Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.375
Filtrar
1.
Am Soc Clin Oncol Educ Book ; 44(3): e431766, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38828973

RESUMEN

Antibody-drug conjugates (ADCs) have reshaped the cancer treatment landscape across a variety of different tumor types. ADCs' peculiar pharmacologic design combines the cytotoxic properties of chemotherapeutic agents with the selectivity of targeted therapies. At present, the approval of many ADCs used in clinical practice has not always been biomarker-driven. Indeed, predicting ADCs' activity and toxicity through the demonstration of specific biomarkers is still a great unmet need, and the identification of patients who can derive significant benefit from treatment with ADCs may often be uncertain. With the lack of robust predictive biomarkers to anticipate primary, intrinsic resistance to ADCs and no consolidated biomarkers to aid in the early identification of treatment resistance (ie, acquired resistance), the determination of precise biologic mechanisms of ADC activity and safety becomes priority in the quest for better patient-centric outcomes. Of great relevance, whether the target antigen expression is a determinant of ADCs' primary activity is still to be clarified, and available data remain quite controversial. Antigen expression assessment is typically performed on tissue biopsy, hence only providing information on a specific tumor site, therefore unable to capture heterogeneous patterns of tumor antigen expression. Quantifying the expression of the target antigen across all tumor sites would help better understand tumor heterogeneity, whereas molecularly characterizing tumor-intrinsic features over time might provide information on resistance mechanisms. In addition, toxicity can represent a critical concern, since most ADCs have a safety profile that resembles that of chemotherapies, with often unique adverse events requiring special management, possibly because of the differential in pharmacokinetics between the small-molecule agent versus payload of a similar class (eg, deruxtecan conjugate-related interstitial lung disease). As such, the identification of robust predictive biomarkers of safety and activity of ADCs has the potential to improve patient selection and enrich the population of patients most likely to derive a substantial clinical benefit, especially in those disease settings where different ADCs happen to be approved in competing clinical indications, with undefined biomarkers to make precise decision making and unclear data on how to sequence ADCs. At this point, the identification of clinically actionable biomarkers in the space of ADCs remains a top research priority.


Asunto(s)
Biomarcadores de Tumor , Inmunoconjugados , Neoplasias , Humanos , Inmunoconjugados/uso terapéutico , Inmunoconjugados/farmacología , Inmunoconjugados/farmacocinética , Neoplasias/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Terapia Molecular Dirigida , Resistencia a Antineoplásicos , Resultado del Tratamiento
2.
PLoS One ; 19(6): e0304985, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38843278

RESUMEN

Signal regulatory protein alpha (SIRPα) is an immune inhibitory receptor on myeloid cells including macrophages and dendritic cells, which binds to CD47, a ubiquitous self-associated molecule. SIRPα-CD47 interaction is exploited by cancer cells to suppress anti-tumor activity of myeloid cells, therefore emerging as a novel immune checkpoint for cancer immunotherapy. In blood cancer, several SIRPα-CD47 blockers have shown encouraging monotherapy activity. However, the anti-tumor activity of SIRPα-CD47 blockers in solid tumors seems limited, suggesting the need for combination therapies to fully exploit the myeloid immune checkpoint in solid tumors. Here we tested whether combination of SIRPα-CD47 blocker with antibody-drug conjugate bearing a topoisomerase I inhibitor DXd (DXd-ADC) would enhance anti-tumor activity in solid tumors. To this end, DS-1103a, a newly developed anti-human SIRPα antibody (Ab), was assessed for the potential combination benefit with datopotamab deruxtecan (Dato-DXd) and trastuzumab deruxtecan (T-DXd), DXd-ADCs targeting human trophoblast cell-surface antigen 2 and human epidermal growth factor receptor 2, respectively. DS-1103a inhibited SIRPα-CD47 interaction and enhanced antibody-dependent cellular phagocytosis of Dato-DXd and T-DXd against human cancer cells. In a whole cancer cell vaccination model, vaccination with DXd-treated cancer cells led to activation of tumor-specific T cells when combined with an anti-mouse SIRPα (anti-mSIRPα) Ab, implying the benefit of combining DXd-ADCs with anti-SIRPα Ab on anti-tumor immunity. Furthermore, in syngeneic mouse models, both Dato-DXd and T-DXd combination with anti-mSIRPα Ab showed stronger anti-tumor activity over the monotherapies. Taken together, this study provides a preclinical rationale of novel therapies for solid tumors combining SIRPα-CD47 blockers with DXd-ADCs.


Asunto(s)
Antígenos de Diferenciación , Antígeno CD47 , Inmunoconjugados , Receptores Inmunológicos , Antígeno CD47/antagonistas & inhibidores , Antígeno CD47/inmunología , Animales , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/inmunología , Humanos , Ratones , Inmunoconjugados/farmacología , Antígenos de Diferenciación/inmunología , Línea Celular Tumoral , Femenino , Trastuzumab/farmacología , Inhibidores de Topoisomerasa I/farmacología , Inmunoterapia/métodos , Ratones Endogámicos BALB C
3.
Expert Rev Anticancer Ther ; 24(6): 379-395, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38798125

RESUMEN

INTRODUCTION: Modern immunotherapy approaches are revolutionizing the treatment scenario of relapsed/refractory (RR) multiple myeloma (MM) patients, providing an opportunity to reach deep level of responses and extend survival outcomes. AREAS COVERED: Antibody-drug conjugates (ADCs) and T-cell redirecting treatments, including bispecific antibodies (BsAbs) and chimeric antigen receptor (CAR) T cells therapy, have been recently introduced in the treatment of RRMM. Some agents have already received regulatory approval, while newer constructs, novel combinations, and applications in earlier lines of therapy are currently being explored. This review discusses the current landscape and possible development of ADCs, BsAbs and CAR-T cells immunotherapies. EXPERT OPINION: ADCs, BsAbs, and CAR-T therapy have demonstrated substantial activity in heavily pretreated, triple-class exposed (TCE) MM patients, and T-cell redirecting treatments represent new standards of care after third (European Medicines Agency, EMA), or fourth (Food and Drug Administration, FDA), line of therapy. All these three immunotherapies carry advantages and disadvantages, with different accessibility and new toxicities that require appropriate management and guidelines. Multiple on-going programs include combinations therapies and applications in earlier lines of treatment, as well as the development of novel agents or construct to enhance potency, reduce toxicity and facilitate administration. Sequencing is a challenge, with few data available and mechanisms of resistance still to be unraveled.


Asunto(s)
Anticuerpos Biespecíficos , Inmunoconjugados , Inmunoterapia Adoptiva , Mieloma Múltiple , Humanos , Anticuerpos Biespecíficos/administración & dosificación , Anticuerpos Biespecíficos/farmacología , Mieloma Múltiple/terapia , Mieloma Múltiple/inmunología , Mieloma Múltiple/tratamiento farmacológico , Inmunoconjugados/farmacología , Inmunoconjugados/administración & dosificación , Inmunoterapia Adoptiva/métodos , Animales , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Tasa de Supervivencia , Inmunoterapia/métodos , Desarrollo de Medicamentos
4.
J Nanobiotechnology ; 22(1): 256, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755613

RESUMEN

BACKGROUND: Gastric cancer represents a highly lethal malignancy with an elevated mortality rate among cancer patients, coupled with a suboptimal postoperative survival prognosis. Nectin-4, an overexpressed oncological target for various cancers, has been exploited to create antibody-drug conjugates (ADCs) to treat solid tumors. However, there is limited research on Nectin-4 ADCs specifically for gastric cancer, and conventional immunoglobulin G (IgG)-based ADCs frequently encounter binding site barriers. Based on the excellent tumor penetration capabilities inherent in nanobodies (Nbs), we developed Nectin-4-targeting Nb drug conjugates (NDCs) for the treatment of gastric cancer. RESULTS: An immunized phage display library was established and employed for the selection of Nectin-4-specific Nbs using phage display technology. Subsequently, these Nbs were engineered into homodimers to enhance Nb affinity. To prolong in vivo half-life and reduce immunogenicity, we fused an Nb targeting human serum albumin (HSA), resulting in the development of trivalent humanized Nbs. Further, we site-specifically conjugated a monomethyl auristatin E (MMAE) at the C-terminus of the trivalent Nbs, creating Nectin-4 NDC (huNb26/Nb26-Nbh-MMAE) with a drug-to-antibody ratio (DAR) of 1. Nectin-4 NDC demonstrated excellent in vitro cell-binding activities and cytotoxic efficacy against cells with high Nectin-4 expression. Subsequent administration of Nectin-4 NDC to mice bearing NCI-N87 human gastric cancer xenografts demonstrated rapid tissue penetration and high tumor uptake through in vivo imaging. Moreover, Nectin-4 NDC exhibited noteworthy dose-dependent anti-tumor efficacy in in vivo studies. CONCLUSION: We have engineered a Nectin-4 NDC with elevated affinity and effective tumor uptake, further establishing its potential as a therapeutic agent for gastric cancer.


Asunto(s)
Antineoplásicos , Moléculas de Adhesión Celular , Inmunoconjugados , Ratones Desnudos , Anticuerpos de Dominio Único , Neoplasias Gástricas , Neoplasias Gástricas/tratamiento farmacológico , Humanos , Animales , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/farmacología , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Ratones , Inmunoconjugados/química , Inmunoconjugados/farmacología , Inmunoconjugados/farmacocinética , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones Endogámicos BALB C , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Oligopéptidos/química , Oligopéptidos/farmacología , Nectinas
5.
Cells ; 13(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38786084

RESUMEN

Relevant advances have been made in the management of relapsed/refractory (r/r) Hodgkin Lymphomas (HL) with the use of the anti-CD30 antibody-drug conjugate (ADC) brentuximab-vedotin (Bre-Ved). Unfortunately, most patients eventually progress despite the excellent response rates and tolerability. In this report, we describe an ADC composed of the aminobisphosphonate zoledronic acid (ZA) conjugated to Bre-Ved by binding the free amino groups of this antibody with the phosphoric group of ZA. Liquid chromatography-mass spectrometry, inductively coupled plasma-mass spectrometry, and matrix-assisted laser desorption ionization-mass spectrometry analyses confirmed the covalent linkage between the antibody and ZA. The novel ADC has been tested for its reactivity with the HL/CD30+ lymphoblastoid cell lines (KMH2, L428, L540, HS445, and RPMI6666), showing a better titration than native Bre-Ved. Once the HL-cells are entered, the ADC co-localizes with the lysosomal LAMP1 in the intracellular vesicles. Also, this ADC exerted a stronger anti-proliferative and pro-apoptotic (about one log fold) effect on HL-cell proliferation compared to the native antibody Bre-Ved. Eventually, Bre-Ved-ZA ADC, in contrast with the native antibody, can trigger the proliferation and activation of cytolytic activity of effector-memory Vδ2 T-lymphocytes against HL-cell lines. These findings may support the potential use of this ADC in the management of r/r HL.


Asunto(s)
Brentuximab Vedotina , Inmunoconjugados , Antígeno Ki-1 , Ácido Zoledrónico , Humanos , Ácido Zoledrónico/farmacología , Ácido Zoledrónico/uso terapéutico , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Inmunoconjugados/química , Brentuximab Vedotina/farmacología , Brentuximab Vedotina/uso terapéutico , Antígeno Ki-1/metabolismo , Antígeno Ki-1/inmunología , Línea Celular Tumoral , Enfermedad de Hodgkin/tratamiento farmacológico , Enfermedad de Hodgkin/patología , Enfermedad de Hodgkin/inmunología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
6.
Nat Rev Cancer ; 24(6): 399-426, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740967

RESUMEN

The greatest challenge in cancer therapy is to eradicate cancer cells with minimal damage to normal cells. Targeted therapy has been developed to meet that challenge, showing a substantially increased therapeutic index compared with conventional cancer therapies. Antibodies are important members of the family of targeted therapeutic agents because of their extraordinarily high specificity to the target antigens. Therapeutic antibodies use a range of mechanisms that directly or indirectly kill the cancer cells. Early antibodies were developed to directly antagonize targets on cancer cells. This was followed by advancements in linker technologies that allowed the production of antibody-drug conjugates (ADCs) that guide cytotoxic payloads to the cancer cells. Improvement in our understanding of the biology of T cells led to the production of immune checkpoint-inhibiting antibodies that indirectly kill the cancer cells through activation of the T cells. Even more recently, bispecific antibodies were synthetically designed to redirect the T cells of a patient to kill the cancer cells. In this Review, we summarize the different approaches used by therapeutic antibodies to target cancer cells. We discuss their mechanisms of action, the structural basis for target specificity, clinical applications and the ongoing research to improve efficacy and reduce toxicity.


Asunto(s)
Inmunoconjugados , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Inmunoconjugados/uso terapéutico , Inmunoconjugados/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , Animales , Linfocitos T/inmunología , Antineoplásicos Inmunológicos/uso terapéutico , Antineoplásicos Inmunológicos/farmacología
8.
ESMO Open ; 9(5): 102924, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38796287

RESUMEN

BACKGROUND: DESTINY-Breast03 is a randomized, multicenter, open-label, phase III study of trastuzumab deruxtecan (T-DXd) versus trastuzumab emtansine (T-DM1) in patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (mBC) previously treated with trastuzumab and a taxane. A statistically significant improvement in progression-free survival (PFS) versus T-DM1 was reported in the primary analysis. Here, we report exploratory efficacy data in patients with and without brain metastases (BMs) at baseline. PATIENTS AND METHODS: Patients were randomly assigned 1 : 1 to receive T-DXd 5.4 mg/kg or T-DM1 3.6 mg/kg. Patients with clinically inactive/asymptomatic BMs were eligible. Lesions were measured as per modified RECIST, version 1.1. Outcomes included PFS by blinded independent central review (BICR), objective response rate (ORR), and intracranial ORR as per BICR. RESULTS: As of 21 May 2021, 43/261 patients randomized to T-DXd and 39/263 patients randomized to T-DM1 had BMs at baseline, as per investigator assessment. Among patients with baseline BMs, 20/43 in the T-DXd arm and 19/39 in the T-DM1 arm had not received prior local BM treatment. For patients with BMs, median PFS was 15.0 months [95% confidence interval (CI) 12.5-22.2 months] for T-DXd versus 3.0 months (95% CI 2.8-5.8 months) for T-DM1; hazard ratio (HR) 0.25 (95% CI 0.13-0.45). For patients without BMs, median PFS was not reached (95% CI 22.4 months-not estimable) for T-DXd versus 7.1 months (95% CI 5.6-9.7 months) for T-DM1; HR 0.30 (95% CI 0.22-0.40). Confirmed systemic ORR was 67.4% for T-DXd versus 20.5% for T-DM1 and 82.1% for T-DXd versus 36.6% for T-DM1 for patients with and without BMs, respectively. Intracranial ORR was 65.7% with T-DXd versus 34.3% with T-DM1. CONCLUSIONS: Patients with HER2-positive mBC whose disease progressed after trastuzumab and a taxane achieved a substantial benefit from treatment with T-DXd compared with T-DM1, including those with baseline BMs.


Asunto(s)
Ado-Trastuzumab Emtansina , Neoplasias Encefálicas , Neoplasias de la Mama , Receptor ErbB-2 , Trastuzumab , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/tratamiento farmacológico , Trastuzumab/uso terapéutico , Trastuzumab/farmacología , Persona de Mediana Edad , Ado-Trastuzumab Emtansina/uso terapéutico , Ado-Trastuzumab Emtansina/farmacología , Receptor ErbB-2/metabolismo , Adulto , Anciano , Camptotecina/análogos & derivados , Camptotecina/uso terapéutico , Camptotecina/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Antineoplásicos Inmunológicos/farmacología , Inmunoconjugados/uso terapéutico , Inmunoconjugados/farmacología , Supervivencia sin Progresión
9.
Sci Adv ; 10(22): eadk1894, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820153

RESUMEN

Antibody drug conjugates (ADCs) have made impressive strides in the clinic in recent years with 11 Food and Drug Administration approvals, including 6 for the treatment of patients with solid tumors. Despite this success, the development of new agents remains challenging with a high failure rate in the clinic. Here, we show that current approved ADCs for the treatment of patients with solid tumors can all show substantial efficacy in some mouse models when administered at a similar weight-based [milligrams per kilogram (mg/kg)] dosing in mice that is tolerated in the clinic. Mechanistically, equivalent mg/kg dosing results in a similar drug concentration in the tumor and a similar tissue penetration into the tumor due to the unique delivery features of ADCs. Combined with computational approaches, which can account for the complex distribution within the tumor microenvironment, these scaling concepts may aid in the evaluation of new agents and help design therapeutics with maximum clinical efficacy.


Asunto(s)
Inmunoconjugados , Neoplasias , Animales , Inmunoconjugados/administración & dosificación , Inmunoconjugados/farmacocinética , Inmunoconjugados/farmacología , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Humanos , Ensayos Antitumor por Modelo de Xenoinjerto , Investigación Biomédica Traslacional , Modelos Animales de Enfermedad , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Evaluación Preclínica de Medicamentos
10.
Mol Cancer ; 23(1): 97, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730427

RESUMEN

DLL3 acts as an inhibitory ligand that downregulates Notch signaling and is upregulated by ASCL1, a transcription factor prevalent in the small-cell lung cancer (SCLC) subtype SCLC-A. Currently, the therapeutic strategies targeting DLL3 are varied, including antibody-drug conjugates (ADCs), bispecific T-cell engagers (BiTEs), and chimeric antigen receptor (CAR) T-cell therapies. Although rovalpituzumab tesirine (Rova-T) showed promise in a phase II study, it failed to produce favorable results in subsequent phase III trials, leading to the cessation of its development. Conversely, DLL3-targeted BiTEs have garnered significant clinical interest. Tarlatamab, for instance, demonstrated enhanced response rates and progression-free survival compared to the standard of care in a phase II trial; its biologics license application (BLA) is currently under US Food and Drug Administration (FDA) review. Numerous ongoing phase III studies aim to further evaluate tarlatamab's clinical efficacy, alongside the development of novel DLL3-targeted T-cell engagers, both bispecific and trispecific. CAR-T cell therapies targeting DLL3 have recently emerged and are undergoing various preclinical and early-phase clinical studies. Additionally, preclinical studies have shown promising efficacy for DLL3-targeted radiotherapy, which employs ß-particle-emitting therapeutic radioisotopes conjugated to DLL3-targeting antibodies. DLL3-targeted therapies hold substantial potential for SCLC management. Future clinical trials will be crucial for comparing treatment outcomes among various approaches and exploring combination therapies to improve patient survival outcomes.


Asunto(s)
Inmunoconjugados , Péptidos y Proteínas de Señalización Intracelular , Neoplasias Pulmonares , Radioinmunoterapia , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/terapia , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/radioterapia , Inmunoconjugados/uso terapéutico , Inmunoconjugados/farmacología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Radioinmunoterapia/métodos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Animales , Proteínas de la Membrana/metabolismo , Inmunoterapia/métodos , Medicina de Precisión , Terapia Molecular Dirigida
11.
Clin Pharmacokinet ; 63(4): 423-438, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38609704

RESUMEN

Enfortumab vedotin is an antibody-drug conjugate comprised of a human monoclonal antibody directed to Nectin-4 and monomethyl auristatin E (MMAE), a microtubule-disrupting agent. The objectives of this review are to summarize the clinical pharmacology of enfortumab vedotin monotherapy and demonstrate that the appropriate dose has been selected for clinical use. Pharmacokinetics (PK) of enfortumab vedotin (antibody-drug conjugate and total antibody) and free MMAE were evaluated in five clinical trials of patients with locally advanced or metastatic urothelial carcinoma (n = 748). Intravenous enfortumab vedotin 0.5-1.25 mg/kg on days 1, 8, and 15 of a 28-day cycle showed linear, dose-proportional PK. No significant differences in exposure or safety of enfortumab vedotin and free MMAE were observed in mild, moderate, or severe renal impairment versus normal renal function. Patients with mildly impaired versus normal hepatic function had a 37% increase in area under the concentration-time curve (0-28 days), a 31% increase in maximum concentration of free MMAE, and a similar adverse event profile. No clinically significant PK differences were observed based on race/ethnicity with weight-based dosing, and no clinically meaningful QT prolongation was observed. Concomitant use with dual P-glycoprotein and strong cytochrome P450 3A4 inhibitors may increase MMAE exposure and the risk of adverse events. Approximately 3% of patients developed antitherapeutic antibodies against enfortumab vedotin 1.25 mg/kg. These findings support enfortumab vedotin 1.25 mg/kg monotherapy on days 1, 8, and 15 of a 28-day cycle. No dose adjustments are required for patients with renal impairment or mild hepatic impairment, or by race/ethnicity.


Asunto(s)
Anticuerpos Monoclonales , Inmunoconjugados , Nectinas , Humanos , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Inmunoconjugados/farmacocinética , Inmunoconjugados/administración & dosificación , Inmunoconjugados/farmacología , Inmunoconjugados/efectos adversos , Inmunoconjugados/uso terapéutico , Oligopéptidos/farmacocinética , Oligopéptidos/administración & dosificación , Oligopéptidos/uso terapéutico , Oligopéptidos/farmacología , Oligopéptidos/efectos adversos , Neoplasias Urológicas/tratamiento farmacológico , Neoplasias Urológicas/patología , Relación Dosis-Respuesta a Droga , Carcinoma de Células Transicionales/tratamiento farmacológico , Antineoplásicos/farmacocinética , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
12.
J Transl Med ; 22(1): 362, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632563

RESUMEN

BACKGROUND: HER3 (ErbB3), a member of the human epidermal growth factor receptor family, is frequently overexpressed in various cancers. Multiple HER3-targeting antibodies and antibody-drug conjugates (ADCs) were developed for the solid tumor treatment, however none of HER3-targeting agent has been approved for tumor therapy yet. We developed DB-1310, a HER3 ADC composed of a novel humanized anti-HER3 monoclonal antibody covalently linked to a proprietary DNA topoisomerase I inhibitor payload (P1021), and evaluate the efficacy and safety of DB-1310 in preclinical models. METHODS: The binding of DB-1310 to Her3 and other HER families were measured by ELISA and SPR. The competition of binding epitope for DB-1310 and patritumab was tested by FACS. The sensitivity of breast, lung, prostate and colon cancer cell lines to DB-1310 was evaluated by in vitro cell killing assay. In vivo growth inhibition study evaluated the sensitivity of DB-1310 to Her3 + breast, lung, colon and prostate cancer xenograft models. The safety profile was also measured in cynomolgus monkey. RESULTS: DB-1310 binds HER3 via a novel epitope with high affinity and internalization capacity. In vitro, DB-1310 exhibited cytotoxicity in numerous HER3 + breast, lung, prostate and colon cancer cell lines. In vivo studies in HER3 + HCC1569 breast cancer, NCI-H441 lung cancer and Colo205 colon cancer xenograft models showed DB-1310 to have dose-dependent tumoricidal activity. Tumor suppression was also observed in HER3 + non-small cell lung cancer (NSCLC) and prostate cancer patient-derived xenograft (PDX) models. Moreover, DB-1310 showed stronger tumor growth-inhibitory activity than patritumab deruxtecan (HER3-DXd), which is another HER3 ADC in clinical development at the same dose. The tumor-suppressive activity of DB-1310 synergized with that of EGFR tyrosine kinase inhibitor, osimertinib, and exerted efficacy also in osimertinib-resistant PDX model. The preclinical assessment of safety in cynomolgus monkeys further revealed DB-1310 to have a good safety profile with a highest non severely toxic dose (HNSTD) of 45 mg/kg. CONCLUSIONS: These finding demonstrated that DB-1310 exerted potent antitumor activities against HER3 + tumors in in vitro and in vivo models, and showed acceptable safety profiles in nonclinical species. Therefore, DB-1310 may be effective for the clinical treatment of HER3 + solid tumors.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias del Colon , Inmunoconjugados , Indoles , Neoplasias Pulmonares , Neoplasias de la Próstata , Pirimidinas , Inhibidores de Topoisomerasa I , Animales , Humanos , Masculino , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Epítopos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Macaca fascicularis/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Receptor ErbB-3 , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Curr Oncol ; 31(4): 2316-2327, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38668075

RESUMEN

The treatment landscape of genitourinary cancers has significantly evolved over the past few years. Renal cell carcinoma, bladder cancer, and prostate cancer are the most common genitourinary malignancies. Recent advancements have produced new targeted therapies, particularly antibody-drug conjugates (ADCs), due to a better understanding of the underlying oncogenic factors and molecular mechanisms involved. ADCs function as a 'drug delivery into the tumor' system. They are composed of an antigen-directed antibody linked to a cytotoxic drug that releases cytotoxic components after binding to the tumor cell's surface antigen. ADCs have been proven to be extremely promising in the treatment of several cancer types. For GU cancers, this novel treatment has only benefited patients with metastatic urothelial cancer (mUC). The rest of the GU cancer paradigm does not have any FDA-approved ADC treatment options available yet. In this study, we have thoroughly completed a narrative review of the current literature and summarized preclinical studies and clinical trials that evaluated the utility, activity, and toxicity of ADCs in GU cancers, the prospects of ADC development, and the ongoing clinical trials. Prospective clinical trials, retrospective studies, case reports, and scoping reviews were included.


Asunto(s)
Inmunoconjugados , Neoplasias Urogenitales , Humanos , Inmunoconjugados/uso terapéutico , Inmunoconjugados/farmacología , Neoplasias Urogenitales/tratamiento farmacológico , Masculino
14.
Target Oncol ; 19(3): 321-332, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38683495

RESUMEN

BACKGROUND: MEDI7247 is a first-in-class antibody-drug conjugate (ADC) consisting of an anti-sodium-dependent alanine-serine-cysteine transporter 2 antibody-conjugated to a pyrrolobenzodiazepine dimer. OBJECTIVE: This first-in-human phase 1 trial evaluated MEDI7247 in patients with hematological malignancies. PATIENTS AND METHODS: Adults with acute myeloid leukemia (AML), multiple myeloma (MM), or diffuse large B-cell lymphoma (DLBCL) relapsed or refractory (R/R) to standard therapies, or for whom no standard therapy exists, were eligible. Primary endpoints were safety and determination of the maximum tolerated dose (MTD). Secondary endpoints included assessments of antitumor activity, pharmacokinetics (PK), and immunogenicity. RESULTS: As of 26 March 2020, 67 patients were treated (AML: n = 27; MM: n = 18; DLBCL: n = 22). The most common MEDI7247-related adverse events (AEs) were thrombocytopenia (41.8%), neutropenia (35.8%), and anemia (28.4%). The most common treatment-related grade 3/4 AEs were thrombocytopenia (38.8%), neutropenia (34.3%), and anemia (22.4%). Anticancer activity (number of responders/total patients evaluated) was observed in 11/67 (16.4%) patients. No correlation was observed between ASCT2 expression and clinical response. Between-patient variability of systemic exposure of MEDI7247 ADC and total antibody were high (AUCinf geometric CV%: 62.3-134.2, and 74.8-126.1, respectively). SG3199 (PBD dimer) plasma concentrations were below the limit of quantification for all patients after Study Day 8. Anti-drug antibody (ADA) prevalence was 7.7%, ADA incidence was 1.9%, and persistent-positive ADA was 5.8%. CONCLUSIONS: Thrombocytopenia and neutropenia limited repeat dosing. Although limited clinical activity was detected, the dose-escalation phase was stopped early without establishing an MTD. The study was registered with ClinicalTrials.gov (NCT03106428).


Asunto(s)
Neoplasias Hematológicas , Inmunoconjugados , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Inmunoconjugados/uso terapéutico , Inmunoconjugados/farmacología , Inmunoconjugados/farmacocinética , Adulto , Neoplasias Hematológicas/tratamiento farmacológico , Anciano de 80 o más Años , Sistema de Transporte de Aminoácidos ASC , Antígenos de Histocompatibilidad Menor
15.
Life Sci ; 347: 122676, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38688384

RESUMEN

Antibody-drug conjugates (ADCs) are immunoconjugates that combine the specificity of monoclonal antibodies with a cytotoxic agent. The most appealing aspects of ADCs include their potential additive or synergistic effects of the innate backbone antibody and cytotoxic effects of the payload on tumors without the severe toxic side effects often associated with traditional chemotherapy. Recent advances in identifying new targets with tumor-specific expression, along with improved bioactive payloads and novel linkers, have significantly expanded the scope and optimism for ADCs in cancer therapeutics. In this paper, we will first provide a brief overview of antibody specificity and the structure of ADCs. Next, we will discuss the mechanisms of action and the development of resistance to ADCs. Finally, we will explore opportunities for enhancing ADC efficacy, overcoming drug resistance, and offer future perspectives on leveraging ADCs to improve the outcome of ADC therapy for cancer treatment.


Asunto(s)
Inmunoconjugados , Neoplasias , Humanos , Inmunoconjugados/uso terapéutico , Inmunoconjugados/farmacología , Neoplasias/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Especificidad de Anticuerpos
16.
Biomed Pharmacother ; 174: 116522, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565055

RESUMEN

In recent decades, there has been a surge in the approval of monoclonal antibodies for treating a wide range of hematological and solid malignancies. These antibodies exhibit exceptional precision in targeting the surface antigens of tumors, heralding a groundbreaking approach to cancer therapy. Nevertheless, monoclonal antibodies alone do not show sufficient lethality against cancerous cells compared to chemotherapy. Consequently, a new class of anti-tumor medications, known as antibody-drug conjugates (ADCs), has been developed to bridge the divide between monoclonal antibodies and cytotoxic drugs, enhancing their therapeutic potential. ADCs are chemically synthesized by binding tumor-targeting monoclonal antibodies with cytotoxic payloads through linkers that are susceptible to cleavage by intracellular proteases. They combined the accurate targeting of monoclonal antibodies with the potent efficacy of cytotoxic chemotherapy drugs while circumventing systemic toxicity and boasting superior lethality over standalone targeted drugs. The human epidermal growth factor receptor (HER) family, which encompasses HER1 (also known as EGFR), HER2, HER3, and HER4, plays a key role in regulating cellular proliferation, survival, differentiation, and migration. HER2 overexpression in various tumors is one of the most frequently targeted antigens for ADC therapy in HER2-positive cancers. HER2-directed ADCs have emerged as highly promising treatment modalities for patients with HER2-positive cancers. This review focuses on three approved anti-HER2 ADCs (T-DM1, DS-8201a, and RC48) and reviews ongoing clinical trials and failed trials based on anti-HER2 ADCs. Finally, we address the notable challenges linked to ADC development and underscore potential future avenues for tackling these hurdles.


Asunto(s)
Inmunoconjugados , Neoplasias , Receptor ErbB-2 , Humanos , Inmunoconjugados/uso terapéutico , Inmunoconjugados/farmacología , Neoplasias/tratamiento farmacológico , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/inmunología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
17.
Crit Rev Oncol Hematol ; 198: 104355, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38621469

RESUMEN

Trastuzumab deruxtecan (T-DXd) is an antibody-drug conjugate (ADC) consisting of a humanised, anti-human epidermal growth factor receptor 2 (HER2) monoclonal antibody covalently linked to a topoisomerase I inhibitor cytotoxic payload (DXd). The high drug-to-antibody ratio (8:1) ensures a high DXd concentration is delivered to target tumour cells, following internalisation of T-DXd and subsequent cleavage of its tetrapeptide-based linker. DXd's membrane-permeable nature enables it to cross cell membranes and potentially exert antitumour activity on surrounding tumour cells regardless of HER2 expression. T-DXd's unique mechanism of action is reflected in its efficacy in clinical trials in patients with HER2-positive advanced breast cancer (in heavily pretreated populations and in those previously treated with a taxane and trastuzumab), as well as HER2-low metastatic breast cancer. Thus, ADCs such as T-DXd have the potential to change the treatment paradigm of targeting HER2 in metastatic breast cancer, including eventually within the adjuvant/neoadjuvant setting.


Asunto(s)
Neoplasias de la Mama , Camptotecina , Inmunoconjugados , Trastuzumab , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Trastuzumab/uso terapéutico , Femenino , Inmunoconjugados/uso terapéutico , Inmunoconjugados/farmacología , Camptotecina/análogos & derivados , Camptotecina/uso terapéutico , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inhibidores , Antineoplásicos Inmunológicos/uso terapéutico , Antineoplásicos Inmunológicos/farmacología
18.
Anticancer Res ; 44(5): 1837-1844, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677753

RESUMEN

BACKGROUND/AIM: Although there are curative treatment options for non-muscle-invasive bladder cancer, the recurrence of this tumor is high. Therefore, novel targeted therapies are needed for the complete removal of bladder cancer cells in stages of localized disease, in order to avoid local recurrence, to spare bladder cancer patients from stressful and expensive treatment procedures and to increase their quality of life and life expectancy. This study tested a new approach for the photoimmunotherapy (PIT) of bladder cancer. MATERIALS AND METHODS: We generated a cysteine modified recombinant version of the antibody cetuximab targeting the epidermal growth factor receptor (EGFR) on the surface of bladder cancer cells. Then, we coupled the novel photoactivatable phthalocyanine dye WB692-CB1 via a maleimide linker to the free cysteines of the antibody. PIT was performed by incubating bladder cancer cells with the antibody dye conjugate followed by irradiation with visible red light. RESULTS: The conjugate was able to induce specific cytotoxicity in EGFR-positive bladder cancer cells in a light dose-dependent manner. Enhanced cytotoxicity in RT112 bladder cancer cells was evoked by addition of a second antibody dye conjugate targeting HER2 or by repeated cycles of PIT. CONCLUSION: Our new antibody dye conjugate targeting EGFR-expressing bladder cancer cells is a promising candidate for the future PIT of bladder cancer patients.


Asunto(s)
Receptores ErbB , Inmunoconjugados , Inmunoterapia , Receptor ErbB-2 , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/terapia , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Receptores ErbB/inmunología , Receptores ErbB/antagonistas & inhibidores , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inhibidores , Inmunoterapia/métodos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Línea Celular Tumoral , Cetuximab/farmacología , Cetuximab/uso terapéutico , Cetuximab/química , Fototerapia/métodos
19.
ESMO Open ; 9(5): 102995, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636292

RESUMEN

BACKGROUND: Fifteen to thirty percent of all patients with metastatic breast cancer (MBC) develop brain metastases (BCBMs). Recently, the antibody-drug conjugates (ADCs) sacituzumab govitecan (SG) and trastuzumab deruxtecan (T-DXd) have shown to be highly effective in the treatment of MBC. However, there are only limited data whether these macromolecules are also effective in patients with BCBMs. We therefore aimed to examine the efficacy of SG and T-DXd in patients with stable and active BCBMs in a multicenter real-world analysis. PATIENTS AND METHODS: Female patients with stable or active BCBMs who were treated with either SG or T-DXd at three breast centers in Germany before 30 June 2023 were included. As per local clinical praxis, chemotherapy efficacy was evaluated by whole-body computed tomography and cranial magnetic resonance imaging at baseline and at least every 3 months according to local standards. Growth dynamics of BCBMs were assessed by board-certified neuroradiologists. RESULTS: Of 26 patients, with a median of 2.5 prior therapy lines in the metastatic setting (range 2-15), 12 (43%) and 16 (57%) patients received SG and T-DXd, respectively. Out of the 12 patients who received SG, 2 (17%) were subsequently treated with T-DXd. Five out of 12 (42%) and 5 out of 16 (31%) patients treated with SG and T-DXd, respectively, had active BCBMs at treatment initiation. The intracranial disease control rate was 42% [95% confidence interval (CI) 13% to 71%] for patients treated with SG and 88% (95% CI 72% to 100%) for patients treated with T-DXd. After a median follow-up of 12.7 months, median intracranial progression-free survival was 2.7 months (95% CI 1.6-10.5 months) for SG and 11.2 months (95% CI 7.5-23.7 months) for T-DXd. CONCLUSIONS: SG and T-DXd showed promising clinical activity in both stable and active BCBMs. Further prospective clinical studies designed to investigate the efficacy of modern ADCs on active and stable BCBMs are urgently needed.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Neoplasias Encefálicas , Neoplasias de la Mama , Camptotecina , Inmunoconjugados , Trastuzumab , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacología , Persona de Mediana Edad , Trastuzumab/uso terapéutico , Trastuzumab/farmacología , Inmunoconjugados/uso terapéutico , Inmunoconjugados/farmacología , Adulto , Anciano , Camptotecina/análogos & derivados , Camptotecina/uso terapéutico , Camptotecina/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Estudios Retrospectivos
20.
Clin Cancer Res ; 30(11): 2531-2544, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38593212

RESUMEN

PURPOSE: Initially, prostate cancer responds to hormone therapy, but eventually resistance develops. Beta emitter-based prostate-specific membrane antigen (PSMA)-targeted radionuclide therapy is approved for the treatment of metastatic castration-resistant prostate cancer. Here we introduce a targeted alpha therapy (TAT) consisting of the PSMA antibody pelgifatamab covalently linked to a macropa chelator and labeled with actinium-225 and compare its efficacy and tolerability with other TATs. EXPERIMENTAL DESIGN: The in vitro characteristics and in vivo biodistribution, antitumor efficacy, and tolerability of 225Ac-macropa-pelgifatamab (225Ac-pelgi) and other TATs were investigated in cell line- and patient-derived prostate cancer xenograft models. The antitumor efficacy of 225Ac-pelgi was also investigated in combination with the androgen receptor inhibitor darolutamide. RESULTS: Actinium-225-labeling of 225Ac-pelgi was efficient already at room temperature. Potent in vitro cytotoxicity was seen in PSMA-expressing (LNCaP, MDA-PCa-2b, and C4-2) but not in PSMA-negative (PC-3 and DU-145) cell lines. High tumor accumulation was seen for both 225Ac-pelgi and 225Ac-DOTA-pelgi in the MDA-PCa-2b xenograft model. In the C4-2 xenograft model, 225Ac-pelgi showed enhanced antitumor efficacy with a T/Cvolume (treatment/control) ratio of 0.10 compared with 225Ac-DOTA-pelgi, 225Ac-DOTA-J591, and 227Th-HOPO-pelgifatamab (227Th-pelgi; all at 300 kBq/kg) with T/Cvolume ratios of 0.37, 0.39, and 0.33, respectively. 225Ac-pelgi was less myelosuppressive than 227Th-pelgi. 225Ac-pelgi showed dose-dependent treatment efficacy in the patient-derived KuCaP-1 model and strong combination potential with darolutamide in both cell line- (22Rv1) and patient-derived (ST1273) xenograft models. CONCLUSIONS: These results provide a strong rationale to investigate 225Ac-pelgi in patients with prostate cancer. A clinical phase I study has been initiated (NCT06052306).


Asunto(s)
Actinio , Partículas alfa , Antígenos de Superficie , Glutamato Carboxipeptidasa II , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Humanos , Animales , Ratones , Línea Celular Tumoral , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Glutamato Carboxipeptidasa II/metabolismo , Antígenos de Superficie/metabolismo , Partículas alfa/uso terapéutico , Distribución Tisular , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología , Radiofármacos/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA