Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.329
Filtrar
Más filtros











Intervalo de año de publicación
4.
Allergy Asthma Proc ; 45(5): 326-331, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39294907

RESUMEN

Genetically determined defects of T-cell development comprise a heterogeneous group of conditions characterized by peripheral T-cell lymphopenia due to impaired intrathymic differentiation of T-cell progenitors. Collectively, these conditions are typically referred to as severe combined immune deficiency (SCID). In some cases (leaky SCID), residual function of the defective gene allows partial T-cell development. The vast majority of SCID disorders are due to genetic defects that affect the T-cell differentiation potential of hematopoietic stem cells, through a variety of mechanisms. However, some forms of SCID reflect impaired development or function of thymic stromal cells. A lack of peripheral T cells leads to increased susceptibility to severe infections since early in life. SCID is inevitably fatal unless immune reconstitution is achieved, most often through hematopoietic cell transplantation. Enzyme replacement therapy, gene therapy, and thymus implantation represent other forms of treatment in selected cases. The availability of newborn screening has greatly facilitated prompt recognition of SCID, which allows statistically significant improvement in survival after hematopoietic cell transplantation.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Inmunodeficiencia Combinada Grave , Linfocitos T , Humanos , Inmunodeficiencia Combinada Grave/terapia , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/diagnóstico , Linfocitos T/inmunología , Diferenciación Celular/genética , Animales , Terapia Genética , Tamizaje Neonatal , Timo/inmunología , Recién Nacido
5.
Turk J Haematol ; 41(3): 133-140, 2024 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-39120005

RESUMEN

Adenosine deaminase 2 (ADA2) deficiency is an autosomal recessively inherited autoinflammatory disorder caused by loss-of-function mutations in the ADA2 gene. Although the pathogenesis involves the triggering of a proinflammatory cascade due to increased production of inflammatory cytokines such as tumor necrosis factor (TNF)-α and dysregulation of neutrophil extracellular trap formation resulting from an excess accumulation of extracellular adenosine, the pathogenetic mechanism still needs further clarification due to the broad clinical spectrum. In addition to the initially described vasculitis-related symptoms, hematological, immunological, and autoinflammatory symptoms are now well recognized. The diagnosis is made by demonstration of pathogenic variants of ADA2 with biallelic loss of function and identification of low plasma ADA2 catalytic activity. Currently, TNF-α inhibitors are the treatment of choice for controlling vasculitis manifestations and preventing strokes. However, in patients presenting with severe hematologic findings, TNF-α inhibitors are not the treatment of choice and hematopoietic stem cell transplantation has been shown to be successful in selected cases. Recombinant ADA2 protein and gene therapy are promising treatment modalities for the future. In conclusion, ADA2 deficiency has a broad phenotype and should be considered in the differential diagnosis of different clinical situations. In this review, we summarize the disease manifestations of ADA2 deficiency and available treatment options.


Asunto(s)
Adenosina Desaminasa , Humanos , Adenosina Desaminasa/deficiencia , Adenosina Desaminasa/genética , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Péptidos y Proteínas de Señalización Intercelular/genética , Agammaglobulinemia/diagnóstico , Agammaglobulinemia/terapia , Agammaglobulinemia/genética , Trasplante de Células Madre Hematopoyéticas , Fenotipo , Terapia Genética/métodos , Manejo de la Enfermedad , Factor de Necrosis Tumoral alfa , Mutación , Inmunodeficiencia Combinada Grave , Enfermedades Autoinflamatorias Hereditarias
7.
Curr Allergy Asthma Rep ; 24(9): 477-484, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38970744

RESUMEN

PURPOSE OF REVIEW: In this review, an update is provided on the current knowledge and pending questions about human adenosine deaminase type 2 deficiency. Patients have vasculitis, immunodeficiency and some have bone marrow failure. Although the condition was described ten years ago, the pathophysiology is incompletely understood RECENT FINDINGS: Endothelial instability due to increased proinflammatory macrophage development is key to the pathophysiology. However, the physiological role of ADA2 is a topic of debate as it is hypothesized that ADA2 fulfils an intracellular role. Increasing our knowledge is urgently needed to design better treatments for the bone marrow failure. Indeed, TNFi treatment has been successful in treating DADA2, except for the bone marrow failure. Major advances have been made in our understanding of DADA2. More research is needed into the physiological role of ADA2.


Asunto(s)
Adenosina Desaminasa , Péptidos y Proteínas de Señalización Intercelular , Humanos , Adenosina Desaminasa/deficiencia , Adenosina Desaminasa/genética , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/inmunología , Inmunodeficiencia Combinada Grave/terapia , Agammaglobulinemia/genética , Agammaglobulinemia/inmunología , Agammaglobulinemia/terapia , Enfermedades Autoinflamatorias Hereditarias
8.
J Allergy Clin Immunol Pract ; 12(9): 2490-2502.e6, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996837

RESUMEN

BACKGROUND: Major histocompatibility complex class II deficiency, a combined immunodeficiency, results from loss of HLA class II expression on antigen-presenting cells. Currently, hematopoietic stem cell transplantation stands as the sole curative approach, although factors influencing patient outcomes remain insufficiently explored. OBJECTIVES: To elucidate the clinical, immunologic, and genetic profiles associated with MHC-II deficiency and identify prognostic indicators that affect survival rates. METHODS: In this multicenter retrospective analysis, we gathered data from 35 patients with a diagnosis of MHC-II deficiency across 12 centers in Turkey. We recorded infection histories, gene mutations, immune cell subsets, and surface MHC-II expression on blood cells. We conducted survival analyses to evaluate the impact of various factors on patient outcomes. RESULTS: Predominant symptoms observed were pneumonia (n = 29; 82.9%), persistent diarrhea (n = 26; 74.3%), and severe infections (n = 26; 74.3%). The RFXANK gene mutation (n = 9) was the most frequent, followed by mutations in RFX5 (n = 8), CIITA (n = 4), and RFXAP (n = 2) genes. Patients with RFXANK mutations presented with later onset and diagnosis compared with those with RFX5 mutations (P =.0008 and .0006, respectively), alongside a more significant diagnostic delay (P = .020). A notable founder effect was observed in five patients with a specific RFX5 mutation (c.616G>C). The overall survival rate for patients was 28.6% (n = 10), showing a significantly higher proportion in individuals with hematopoietic stem cell transplantation (n = 8; 80%). Early death and higher CD8+ T-cell counts were observed in patients with the RFX5 mutations compared with RFXANK-mutant patients (P = .006 and .009, respectively). CONCLUSIONS: This study delineates the genetic and clinical panorama of MHC-II deficiency, emphasizing the prevalence of specific gene mutations such as RFXANK and RFX5. These insights facilitate early diagnosis and prognosis refinement, significantly contributing to the management of MHC-II deficiency.


Asunto(s)
Proteínas de Unión al ADN , Mutación , Factores de Transcripción del Factor Regulador X , Humanos , Masculino , Femenino , Preescolar , Lactante , Estudios Retrospectivos , Niño , Proteínas de Unión al ADN/genética , Factores de Transcripción del Factor Regulador X/genética , Factores de Transcripción/genética , Turquía/epidemiología , Proteínas Nucleares/genética , Transactivadores/genética , Trasplante de Células Madre Hematopoyéticas , Antígenos de Histocompatibilidad Clase II/genética , Neumonía/genética , Adolescente , Estudios de Cohortes , Diarrea/genética , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/terapia , Pronóstico
9.
Transplant Cell Ther ; 30(9): 923.e1-923.e9, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38972509

RESUMEN

For successful engraftment of donor hematopoietic stem cells (HSC), conditioning with chemotherapy and/or radiation prior to hematopoietic cell transplantation (HCT) has been required to open marrow niche space and minimize the risk of immune rejection. Briquilimab, a humanized IgG1 monoclonal antibody that blocks the interaction between the c-Kit receptor and stem cell factor on various C-Kit expressing tissues including HSC, is a potential nonmyeloablative conditioning agent in clinical development for patients with severe combined immunodeficiency (SCID), myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). This study aimed to characterize pharmacokinetics (PK) and develop a population PK model of briquilimab after single intravenous infusions of 4 different doses in patients with SCID, MDS, or AML receiving HCT. The PK data was collected from 2 different studies: JAS-BMT-CP-001 and JSP-CP-003. JAS-BMT-CP-001 is a phase 1/2 open-label study of briquilimab as a conditioning agent prior to allogenic HCT in SCID patients. The participants received single intravenous infusions of 0.1, 0.3, 0.6, or 1.0 mg/kg. JSP-CP-003 was a phase 1a/b open-label study of briquilimab in combination with a standard conditioning regimen of low dose total body irradiation and fludarabine in MDS or AML subjects undergoing HCT. The participants received a single intravenous dose of 0.6 mg/kg briquilimab. In both studies, briquilimab PK samples were obtained at pre-treatment, 5 minutes post-end of infusion, 4- and 24-hours post-start of infusion, any time between 2 days and 30 days postinfusion, and on the day of HCT prior to donor cell infusion.The population PK model was developed using the PK data from these 2 clinical studies, and the effect of participants' baseline characteristics on the briquilimab PK was evaluated. PK simulations were performed using the developed PK model to calculate the time to reach target concentrations for HCT. A total of 49 participants (21 SCID adult and pediatric participants with a median age of 12 yr and 28 MDS/AML adult participants with a median age of 70 yr) were included in the PK analysis. A 2-compartment model with combined linear and non-linear elimination best described the PK of briquilimab. Body weight was determined as the sole covariate of the PK parameters among the explored covariates. For a typical subject with a body weight 70 kg, the estimated parameters for clearance, maximum metabolic rate of Michaelis Menten elimination, Michaelis Menten constant, central volume, peripheral volume, and intercompartmental clearance were 17.6 mL/h, 51,434.8 ng/h, 71.5 ng/mL, 3444.0 mL, 1613.3 mL, and 21.2 mL/h, respectively. The median time to reach target concentrations of 500, 1000, and 2000 ng/mL after a single dose of 0.6 mg/kg was calculated as 12.3, 10.4, and 7.7 days, respectively. The PK of intravenous briquilimab was characterized in subjects with SCID, MDS, or AML receiving HCT, and a population PK model was developed to estimate briquilimab clearance to use as a guide to the timing of donor cell infusion post-briquilimab. Body weight was identified as a significant covariate on elimination and volume of distribution of briquilimab.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Inmunodeficiencia Combinada Grave , Acondicionamiento Pretrasplante , Humanos , Acondicionamiento Pretrasplante/métodos , Leucemia Mieloide Aguda/terapia , Inmunodeficiencia Combinada Grave/terapia , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacocinética , Anticuerpos Monoclonales Humanizados/administración & dosificación , Síndromes Mielodisplásicos/terapia , Masculino , Femenino , Adulto , Persona de Mediana Edad , Adolescente , Adulto Joven
10.
Pediatr Neurol ; 158: 49-56, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38959649

RESUMEN

BACKGROUND: Severe combined immunodeficiency secondary to adenosine deaminase deficiency is rare. The deficiency of this enzyme results in the accumulation of substrates in the tissues, including the brain. Clinical signs of neurological involvement may include seizures, neurodevelopmental disorders, hypotonia, and sensorineural hearing loss. Hematopoietic stem cell transplantation corrects the failure of the immune system but not the neurological involvement. OBJECTIVES: To describe the spectrum of neurological complications identified in a series of children with severe combined immunodeficiency due to adenosine deaminase deficiency. Additionally, we propose a neurological approach including electrophysiological, radiological, and neurocognitive studies to address this group of children in an efficient and timely manner. METHODS: A descriptive, observational, retro-, and prospective analysis of patients with a confirmed immunological diagnosis seen between 1996 and 2021 and referred to the Department of Neurology for neurological evaluation was conducted. RESULTS: Ten patients met the inclusion criteria. The median age at diagnosis was 4 months (range, 1-36 months). All patients had neurodevelopmental delay with hypotonia in six, language delay in three, sensorineural hearing loss in four, and spastic paraparesis in one patient. Two children developed an epileptic syndrome, consisting of generalized epilepsy in one and focal epilepsy in the other. Neuroimaging showed brain calcifications in the basal ganglia and/or centrum semiovale in four patients and enlarged subarachnoid spaces in two other patients. CONCLUSION: In this pediatric series, the rate of neurological involvement associated with abnormalities on neuroimaging was high. Although this involvement could be related to accumulation of adenosine metabolites in the central nervous system, the possibility of associated chronic infections should be ruled out. Given the neurological manifestations, it is important to involve the pediatric neurologist in the multidisciplinary follow-up team.


Asunto(s)
Adenosina Desaminasa , Agammaglobulinemia , Inmunodeficiencia Combinada Grave , Humanos , Adenosina Desaminasa/deficiencia , Preescolar , Lactante , Inmunodeficiencia Combinada Grave/complicaciones , Inmunodeficiencia Combinada Grave/diagnóstico , Inmunodeficiencia Combinada Grave/terapia , Femenino , Masculino , Agammaglobulinemia/complicaciones , Estudios Prospectivos , Estudios Retrospectivos
11.
Clin Immunol ; 265: 110306, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38977117

RESUMEN

Store-operated calcium entry (SOCE) plays a crucial role in maintaining cellular calcium homeostasis. This mechanism involves proteins, such as stromal interaction molecule 1 (STIM1) and ORAI1. Mutations in the genes encoding these proteins, especially STIM1, can lead to various diseases, including CRAC channelopathies associated with severe combined immunodeficiency. Herein, we describe a novel homozygous mutation, NM_003156 c.792-3C > G, in STIM1 in a patient with a clinical profile of CRAC channelopathy, including immune system deficiencies and muscle weakness. Functional analyses revealed three distinct spliced forms in the patient cells: wild-type, exon 7 skipping, and intronic retention. Calcium influx analysis revealed impaired SOCE in the patient cells, indicating a loss of STIM1 function. We developed an antisense oligonucleotide treatment that improves STIM1 splicing and highlighted its potential as a therapeutic approach. Our findings provide insights into the complex effects of STIM1 mutations and shed light on the multifaceted clinical presentation of the patient.


Asunto(s)
Calcio , Mutación , Proteínas de Neoplasias , Molécula de Interacción Estromal 1 , Humanos , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Calcio/metabolismo , Canalopatías/genética , Masculino , Canales de Calcio Activados por la Liberación de Calcio/genética , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Femenino , Inmunodeficiencia Combinada Grave/genética , Proteína ORAI1/genética , Proteína ORAI1/metabolismo
12.
Front Immunol ; 15: 1400247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983864

RESUMEN

Early diagnosis and effective management of Primary immunodeficiency diseases (PIDs), particularly severe combined immunodeficiency (SCID), play a crucial role in minimizing associated morbidities and mortality. Newborn screening (NBS) serves as a valuable tool in facilitating these efforts. Timely detection and diagnosis are essential for swiftly implementing isolation measures and ensuring prompt referral for definitive treatment, such as allogeneic hematopoietic stem cell transplantation. The utilization of comprehensive protocols and screening assays, including T cell receptor excision circles (TREC) and kappa-deleting recombination excision circles (KREC), is essential in facilitating early diagnosis of SCID and other PIDs, but their successful application requires clinical expertise and proper implementation strategy. Unfortunately, a notable challenge arises from insufficient funding for the treatment of PIDs. To address these issues, a collaborative approach is imperative, involving advancements in technology, a well-functioning healthcare system, and active engagement from stakeholders. The integration of these elements is essential for overcoming the existing challenges in NBS for PIDs. By fostering synergy between technology providers, healthcare professionals, and governmental stakeholders, we can enhance the efficiency and effectiveness of early diagnosis and intervention, ultimately improving outcomes for individuals with PIDs.


Asunto(s)
Estudios de Factibilidad , Tamizaje Neonatal , Inmunodeficiencia Combinada Grave , Humanos , Tamizaje Neonatal/métodos , Inmunodeficiencia Combinada Grave/diagnóstico , Inmunodeficiencia Combinada Grave/terapia , Recién Nacido , Malasia , Países en Desarrollo , Diagnóstico Precoz
13.
J Clin Immunol ; 44(7): 151, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896336

RESUMEN

A cell's ability to survive and to evade cancer is contingent on its ability to retain genomic integrity, which can be seriously compromised when nucleic acid phosphodiester bonds are disrupted. DNA Ligase 1 (LIG1) plays a key role in genome maintenance by sealing single-stranded nicks that are produced during DNA replication and repair. Autosomal recessive mutations in a limited number of individuals have been previously described for this gene. Here we report a homozygous LIG1 mutation (p.A624T), affecting a universally conserved residue, in a patient presenting with leukopenia, neutropenia, lymphopenia, pan-hypogammaglobulinemia, and diminished in vitro response to mitogen stimulation. Patient fibroblasts expressed normal levels of LIG1 protein but exhibited impaired growth, poor viability, high baseline levels of gamma-H2AX foci, and an enhanced susceptibility to DNA-damaging agents. The mutation reduced LIG1 activity by lowering its affinity for magnesium 2.5-fold. Remarkably, it also increased LIG1 fidelity > 50-fold against 3' end 8-Oxoguanine mismatches, exhibiting a marked reduction in its ability to process such nicks. This is expected to yield increased ss- and dsDNA breaks. Molecular dynamic simulations, and Residue Interaction Network studies, predicted an allosteric effect for this mutation on the protein loops associated with the LIG1 high-fidelity magnesium, as well as on DNA binding within the adenylation domain. These dual alterations of suppressed activity and enhanced fidelity, arising from a single mutation, underscore the mechanistic picture of how a LIG1 defect can lead to severe immunological disease.


Asunto(s)
ADN Ligasa (ATP) , Homocigoto , Mutación , Inmunodeficiencia Combinada Grave , Femenino , Humanos , Masculino , ADN Ligasa (ATP)/genética , ADN Ligasa (ATP)/metabolismo , Fibroblastos , Simulación de Dinámica Molecular , Mutación/genética , Inmunodeficiencia Combinada Grave/genética , Lactante
14.
J Clin Immunol ; 44(7): 154, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896123

RESUMEN

Patients with chromosome 18q deletion syndrome generally experience hypogammaglobulinemia. Herein, we describe two patients with chromosome 18q deletion syndrome who presented with late-onset combined immune deficiency (LOCID), which has not been previously reported. Patient 1 was a 29-year-old male with 18q deletion syndrome, who was being managed for severe motor and intellectual disabilities at the Yamabiko Medical Welfare Center for 26 years. Although the patient had few infections, he developed Pneumocystis pneumonia at the age of 28. Patient 2, a 48-year-old female with intellectual disability and congenital malformations, was referred to Tokyo Medical and Dental University Hospital with abnormal bilateral lung shadows detected on her chest radiography. Computed tomography showed multiple lymphadenopathies and pneumonia. A lymph node biopsy of the inguinal region revealed granulomatous lymphadenitis, and a chromosomal examination revealed 18q deletion. Array-based genomic hybridization analysis revealed deletion at 18q21.32-q22.3 for patient 1 and at 18q21.33-qter for patient 2. Immune status work-up of the two patients revealed panhypogammaglobulinemia, decreased number of memory B cells and naïve CD4+ and/or CD8+ cells, reduced response on the carboxyfluorescein diacetate succinimidyl ester T-cell division test, and low levels of T-cell receptor recombination excision circles and Ig κ-deleting recombination excision circles. Consequently, both patients were diagnosed with LOCID. Although patients with 18q deletion syndrome generally experience humoral immunodeficiency, the disease can be further complicated by cell-mediated immunodeficiency, causing combined immunodeficiency. Therefore, patients with 18q deletion syndrome should be regularly tested for cellular/humoral immunocompetence.


Asunto(s)
Deleción Cromosómica , Trastornos de los Cromosomas , Cromosomas Humanos Par 18 , Humanos , Masculino , Femenino , Cromosomas Humanos Par 18/genética , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/genética , Adulto , Persona de Mediana Edad , Edad de Inicio , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/diagnóstico , Inmunodeficiencia Combinada Grave/complicaciones , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/etiología , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/diagnóstico , Síndromes de Inmunodeficiencia/complicaciones
15.
Pediatr Allergy Immunol ; 35(6): e14171, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38860449

RESUMEN

BACKGROUND: Artemis deficiency is an autosomal recessive disorder characterized by a combined immunodeficiency with increased cellular radiosensitivity. In this review, the clinical and genetic characteristics of 15 patients with DCLRE1C variants are presented. METHODS: The demographic, clinical, immunologic, and genetic characteristics of patients with confirmed DCLRE1C variants diagnosed between 2013 and 2023 were collected retrospectively. Three patients were evaluated for radiosensitivity by the Comet assay, compared with age- and sex-matched healthy control. RESULTS: Seven patients who had severe infections in the first 6 months of life were diagnosed with T-B-NK+ SCID (severe combined immunodeficiency). Among them, four individuals underwent transplantation, and one of those died due to post-transplant complications in early life. Eight patients had hypomorphic variants. Half of them were awaiting a suitable donor, while the other half had already undergone transplantation. The majority of patients were born into a consanguineous family (93.3%). Most patients had recurrent sinopulmonary infections (73.3%), and one patient had no other infection than an acute respiratory infection before diagnosis. Two patients (13.3%) had autoimmunity in the form of autoimmune hemolytic anemia. Growth retardation was observed in only one patient (6.6%), and no malignancy was detected in the surviving 11 patients during the median (IQR) of 21.5 (12-45) months of follow-up. Three patients who had novel variants exhibited increased radiosensitivity and compromised DNA repair, providing a potential vulnerability to malignant transformation. CONCLUSION: Early diagnosis, radiation avoidance, and careful preparation for transplantation contribute to minimizing complications, enhancing life expectancy, and improving the patient's quality of life.


Asunto(s)
Proteínas de Unión al ADN , Tolerancia a Radiación , Inmunodeficiencia Combinada Grave , Humanos , Tolerancia a Radiación/genética , Masculino , Femenino , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/terapia , Lactante , Proteínas de Unión al ADN/genética , Preescolar , Estudios Retrospectivos , Endonucleasas/genética , Proteínas Nucleares/genética , Niño , Estudios de Cohortes
16.
Int Immunopharmacol ; 137: 112402, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908084

RESUMEN

BACKGROUND: Severe combined immunodeficiency (SCID) is the most fatal form of inherited primary immunodeficiency disease. Known molecular defect mutations occur in most children with SCID. METHODS: Herein, we report Adenosine Deaminase-SCID (ADA-SCID) using whole-exome sequencing (WES), explore exome mutational landscape and significance for 17 SCID samples, and verify the mutated exon genes using the Gene Expression Omnibus (GEO) datasets. A total of 250 patients, who were hospitalized at the Neonatal Intensive Care Unit (NICU) of The Seventh Medical Center of the PLA General Hospital for 3 years (from 2017 to 2020), were screened for SCID. We collected mutated genes from the WES data of 17 SCID children. GSE609 and GSE99176 cohorts were used to identify the expressions of mutated exon genes and molecular features in SCID. Gene set variation analyses (GSVA) and correlation analyses were performed. RESULTS: The detection rate with approximately 6.8 % (17/250) of SCID is high in the NICU. A total of 16 genes were identified among 17 SCID samples, of which the Top 2 genes (MUC6 and RP11-683L23.1) might be crucial in the progression of SCID with 94 % mutation frequency. Furthermore, CNN2 and SCGB1C1 had significant co-mutations and may cooperate to affect SCID development. Importantly, the phylogenetic tree classification results of 17 SCID samples are more correlated to MUC6 with the most significant mutations. Expression profiles of seven mutated genes and five mutated genes were documented in GSE609 and GSE99176 cohorts based on microarray, respectively. Several immune-related pathways were significantly enriched, and Foxd4, differing from the other four mutated genes, was inversely correlated with the GSVA-enriched pathway. CONCLUSION: Due to its high detection rate (6.8%) and fatality rate (100%), the inclusion of SCID in newborn screening (NBS) is urgent for children in China. The WES successfully identified several common exonic variants (e.g., MUC6) and depicted the feature of mutations and evolution, which will help develop new diagnostic methods for SCID.


Asunto(s)
Secuenciación del Exoma , Tamizaje Neonatal , Inmunodeficiencia Combinada Grave , Humanos , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/diagnóstico , Recién Nacido , China , Masculino , Femenino , Exones/genética , Mutación , Adenosina Desaminasa/genética
17.
J Clin Immunol ; 44(5): 117, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758229

RESUMEN

AIOLOS, a vital member of the IKAROS protein family, plays a significant role in lymphocyte development and function through DNA binding and protein-protein interactions. Mutations in the IKZF3 gene, which encodes AIOLOS, lead to a rare combined immunodeficiency often linked with infections and malignancy. In this study, we evaluated a 1-year-4-month-old female patient presenting with recurrent infections, diarrhea, and failure to thrive. Laboratory investigations revealed decreased T lymphocyte and immunoglobulin levels. Through whole-exome and Sanger sequencing, we discovered a de novo mutation in IKZF3 (NM_012481; exon 5 c.571G > C, p.Gly191Arg), corresponding to the third DNA-binding zinc finger region of the encoded protein AIOLOS. Notably, the patient with the AIOLOS G191R mutation showed reduced recent thymic emigrants in naïve CD4+T cells compared to healthy counterparts of the same age, while maintaining normal levels of Th1, Th2, Th17, Treg, and Tfh cells. This mutation also resulted in decreased switched memory B cells and lower CD23 and IgM expression. In vitro studies revealed that AIOLOS G191R does not impact the expression of AIOLOS but compromises its stability, DNA binding and pericentromeric targeting. Furthermore, AIOLOS G191R demonstrated a dominant-negative effect over the wild-type protein. This case represents the first reported instance of a mutation in the third DNA-binding zinc finger region of AIOLOS highlighting its pivotal role in immune cell functionality.


Asunto(s)
Factor de Transcripción Ikaros , Mutación , Humanos , Factor de Transcripción Ikaros/genética , Femenino , Mutación/genética , Lactante , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/diagnóstico , Secuenciación del Exoma , Linfocitos B/inmunología
18.
J Clin Immunol ; 44(5): 107, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676811

RESUMEN

PURPOSE: Patients with adenosine deaminase 1 deficient severe combined immunodeficiency (ADA-SCID) are initially treated with enzyme replacement therapy (ERT) with polyethylene glycol-modified (PEGylated) ADA while awaiting definitive treatment with hematopoietic stem cell transplant (HSCT) or gene therapy. Beginning in 1990, ERT was performed with PEGylated bovine intestinal ADA (ADAGEN®). In 2019, a PEGylated recombinant bovine ADA (Revcovi®) replaced ADAGEN following studies in older patients previously treated with ADAGEN for many years. There are limited longitudinal data on ERT-naïve newborns treated with Revcovi. METHODS: We report our clinical experience with Revcovi as initial bridge therapy in three newly diagnosed infants with ADA-SCID, along with comprehensive biochemical and immunologic data. RESULTS: Revcovi was initiated at twice weekly dosing (0.2 mg/kg intramuscularly), and monitored by following plasma ADA activity and the concentration of total deoxyadenosine nucleotides (dAXP) in erythrocytes. All patients rapidly achieved a biochemically effective level of plasma ADA activity, and red cell dAXP were eliminated within 2-3 months. Two patients reconstituted B-cells and NK-cells within the first month of ERT, followed by naive T-cells one month later. The third patient reconstituted all lymphocyte subsets within the first month of ERT. One patient experienced declining lymphocyte counts with improvement following Revcovi dose escalation. Two patients developed early, self-resolving thrombocytosis, but no thromboembolic events occurred. CONCLUSION: Revcovi was safe and effective as initial therapy to restore immune function in these newly diagnosed infants with ADA-SCID, however, time course and degree of reconstitution varied. Revcovi dose may need to be optimized based on immune reconstitution, clinical status, and biochemical data.


Asunto(s)
Adenosina Desaminasa , Agammaglobulinemia , Terapia de Reemplazo Enzimático , Inmunodeficiencia Combinada Grave , Animales , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Adenosina Desaminasa/deficiencia , Adenosina Desaminasa/genética , Agammaglobulinemia/terapia , Reconstitución Inmune , Proteínas Recombinantes/uso terapéutico , Inmunodeficiencia Combinada Grave/terapia , Resultado del Tratamiento
19.
Nat Commun ; 15(1): 3662, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688902

RESUMEN

Hematopoietic stem cell gene therapy (GT) using a γ-retroviral vector (γ-RV) is an effective treatment for Severe Combined Immunodeficiency due to Adenosine Deaminase deficiency. Here, we describe a case of GT-related T-cell acute lymphoblastic leukemia (T-ALL) that developed 4.7 years after treatment. The patient underwent chemotherapy and haploidentical transplantation and is currently in remission. Blast cells contain a single vector insertion activating the LIM-only protein 2 (LMO2) proto-oncogene, confirmed by physical interaction, and low Adenosine Deaminase (ADA) activity resulting from methylation of viral promoter. The insertion is detected years before T-ALL in multiple lineages, suggesting that further hits occurred in a thymic progenitor. Blast cells contain known and novel somatic mutations as well as germline mutations which may have contributed to transformation. Before T-ALL onset, the insertion profile is similar to those of other ADA-deficient patients. The limited incidence of vector-related adverse events in ADA-deficiency compared to other γ-RV GT trials could be explained by differences in transgenes, background disease and patient's specific factors.


Asunto(s)
Adenosina Desaminasa , Agammaglobulinemia , Terapia Genética , Vectores Genéticos , Trasplante de Células Madre Hematopoyéticas , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proto-Oncogenes Mas , Inmunodeficiencia Combinada Grave , Humanos , Adenosina Desaminasa/deficiencia , Adenosina Desaminasa/genética , Terapia Genética/métodos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Inmunodeficiencia Combinada Grave/terapia , Inmunodeficiencia Combinada Grave/genética , Vectores Genéticos/genética , Agammaglobulinemia/terapia , Agammaglobulinemia/genética , Masculino , Retroviridae/genética
20.
Clin Rev Allergy Immunol ; 66(2): 192-209, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38689103

RESUMEN

This study aims to perform an extensive review of the literature that evaluates various factors that affect the survival rates of patients with severe combined immunodeficiency (SCID) after hematopoietic stem cell transplantation (HSCT) in developed and developing countries. An extensive search of the literature was made in four different databases (PubMed, Embase, Scopus, and Web of Science). The search was carried out in December 2022 and updated in July 2023, and the terms such as "hematopoietic stem cell transplantation," "bone marrow transplant," "mortality," "opportunistic infections," and "survival" associated with "severe combined immunodeficiency" were sought based on the MeSH terms. The language of the articles was "English," and only articles published from 2000 onwards were selected. Twenty-three articles fulfilled the inclusion criteria for review and data extraction. The data collected corroborates that early HSCT, but above all, HSCT in patients without active infections, is related to better overall survival. The universal implementation of newborn screening for SCID will be a fundamental pillar for enabling most transplants to be carried out in this "ideal scenario" at an early age and free from infection. HSCT with an HLA-identical sibling donor is also associated with better survival rates, but this is the least common scenario. For this reason, transplantation with matched unrelated donors (MUD) and mismatched related donors (mMRD/Haploidentical) appear as alternatives. The results obtained with MUD are improving and show survival rates similar to those of MSD, as well as they do not require manipulation of the graft with expensive technologies. However, they still have high rates of complications after HSCT. Transplants with mMRD/Haplo are performed just in a few large centers because of the high costs of the technology to perform CD3/CD19 depletion and TCRαß/CD19 depletion or CD34 + selection techniques in vitro. The new possibility of in vivo T cell depletion using post-transplant cyclophosphamide could also be a viable alternative for performing mMRD transplants in centers that do not have this technology, especially in developing countries.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Inmunodeficiencia Combinada Grave , Humanos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Inmunodeficiencia Combinada Grave/terapia , Inmunodeficiencia Combinada Grave/mortalidad , Inmunodeficiencia Combinada Grave/diagnóstico , Pronóstico , Recién Nacido , Lactante , Acondicionamiento Pretrasplante/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA