxidation and Michael-type addition. Obovatol (1) and ten analogues were evaluated for their in vitro inhibitory activity towards α-Glu and α-Amy. Our investigation highlighted that the naturally occurring 1 and four neolignan analogues (11, 22, 26 and 27) were more effective inhibitors than the hypoglycemic drug acarbose (α-Amy: 34.6 µM; α-Glu: 248.3 µM) with IC5O value of 6.2-23.6 µM toward α-Amy and 39.8-124.6 µM toward α-Glu. Docking investigations validated the inhibition outcomes, highlighting optimal compatibility between synthesized neolignans and both the enzymes. Concurrently circular dichroism spectroscopy detected the conformational changes in α-Glu induced by its interaction with the studied neolignans. Detailed studies through fluorescence measurements and kinetics of α-Glu and α-Amy inhibition also indicated that 1, 11, 22, 26 and 27 have the greatest affinity for α-Glu and 1, 11 and 27 for α-Amy. Surface plasmon resonance imaging (SPRI) measurements confirmed that among the compounds studied, the neolignan 27 has the greater affinity for both enzymes, thus corroborating the results obtained by kinetics and fluorescence quenching. Finally, in vitro cytotoxicity of the investigated compounds was tested on human colon cancer cell line (HCT-116). All these results demonstrate that these obovatol-based neolignan analogues constitute promising candidates in the pursuit of developing novel hypoglycemic drugs.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Lignanos , alfa-Amilasas , alfa-Glucosidasas , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , alfa-Glucosidasas/metabolismo , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Lignanos/farmacología , Lignanos/química , Lignanos/síntesis química , Relación Estructura-Actividad , Humanos , Estructura Molecular , Relación Dosis-Respuesta a Droga , Simulación del Acoplamiento Molecular , Hipoglucemiantes/farmacología , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química
5.
J Cancer Res Clin Oncol ; 150(5): 253, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748285

RESUMEN

BACKGROUND: Lysine-specific demethylase 1 (LSD1) is highly expressed in a variety of malignant tumors, rendering it a crucial epigenetic target for anti-tumor therapy. Therefore, the inhibition of LSD1 activity has emerged as a promising innovative therapeutic approach for targeted cancer treatment. METHODS: In our study, we employed innovative structure-based drug design methods to meticulously select compounds from the ZINC15 database. Utilizing virtual docking, we evaluated docking scores and binding modes to identify potential inhibitors. To further validate our findings, we harnessed molecular dynamic simulations and conducted meticulous biochemical experiments to deeply analyze the binding interactions between the protein and compounds. RESULTS: Our results showcased that ZINC10039815 exhibits an exquisite binding mode with LSD1, fitting perfectly into the active pocket and forming robust interactions with multiple critical residues of the protein. CONCLUSIONS: With its significant inhibitory effect on LSD1 activity, ZINC10039815 emerges as a highly promising candidate for the development of novel LSD1 inhibitors.


Asunto(s)
Inhibidores Enzimáticos , Histona Demetilasas , Simulación del Acoplamiento Molecular , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Histona Demetilasas/química , Humanos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Simulación de Dinámica Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Diseño de Fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
6.
Nat Commun ; 15(1): 3785, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710674

RESUMEN

Mutations in human isocitrate dehydrogenase 1 (IDH1) drive tumor formation in a variety of cancers by replacing its conventional activity with a neomorphic activity that generates an oncometabolite. Little is understood of the mechanistic differences among tumor-driving IDH1 mutants. We previously reported that the R132Q mutant unusually preserves conventional activity while catalyzing robust oncometabolite production, allowing an opportunity to compare these reaction mechanisms within a single active site. Here, we employ static and dynamic structural methods and observe that, compared to R132H, the R132Q active site adopts a conformation primed for catalysis with optimized substrate binding and hydride transfer to drive improved conventional and neomorphic activity over R132H. This active site remodeling reveals a possible mechanism of resistance to selective mutant IDH1 therapeutic inhibitors. This work enhances our understanding of fundamental IDH1 mechanisms while pinpointing regions for improving inhibitor selectivity.


Asunto(s)
Dominio Catalítico , Isocitrato Deshidrogenasa , Mutación , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Humanos , Cinética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Resistencia a Antineoplásicos/genética , Inhibidores Enzimáticos/farmacología
7.
Molecules ; 29(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38731521

RESUMEN

Lactate dehydrogenase A (LDHA) primarily catalyzes the conversion between lactic acid and pyruvate, serving as a key enzyme in the aerobic glycolysis pathway of sugar in tumor cells. LDHA plays a crucial role in the occurrence, development, progression, invasion, metastasis, angiogenesis, and immune escape of tumors. Consequently, LDHA not only serves as a biomarker for tumor diagnosis and prognosis but also represents an ideal target for tumor therapy. Although LDHA inhibitors show great therapeutic potential, their development has proven to be challenging. In the development of LDHA inhibitors, the key active sites of LDHA are emphasized. Nevertheless, there is a relative lack of research on the amino acid residues around the active center of LDHA. Therefore, in this study, we investigated the amino acid residues around the active center of LDHA. Through structure comparison analysis, five key amino acid residues (Ala30, Met41, Lys131, Gln233, and Ala259) were identified. Subsequently, the effects of these five residues on the enzymatic properties of LDHA were investigated using site-directed mutagenesis. The results revealed that the catalytic activities of the five mutants varied to different degrees in both the reaction from lactic acid to pyruvate and pyruvate to lactic acid. Notably, the catalytic activities of LDHAM41G and LDHAK131I were improved, particularly in the case of LDHAK131I. The results of the molecular dynamics analysis of LDHAK131I explained the reasons for this phenomenon. Additionally, the optimum temperature of LDHAM41G and LDHAQ233M increased from 35 °C to 40 °C, whereas in the reverse reaction, the optimum temperature of LDHAM41G and LDHAK131I decreased from 70 °C to 60 °C. These findings indicate that Ala30, Met41, Lys131, Gln233, and Ala259 exert diverse effects on the catalytic activity and optimum temperature of LHDA. Therefore, these amino acid residues, in addition to the key catalytic site of the active center, play a crucial role. Considering these residues in the design and screening of LDHA inhibitors may lead to the development of more effective inhibitors.


Asunto(s)
Dominio Catalítico , Inhibidores Enzimáticos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Aminoácidos/química , Aminoácidos/metabolismo , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/química , Lactato Deshidrogenasa 5/metabolismo , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Lactato Deshidrogenasa 5/química , Ácido Pirúvico/metabolismo , Ácido Pirúvico/química , Mutagénesis Sitio-Dirigida , Simulación de Dinámica Molecular
8.
Expert Rev Hematol ; 17(6): 211-221, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38747392

RESUMEN

INTRODUCTION: Recurrent mutations in isocitrate dehydrogenase 1 (mIDH1) occur in about 7% to 14% of all cases of acute myeloid leukemia (AML). The discovery of targetable mutations in AML, including IDH mutations, expanded the therapeutic landscape of AML and led to the development of targeted agents. Despite significant advances in current treatment options, remission and overall survival rates remain suboptimal. The IDH1 inhibitor, olutasidenib, demonstrated encouraging safety and clinical benefits as monotherapy in patients with relapsed or refractory (R/R) mIDH1 AML. AREAS COVERED: This review outlines the olutasidenib drug profile and summarizes key safety and efficacy data, focusing on the 150 mg twice daily dose from the pivotal registrational cohort of the phase 2 trial that formed the basis for the US Food and Drug Administration approval of olutasidenib in patients with R/R AML with a susceptible IDH1 mutation. EXPERT OPINION: Olutasidenib offers patients with R/R mIDH1 AML a new treatment option, with improved complete remission and a longer duration of response than other targeted mIDH1 treatment options. Olutasidenib provided clinical benefit with a manageable safety profile. Additional analyses to further characterize the safety and efficacy of olutasidenib in frontline and R/R settings as monotherapy and as combination therapy are ongoing.


Olutasidenib is an oral prescription medication for patients diagnosed with acute myeloid leukemia (AML) with a specific mutation in the isocitrate dehydrogenase 1 (IDH1) gene. The US FDA approved olutasidenib at a dose of 150 mg twice a day for use as stand-alone (monotherapy) treatment in patients with IDH1-mutated AML whose disease has come back or has not improved after previous treatment(s). Olutasidenib is not traditional chemotherapy; it is a targeted treatment called an IDH1 inhibitor, which blocks IDH1 when it has been altered (mutated). These alterations happen in some patients, and when they do, the products of these alterations can lead to leukemia. By blocking mutated IDH1, the body can resume normal blood cell production and functioning. In studies, response to olutasidenib was measured by the number of people who went into remission. Complete remission (CR) means there is no sign of cancer and laboratory values are normal. Complete remission with partial hematologic recovery (CRh) means there is no sign of cancer, but some lab values do not reach normal levels. Thirty-five percent of people taking olutasidenib achieved CR or CRh and stayed in remission for 25.9 months. About 14% of patients who did not achieve remission also experienced some improvement in symptoms. The most common side effects in studies were nausea, feeling tired, fever, constipation, diarrhea, abnormal liver function tests, and changes in certain blood tests. Serious side effects included liver problems and differentiation syndrome, which is a potentially life-threatening situation that can occur when blood cells mature too quickly. Olutasidenib is also being studied in patients with IDH1 mutated AML who have never been treated before and in combination with a chemotherapy medication called azacitidine.


Asunto(s)
Isocitrato Deshidrogenasa , Leucemia Mieloide Aguda , Mutación , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Piridinas/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Recurrencia , Resultado del Tratamiento
9.
Biochem Biophys Res Commun ; 716: 150011, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704890

RESUMEN

Methionine adenosyltransferase 2 A (MAT2A) mediates the synthesis of methyl donor S-Adenosylmethionine (SAM), providing raw materials for methylation reactions in cells. MAT2A inhibitors are currently used for the treatment of tumors with methylthioadenosine phosphorylase (MTAP) deficiency in clinical research. Methyltransferase like 3 (METTL3) catalyzes N6-methyladenosine (m6A) modification of mRNA in mammalian cells using SAM as the substrate which has been shown to affect the tumorigenesis of non-small cell lung cancer (NSCLC) from multiple perspectives. MAT2A-induced SAM depletion may have the potential to inhibit the methyl transfer function of METTL3. Therefore, in order to expand the applicability of inhibitors, improve anti-tumor effects and reduce toxicity, the combinational effect of MAT2A inhibitor AG-270 and METTL3 inhibitor STM2457 was evaluated in NSCLC. The results showed that this combination induced cell apoptosis rather than cell cycle arrest, which was non-tissue-specific and was independent of MTAP expression status, resulting in a significant synergistic anti-tumor effect. We further elucidated that the combination-induced enhanced apoptosis was associated with the decreased m6A level, leading to downregulation of PI3K/AKT protein, ultimately activating the apoptosis-related proteins. Unexpectedly, although combination therapy resulted in metabolic recombination, no significant change in methionine metabolic metabolites was found. More importantly, the combination also exerted synergistic effects in vivo. In summary, the combination of MAT2A inhibitor and METTL3 inhibitor showed synergistic effects both in vivo and in vitro, which laid a theoretical foundation for expanding the clinical application research of the two types of drugs.


Asunto(s)
Apoptosis , Carcinoma de Pulmón de Células no Pequeñas , Sinergismo Farmacológico , Neoplasias Pulmonares , Metionina Adenosiltransferasa , Metiltransferasas , Metionina Adenosiltransferasa/metabolismo , Metionina Adenosiltransferasa/antagonistas & inhibidores , Metionina Adenosiltransferasa/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Humanos , Apoptosis/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Animales , Metiltransferasas/metabolismo , Metiltransferasas/antagonistas & inhibidores , Línea Celular Tumoral , Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Ratones , Ratones Desnudos , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Eur J Med Chem ; 271: 116461, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691891

RESUMEN

Owing to the global health crisis of resistant pathogenic infections, researchers are emphasizing the importance of novel prevention and control strategies. Existing antimicrobial drugs predominantly target a few pathways, and their widespread use has pervasively increased drug resistance. Therefore, it is imperative to develop new antimicrobial drugs with novel targets and chemical structures. The de novo cysteine biosynthesis pathway, one of the microbial metabolic pathways, plays a crucial role in pathogenicity and drug resistance. This pathway notably differs from that in humans, thereby representing an unexplored target for developing antimicrobial drugs. Herein, we have presented an overview of cysteine biosynthesis pathways and their roles in the pathogenicity of various microorganisms. Additionally, we have investigated the structure and function of enzymes involved in these pathways as well as have discussed drug design strategies and structure-activity relationships of the enzyme inhibitors. This review provides valuable insights for developing novel antimicrobials and offers new avenues to combat drug resistance.


Asunto(s)
Cisteína , Descubrimiento de Drogas , Cisteína/metabolismo , Cisteína/química , Cisteína/biosíntesis , Humanos , Relación Estructura-Actividad , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Estructura Molecular , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/biosíntesis , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/metabolismo
11.
Eur J Med Chem ; 271: 116437, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38701712

RESUMEN

As a cytosolic enzyme involved in the purine salvage pathway metabolism, purine nucleoside phosphorylase (PNP) plays an important role in a variety of cellular functions but also in immune system, including cell growth, apoptosis and cancer development and progression. Based on its T-cell targeting profile, PNP is a potential target for the treatment of some malignant T-cell proliferative cancers including lymphoma and leukemia, and some specific immunological diseases. Numerous small-molecule PNP inhibitors have been developed so far. However, only Peldesine, Forodesine and Ulodesine have entered clinical trials and exhibited some potential for the treatment of T-cell leukemia and gout. The most recent direction in PNP inhibitor development has been focused on PNP small-molecule inhibitors with better potency, selectivity, and pharmacokinetic property. In this perspective, considering the structure, biological functions, and disease relevance of PNP, we highlight the recent research progress in PNP small-molecule inhibitor development and discuss prospective strategies for designing additional PNP therapeutic agents.


Asunto(s)
Inhibidores Enzimáticos , Purina-Nucleósido Fosforilasa , Bibliotecas de Moléculas Pequeñas , Purina-Nucleósido Fosforilasa/antagonistas & inhibidores , Purina-Nucleósido Fosforilasa/metabolismo , Humanos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Estructura Molecular , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Relación Estructura-Actividad , Desarrollo de Medicamentos
12.
J Med Chem ; 67(10): 8099-8121, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38722799

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT) is an attractive therapeutic target for treating select cancers. There are two forms of NAMPT: intracellular NAMPT (iNAMPT, the rate-limiting enzyme in the mammalian NAD+ main synthetic pathway) and extracellular NAMPT (eNAMPT, a cytokine with protumorigenic function). Reported NAMPT inhibitors only inhibit iNAMPT and show potent activities in preclinical studies. Unfortunately, they failed to show efficacy due to futility and toxicity. We developed a series of FK866-based NAMPT-targeting PROTACs and identified LYP-8 as a potent and effective NAMPT degrader that simultaneously diminished iNAMPT and eNAMPT. Importantly, LYP-8 demonstrated superior efficacy and safety in mice when compared to the clinical candidate, FK866. This study highlights the importance and feasibility of applying PROTACs as a superior strategy for interfering with both the enzymatic function of NAMPT (iNAMPT) and nonenzymatic function of NAMPT (eNAMPT), which is difficult to achieve with conventional NAMPT inhibitors.


Asunto(s)
Acrilamidas , Diseño de Fármacos , Nicotinamida Fosforribosiltransferasa , Piperidinas , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/metabolismo , Acrilamidas/farmacología , Acrilamidas/química , Acrilamidas/síntesis química , Animales , Humanos , Piperidinas/farmacología , Piperidinas/química , Ratones , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Citocinas/metabolismo , Línea Celular Tumoral , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química
13.
J Med Chem ; 67(10): 8406-8419, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38723203

RESUMEN

Forty-one 1,3,4-thiadiazolyl-containing thiazolidine-2,4-dione derivatives (MY1-41) were designed and synthesized as protein tyrosine phosphatase 1B (PTP1B) inhibitors with activity against diabetes mellitus (DM). All synthesized compounds (MY1-41) presented potential PTP1B inhibitory activities, with half-maximal inhibitory concentration (IC50) values ranging from 0.41 ± 0.05 to 4.68 ± 0.61 µM, compared with that of the positive control lithocholic acid (IC50 = 9.62 ± 0.14 µM). The most potent compound, MY17 (IC50 = 0.41 ± 0.05 µM), was a reversible, noncompetitive inhibitor of PTP1B. Circular dichroism spectroscopy and molecular docking were employed to analyze the binding interaction between MY17 and PTP1B. In HepG2 cells, MY17 treatment could alleviate palmitic acid (PA)-induced insulin resistance by upregulating the expression of phosphorylated insulin receptor substrate and protein kinase B. In vivo, oral administration of MY17 could reduce the fasting blood glucose level and improve glucose tolerance and dyslipidemia in mice suffering from DM.


Asunto(s)
Diabetes Mellitus Experimental , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Tiazolidinedionas , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Animales , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/síntesis química , Hipoglucemiantes/uso terapéutico , Células Hep G2 , Ratones , Tiazolidinedionas/farmacología , Tiazolidinedionas/química , Tiazolidinedionas/síntesis química , Diabetes Mellitus Experimental/tratamiento farmacológico , Relación Estructura-Actividad , Masculino , Tiadiazoles/farmacología , Tiadiazoles/química , Tiadiazoles/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Resistencia a la Insulina , Glucemia/efectos de los fármacos , Glucemia/análisis , Glucemia/metabolismo
14.
J Med Chem ; 67(10): 7973-7994, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38728549

RESUMEN

Triple-negative breast cancer is a highly aggressive and heterogeneous breast cancer subtype characterized by early metastasis, poor prognosis, and high recurrence. Targeting histone citrullination-mediated chromatin dysregulation to induce epigenetic alterations shows great promise in TNBC therapy. We report the synthesis, optimization, and evaluation of a novel series of ß-carboline-derived peptidyl arginine deiminase 4 inhibitors that exhibited potent inhibition of TNBC cell proliferation. The most outstanding PAD4 inhibitor, compound 28, hindered the PAD4-H3cit-NET signaling pathway and inhibited the growth of solid tumors and pulmonary metastatic nodules in the 4T1 in situ mouse model. Furthermore, 28 improved the tumor immune microenvironment by reshaping neutrophil phenotype, upregulating the proportions of dendritic cells and M1 macrophages, and reducing the amount of myeloid-derived suppressor cells. In conclusion, our work offered 28 as an efficacious PAD4 inhibitor that exerts a combination of conventional chemotherapy and immune-boosting effects, which represents a potential therapy strategy for TNBC.


Asunto(s)
Antineoplásicos , Carbolinas , Neutrófilos , Arginina Deiminasa Proteína-Tipo 4 , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/inmunología , Carbolinas/farmacología , Carbolinas/química , Carbolinas/uso terapéutico , Carbolinas/síntesis química , Animales , Arginina Deiminasa Proteína-Tipo 4/antagonistas & inhibidores , Femenino , Humanos , Microambiente Tumoral/efectos de los fármacos , Ratones , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Neutrófilos/inmunología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/uso terapéutico , Fenotipo , Relación Estructura-Actividad
15.
Biochemistry ; 63(10): 1241-1245, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38724483

RESUMEN

Natural products are important sources of seed compounds for drug discovery. However, it has become difficult in recent years to discover new compounds with valuable pharmacological activities. On the other hand, among the vast number of natural products that have been isolated so far, a considerable number of compounds with specific biological activities are thought to be overlooked in screening that uses biological activity as an index. Therefore, it is conceivable that such overlooked useful compounds may be found by screening compound libraries that have been amassed previously through specific assays. Previously, NPD723, a member of the Natural Products Depository library comprised of a mixture of natural and non-natural products developed at RIKEN, and its metabolite H-006 were found to inhibit growth of various cancer cells at low nanomolar half-maximal inhibitory concentration. Subsequent analysis revealed that H-006 strongly inhibited human dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme in the de novo pyrimidine biosynthetic pathway. Here, we elucidated the crystal structure of the DHODH-flavin mononucleotide-orotic acid-H-006 complex at 1.7 Å resolution to determine that furocoumavirin, the S-enantiomer of H-006, was the actual inhibitor. The overall mode of interaction of furocoumavirin with the inhibitor binding pocket was similar to that described for previously reported tight-binding inhibitors. However, the structural information together with kinetic characterizations of site-specific mutants identified key unique features that are considered to contribute to the sub-nanomolar inhibition of DHODH by furocoumavirin. Our finding identified new chemical features that could improve the design of human DHODH inhibitors.


Asunto(s)
Antivirales , Dihidroorotato Deshidrogenasa , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Humanos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Antivirales/farmacología , Antivirales/química , Cristalografía por Rayos X , Furocumarinas/farmacología , Furocumarinas/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Modelos Moleculares
16.
Food Funct ; 15(10): 5209-5223, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38717256

RESUMEN

Elevated blood glucose concentration is a risk factor for developing metabolic dysfunction and insulin resistance, leading to type 2 diabetes and cardiovascular diseases. Nuts have the potential to inhibit α-amylase activity, and so lower postprandial glucose, due to their content of polyphenols and other bioactive compounds. We conducted a systematic literature review to assess the ability of extracts from commonly consumed edible parts of nuts to inhibit α-amylase. Among the 31 included papers, only four utilised human α-amylases. These papers indicated that polyphenol-rich chestnut skin extracts exhibited strong inhibition of both human salivary and pancreatic α-amylases, and that a polyphenol-rich almond skin extract was a potent inhibitor of human salivary α-amylase. The majority of the reviewed studies utilised porcine pancreatic α-amylase, which has ∼86% sequence homology with the corresponding human enzyme but with some key amino acid variations located within the active site. Polyphenol-rich extracts from chestnut, almond, kola nut, pecan and walnut, and peptides isolated from cashew, inhibited porcine pancreatic α-amylase. Some studies used α-amylases sourced from fungi or bacteria, outcomes from which are entirely irrelevant to human health, as they have no sequence homology with the human enzyme. Given the limited research involving human α-amylases, and the differences in inhibition compared to porcine enzymes and especially enzymes from microorganisms, it is recommended that future in vitro experiments place greater emphasis on utilising enzymes sourced from humans to facilitate a reliable prediction of effects in intervention studies.


Asunto(s)
Nueces , Extractos Vegetales , alfa-Amilasas , Nueces/química , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Animales , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Porcinos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Polifenoles/farmacología , Polifenoles/química , Juglans/química
17.
J Agric Food Chem ; 72(20): 11308-11320, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38720452

RESUMEN

The dearomatization at the hydrophobic tail of the boscalid was carried out to construct a series of novel pyrazole-4-carboxamide derivatives containing an oxime ether fragment. By using fungicide-likeness analyses and virtual screening, 24 target compounds with theoretical strong inhibitory effects against fungal succinate dehydrogenase (SDH) were designed and synthesized. Antifungal bioassays showed that the target compound E1 could selectively inhibit the in vitro growth of R. solani, with the EC50 value of 1.1 µg/mL that was superior to that of the agricultural fungicide boscalid (2.2 µg/mL). The observations by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that E1 could reduce mycelial density and significantly increase the mitochondrial number in mycelia cytoplasm, which was similar to the phenomenon treated with boscalid. Enzyme activity assay showed that the E1 had the significant inhibitory effect against the SDH from R. solani, with the IC50 value of 3.3 µM that was superior to that of boscalid (7.9 µM). The mode of action of the target compound E1 with SDH was further analyzed by molecular docking and molecular dynamics simulation studies. Among them, the number of hydrogen bonds was significantly more in the SDH-E1 complex than that in the SDH-boscalid complex. This research on the dearomatization strategy of the benzene ring for constructing pyrazole-4-carboxamides containing an oxime ether fragment provides a unique thought to design new antifungal drugs targeting SDH.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos , Fungicidas Industriales , Oximas , Pirazoles , Succinato Deshidrogenasa , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/química , Succinato Deshidrogenasa/metabolismo , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Fungicidas Industriales/síntesis química , Relación Estructura-Actividad , Oximas/química , Oximas/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Proteínas Fúngicas/química , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/metabolismo , Simulación del Acoplamiento Molecular , Rhizoctonia/efectos de los fármacos , Éteres/química , Éteres/farmacología , Estructura Molecular
18.
J Ethnopharmacol ; 331: 118285, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38703873

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Herbs of the genus Juniperus (family Cupressaceae) have been commonly used in ancestral folk medicine known as "Al'Araar" for treatment of rheumatism, diabetes, inflammation, pain, and fever. Bioassay-guided isolation of bioactives from medicinal plants is recognized as a potential approach for the discovery of novel drug candidates. In particular, non-addictive painkillers are of special interest among herbal phytochemicals. AIM OF THE STUDY: The current study aimed to assess the safety of J. thurifera, J. phoenicea, and J. oxycedrus aqueous extracts in oral treatments; validating the traditionally reported anti-inflammatory and analgesic effects. Further phytochemical investigations, especially for the most bioactive species, may lead to isolation of bioactive metabolites responsible for such bioactivities supported with in vitro enzyme inhibition assays. MATERIALS AND METHODS: Firstly, the acute toxicity study was investigated following the OECD Guidelines. Then, the antinociceptive, and anti-inflammatory bioactivities were evaluated based on chemical and mechanical trauma assays and investigated their underlying mechanisms. The most active J. thurifera n-butanol fraction was subjected to chromatographic studies for isolating the major anti-inflammatory metabolites. Moreover, several enzymatic inhibition assays (e.g., 5-lipoxygenase, protease, elastase, collagenase, and tyrosinase) were assessed for the crude extracts and isolated compounds. RESULTS: The results showed that acute oral administration of the extracts (300-500 mg/kg, p. o.) inhibited both mechanically and chemically triggered inflammatory edema in mice (up to 70% in case of J. thurifera) with a dose-dependent antinociceptive (tail flick) and anti-inflammatory pain (formalin assay) activities. This effect was partially mediated by naloxone inhibition of the opioid receptor (2 mg/kg, i. p.). In addition, 3-methoxy gallic acid (1), quercetin (2), kaempferol (3), and ellagic acid (4) were successfully identified being involved most likely in J. thurifera extract bioactivities. Nevertheless, quercetin was found to be the most potent against 5-LOX, tyrosinase, and protease with IC50 of 1.52 ± 0.01, 192.90 ± 6.20, and 399 ± 9.05 µM, respectively. CONCLUSION: J. thurifera extract with its major metabolites are prospective drug candidates for inflammatory pain supported with inhibition of inflammatory enzymes. Interestingly, antagonism of opioid and non-opioid receptors is potentially involved.


Asunto(s)
Analgésicos , Antiinflamatorios , Juniperus , Extractos Vegetales , Hojas de la Planta , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Juniperus/química , Analgésicos/farmacología , Analgésicos/química , Analgésicos/aislamiento & purificación , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Ratones , Masculino , Hojas de la Planta/química , Marruecos , Femenino , Dolor/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/aislamiento & purificación , Bioensayo , Edema/tratamiento farmacológico , Edema/inducido químicamente , Inflamación/tratamiento farmacológico
19.
Phytochemistry ; 223: 114119, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705266

RESUMEN

Six previously undescribed prenylated indole diketopiperazine alkaloids, talaromyines A-F (1-6), were isolated from the marine-derived fungus Talaromyces purpureogenus SCSIO 41517. Their structures including absolute configurations were elucidated on the basis of comprehensive spectroscopic data including NMR, HR-ESI-MS, and electronic circular dichroism calculations, together with chemical analysis of hydrolysates. Compounds 1-5 represent the first example of spirocyclic indole diketopiperazines biosynthesized from the condensation of L-tryptophan and L-alanine. Compounds 2 and 4-5 showed selective inhibitory activities against phosphatases TCPTP and MEG2 with IC50 value of 17.9-29.7 µM, respectively. Compounds 4-5 exhibited mild cytotoxic activities against two human cancer cell lines H1975 and HepG-2.


Asunto(s)
Dicetopiperazinas , Talaromyces , Talaromyces/química , Dicetopiperazinas/química , Dicetopiperazinas/farmacología , Dicetopiperazinas/aislamiento & purificación , Humanos , Estructura Molecular , Prenilación , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Alcaloides Indólicos/aislamiento & purificación , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacología , Alcaloides/química , Alcaloides/farmacología , Alcaloides/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Células Hep G2 , Proliferación Celular/efectos de los fármacos , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Monoéster Fosfórico Hidrolasas/metabolismo , Línea Celular Tumoral
20.
Comput Biol Chem ; 110: 108087, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718496

RESUMEN

INTRODUCTION: Diabetes Mellitus is the metabolic disorder most prevalent globally, accounting for a substantial morbidity rate. The conventional drugs available for the management of diabetes are either expensive or lack the required efficacy. The purpose of this research is to isolate and characterize an active phytoconstituent from Coccinia grandis and assess its anti-diabetic properties. METHODS AND MATERIALS: Stems of Coccinia grandis are subjected to successive extraction and isolation. The isolated compound by column chromatography was characterized by FTIR (fourier-transform infrared), 1 H NMR (proton nuclear magnetic resonance), and Mass spectroscopy. The antidiabetic potential of the isolated compound was evaluated by in-vitro alpha-amylase inhibitory activity. Further, the compound was subjected to molecular docking studies to study its interaction with the human pancreatic alpha-amylase (Molegro Virtual Docker) as well to determine the pharmacokinetic and toxicity profile using computational techniques (OSIRIS property explorer, Swiss ADME, pkCSM, and PreADMET). RESULTS: The characterization of the compound suggests the structure to be 2,4-ditertiary butyl phenol. The in-vitro alpha-amylase inhibitory study indicated a concentration-dependent inhibition and the IC50 (median lethal dose) value of the isolated compound was found to be 64.36 µg/ml. The docking study with the A chain of receptor 5EMY yielded a favorable docking score of -81.48 Kcal mol-1, suggesting that the compound binds to the receptor with high affinity through electrostatic, hydrophobic, and hydrogen bonds. Furthermore, the silico ADME analysis of the compound revealed improved metabolism, a skin permeability of -3.87 cm/s, gastrointestinal absorption of 95.48 %, and a total clearance of 0.984 log ml min-1 kg-1. In silico toxicity analysis also predicted cutaneous irritations but no carcinogenicity, mutagenicity, or hepatotoxicity. CONCLUSION: The data suggested that the isolated compound (2, 4-tertiary butyl phenol) has the potential to inhibit the alpha-amylase activity and possess optimal ADME properties as well as tolerable side effects.


Asunto(s)
Simulación del Acoplamiento Molecular , Fenoles , alfa-Amilasas , Humanos , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Fenoles/química , Fenoles/farmacología , Fenoles/aislamiento & purificación , Cucurbitaceae/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/aislamiento & purificación , Estructura Molecular , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA