Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.839
Filtrar
Más filtros











Intervalo de año de publicación
1.
Clin Exp Med ; 24(1): 140, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951255

RESUMEN

Although renal cell carcinoma (RCC) is a prevalent type of cancer, the most common pathological subtype, clear cell renal cell carcinoma (ccRCC), still has poorly understood molecular mechanisms of progression. Moreover, interferon-stimulated gene 15 (ISG15) is associated with various types of cancer; however, its biological role in ccRCC remains unclear.This study aimed to explore the role of ISG15 in ccRCC progression.ISG15 expression was upregulated in ccRCC and associated with poor prognosis. RNA sequence analysis and subsequent experiments indicated that ISG15 modulated IL6/JAK2/STAT3 signaling to promote ccRCC proliferation, migration, and invasion. Additionally, our animal experiments confirmed that sustained ISG15 knockdown reduced tumor growth rate in nude mice and promoted cell apoptosis. ISG15 modulates the IL6/JAK2/STAT3 pathway, making it a potential therapeutic target and prognostic biomarker for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Proliferación Celular , Citocinas , Interleucina-6 , Janus Quinasa 2 , Neoplasias Renales , Ratones Desnudos , Factor de Transcripción STAT3 , Transducción de Señal , Ubiquitinas , Humanos , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/genética , Animales , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Janus Quinasa 2/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Citocinas/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Neoplasias Renales/genética , Ratones , Línea Celular Tumoral , Masculino , Movimiento Celular , Femenino , Apoptosis , Regulación Neoplásica de la Expresión Génica , Pronóstico , Progresión de la Enfermedad
2.
Arh Hig Rada Toksikol ; 75(2): 102-109, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38963144

RESUMEN

COVID-19 can cause a range of complications, including cardiovascular, renal, and/or respiratory insufficiencies, yet little is known of its potential effects in persons exposed to toxic metals. The aim of this study was to answer this question with in silico toxicogenomic methods that can provide molecular insights into COVID-19 complications owed to exposure to arsenic, cadmium, lead, mercury, nickel, and chromium. For this purpose we relied on the Comparative Toxicogenomic Database (CTD), GeneMANIA, and ToppGene Suite portal and identified a set of five common genes (IL1B, CXCL8, IL6, IL10, TNF) for the six metals and COVID-19, all of which code for pro-inflammatory and anti-inflammatory cytokines. The list was expanded with additional 20 related genes. Physical interactions are the most common between the genes affected by the six metals (77.64 %), while the dominant interaction between the genes affected by each metal separately is co-expression (As 56.35 %, Cd 64.07 %, Pb 71.5 %, Hg 81.91 %, Ni 64.28 %, Cr 88.51 %). Biological processes, molecular functions, and pathways in which these 25 genes participate are closely related to cytokines and cytokine storm implicated in the development of COVID-19 complications. In other words, our findings confirm that exposure to toxic metals, alone or in combinations, might escalate COVID-19 severity.


Asunto(s)
COVID-19 , Cadmio , Mercurio , Humanos , Cadmio/toxicidad , Mercurio/toxicidad , Plomo/toxicidad , Simulación por Computador , SARS-CoV-2 , Arsénico/toxicidad , Níquel/toxicidad , Metales Pesados/toxicidad , Cromo/toxicidad , Citocinas , Interleucina-1beta/genética , Interleucina-8/genética , Toxicogenética , Interleucina-6/genética , Interleucina-10/genética , Factor de Necrosis Tumoral alfa/genética
3.
Acta Cir Bras ; 39: e392724, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38958304

RESUMEN

PURPOSE: Gene expressions of vascular Endothelial Growth Factor Alpha (VEGFa), Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B cells (NFkB) and cytokines could be useful for identifying potential therapeutic targets to alleviate ischemia-reperfusion injury after liver transplantation. Cytokine gene expressions, VEGFa and NFkB were investigated in a preclinical swine model of liver transplantation. METHODS: A total of 12 pigs were used as donors and recipients in liver transplantation without venovenous bypass or aortic clamping. NFkB, IL-6, IL-10, VEGFa and Notch1 gene expression were assessed. These samples were collected in two specific times: group 1 (n= 6) - control, samples were collected before recipient's total hepatectomy and group 2 - liver transplantation group (n=6), where the samples were collected one hour after graft reperfusion. RESULTS: Liver transplantation was successfully performed in all recipients. Liver enzymes were elevated in the transplantation group. NFkB gene expression was significantly decreased in the transplantation group in comparison with the control group (0.62±0.19 versus 0.39±0.08; p= 0.016). No difference was observed between groups Interleucine 6 (IL-6), interleucine 10 (IL-10), VEGFa and Notch homolog 1 (Notch1). CONCLUSIONS: In this survey a decreased NFkB gene expression in a porcine model of liver transplantation was observed.


Asunto(s)
Trasplante de Hígado , FN-kappa B , Factor A de Crecimiento Endotelial Vascular , Animales , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/análisis , Porcinos , FN-kappa B/metabolismo , Interleucina-10/análisis , Interleucina-6/análisis , Interleucina-6/genética , Daño por Reperfusión , Expresión Génica , Modelos Animales de Enfermedad , Receptor Notch1/genética , Citocinas , Hígado/metabolismo , Modelos Animales , Masculino
4.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 349-358, 2024 Mar 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38970508

RESUMEN

OBJECTIVES: Obesity related glomerulopathy (ORG) is induced by obesity, but the pathogenesis remains unclear. This study aims to investigate the expression of early growth response protein 3 (EGR3) in the renal cortex tissues of ORG patients and high-fat diet-induced obese mice, and to further explore the molecular mechanism of EGR3 in inhibiting palmitic acid (PA) induced human podocyte inflammatory damage. METHODS: Renal cortex tissues were collected from ORG patients (n=6) who have been excluded from kidney damage caused by other diseases and confirmed by histopathology, and from obese mice induced by high-fat diet (n=10). Human and mouse podocytes were intervened with 150 µmol/L PA for 48 hours. EGR3 was overexpressed or silenced in human podocytes. Enzyme linked immunosorbent assay (ELISA) was used to detcet the levels of interleukin-6 (IL-6) and interleukin-1ß (IL-1ß). Real-time RT-PCR was used to detect the mRNA expressions of EGR3, podocytes molecular markers nephrosis 1 (NPHS1), nephrosis 2 (NPHS2), podocalyxin (PODXL), and podoplanin (PDPN). RNA-seq was performed to detect differentially expressed genes (DEGs) after human podocytes overexpressing EGR3 and treated with 150 µmol/L PA compared with the control group. Co-immunoprecipitation (Co-IP) combined with liquid chromatography tandem mass spectrometry (LC-MS) was used to detect potential interacting proteins of EGR3 and the intersected with the RNA-seq results. Co-IP confirmed the interaction between EGR3 and protein arginine methyltransferases 1 (PRMT1), after silencing EGR3 and PRMT1 inhibitor intervention, the secretion of IL-6 and IL-1ß in PA-induced podocytes was detected. Western blotting was used to detect the expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) after overexpression or silencing of EGR3. RESULTS: EGR3 was significantly upregulated in renal cortex tissues of ORG patients and high-fat diet-induced obese mice (both P<0.01). In addition, after treating with 150 µmol/L PA for 48 hours, the expression of EGR3 in human and mouse podocytes was significantly upregulated (both P<0.05). Overexpression or silencing of EGR3 in human podocytes inhibited or promoted the secretion of IL-6 and IL-1ß in the cell culture supernatant after PA intervention, respectively, and upregulated or downregulated the expression of NPHS1, PODXL, NPHS2,and PDPN (all P<0.05). RNA-seq showed a total of 988 DEGs, and Co-IP+LC-MS identified a total of 238 proteins that may interact with EGR3. Co-IP confirmed that PRMT1 was an interacting protein with EGR3. Furthermore, PRMT1 inhibitors could partially reduce PA-induced IL-6 and IL-1ß secretion after EGR3 silencing in human podocytes (both P<0.05). Overexpression or silencing of EGR3 negatively regulated the expression of PRMT1 and p-STAT3. CONCLUSIONS: EGR3 may reduce ORG podocyte inflammatory damage by inhibiting the PRMT1/p-STAT3 pathway.


Asunto(s)
Proteína 3 de la Respuesta de Crecimiento Precoz , Obesidad , Podocitos , Proteína-Arginina N-Metiltransferasas , Proteínas Represoras , Factor de Transcripción STAT3 , Podocitos/metabolismo , Podocitos/patología , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Animales , Humanos , Ratones , Factor de Transcripción STAT3/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Proteína 3 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 3 de la Respuesta de Crecimiento Precoz/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Enfermedades Renales/metabolismo , Enfermedades Renales/etiología , Enfermedades Renales/patología , Ácido Palmítico/farmacología , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Ratones Obesos , Masculino , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL , Interleucina-6/metabolismo , Interleucina-6/genética , Corteza Renal/metabolismo , Corteza Renal/patología
5.
Mol Biol Rep ; 51(1): 774, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904794

RESUMEN

BACKGROUND: Olive is an evergreen tree of Oleaceae Olea with numerous bioactive components. While the anti-inflammatory properties of olive oil and the derivatives are well-documented, there remains a dearth of in-depth researches on the immunosuppressive effects of olive fruit water extract. This study aimed to elucidate the dose-effect relationship and underlying molecular mechanisms of olive fruit extract in mediating anti-inflammatory responses. METHODS AND RESULTS: The impacts of olive fruit extract on the release of nitric oxide (NO), tumor necrosis factor (TNF-α), interleukins-6 (IL-6) and reactive oxygen species (ROS) were assessed in RAW264.7 cells induced by lipopolysaccharide (LPS). For deeper understanding, the expression of genes encoding inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α and IL-6 was quantitatively tested. Additionally, the expression patterns of MAPK and NF-κB pathways were further observed to analyze the action mechanisms. Results suggested that olive fruit extract (200, 500, 1000 µg/mL) markedly exhibited a dose-dependent reduction in the generation of NO, TNF-α, IL-6 and ROS, as well as the expression of correlative genes studied. The activation of ERK, JNK, p38, IκB-α and p65 were all suppressed when p65 nuclear translocation was further restricted by olive fruit extract in NF-κB and MAPK signal pathways. CONCLUSIONS: Olive fruit extract targeted imposing restrictions on the signal transduction of key proteins in NF-κB and MAPK pathways, and thereby lowered the level of inflammatory mediators, which put an enormous hindrance to inflammatory development. Accordingly, it is reasonable to consider olive fruit as a potent ingredient in immunomodulatory products.


Asunto(s)
Antiinflamatorios , Frutas , Lipopolisacáridos , FN-kappa B , Óxido Nítrico , Olea , Extractos Vegetales , Especies Reactivas de Oxígeno , Transducción de Señal , Animales , Olea/química , Ratones , Células RAW 264.7 , Extractos Vegetales/farmacología , Antiinflamatorios/farmacología , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Frutas/química , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Óxido Nítrico/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Interleucina-6/metabolismo , Interleucina-6/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Supervivencia Celular/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo
6.
Sci Rep ; 14(1): 14484, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914713

RESUMEN

Among the myriad of nanoparticles, silica nanoparticles (SiO2NPs) have gained significant attention since they are extensively produced and used across several kinds of industries. Because of its widespread usage, there has been increasing concern about the potential health effects. This study aims to evaluate the effects of SiO2NPs on Interleukin-6 (IL-6) gene expression in human lung epithelial cell lines (A549). In this study, A549 cells were exposed to SiO2NPs at concentrations of 0, 1, 10, 50, 100, and 200 µg/mL for 24 and 48 h. The IL-6 gene expression was assessed using Real-Time RT-PCR. Additionally, the impact of SiO2NPs on the viability of A549 cells was determined by MTT assay. Statistical analysis was performed using GraphPad Prism software 8.0. MTT assay results indicated a concentration-dependent impact on cell survival. After 24 h, survival decreased from 80 to 68% (1-100 µg/mL), rising to 77% at higher concentrations. After 48 h, survival dropped from 97 to 80%, decreasing to 90% at higher concentrations. RT-PCR showed a dose-response relationship in cellular toxicity up to 10 µg/mL. At higher concentrations, there was increased IL-6 gene expression, mitigating SiO2NP-induced cytotoxic effects. The study shows that the viability and proliferation of A549 cells are impacted by different SiO2NPs concentrations. There may be a potential correlation between IL-6 gene expression reduction and a mechanism linked to cellular toxicity. However, at higher concentrations, an unknown mechanism increases IL-6 gene expression, reducing SiO2NPs' cytotoxic effects. These effects are concentration-dependent and not influenced by exposure times. Further investigation is recommended to determine this mechanism's nature and implications, particularly in cancer research.


Asunto(s)
Supervivencia Celular , Interleucina-6 , Nanopartículas , Dióxido de Silicio , Humanos , Dióxido de Silicio/toxicidad , Dióxido de Silicio/química , Células A549 , Nanopartículas/toxicidad , Nanopartículas/química , Interleucina-6/metabolismo , Interleucina-6/genética , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos
7.
J Int Med Res ; 52(6): 3000605241254788, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867509

RESUMEN

OBJECTIVE: Neonatal necrotizing enterocolitis (NEC) is a serious intestinal inflammatory disease. We investigated intestinal fatty acid binding protein (I-FABP), I-FABP mRNA, and interleukin-6 (IL-6) as potential diagnostic biomarkers in NEC. METHODS: Forty mice were subjected to hypoxic-ischemic intestinal injury, and then serum I-FABP protein and mRNA levels were quantified. Ileal tissue pathological scores were determined by hematoxylin and eosin staining. I-FABP expression levels and translocation in these tissues were detected using western blotting and immunofluorescence, respectively. Samples from 30 human neonates with NEC and 30 healthy neonates had serum I-FABP protein/mRNA and IL-6 levels measured. RESULTS: The mouse ileal tissue pathological score and I-FABP levels, as well as serum I-FABP and I-FABP mRNA levels, were significantly higher in the model group than in the control group. Serum I-FABP, I-FABP mRNA, and IL-6 levels were significantly higher in human neonates with NEC than in the healthy group. Logistic regression and receiver operating curve analyses revealed that I-FABP protein/mRNA and IL-6 levels could be diagnostic biomarkers for NEC. CONCLUSIONS: I-FABP protein/mRNA and IL-6 levels are useful biomarkers of intestinal ischemic injury in neonates with NEC. The combined detection of I-FABP protein/mRNA and IL-6 is recommended rather than using a single biomarker.


Asunto(s)
Biomarcadores , Modelos Animales de Enfermedad , Enterocolitis Necrotizante , Proteínas de Unión a Ácidos Grasos , Interleucina-6 , Ratones Endogámicos BALB C , ARN Mensajero , Enterocolitis Necrotizante/metabolismo , Enterocolitis Necrotizante/sangre , Enterocolitis Necrotizante/patología , Enterocolitis Necrotizante/genética , Enterocolitis Necrotizante/diagnóstico , Animales , Proteínas de Unión a Ácidos Grasos/sangre , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Interleucina-6/sangre , Interleucina-6/genética , Recién Nacido , Humanos , Biomarcadores/sangre , Biomarcadores/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/sangre , Ratones , Masculino , Femenino , Animales Recién Nacidos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Íleon/metabolismo , Íleon/patología , Estudios de Casos y Controles , Curva ROC
8.
J Agric Food Chem ; 72(25): 14165-14176, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38872428

RESUMEN

Atractylodes macrocephala Koidz, a traditional Chinese medicine, contains atractylenolide I (ATR-I), which has potential anticancer, anti-inflammatory, and immune-modulating properties. This study evaluated the therapeutic potential of ATR-I for indomethacin (IND)-induced gastric mucosal lesions and its underlying mechanisms. Noticeable improvements were observed in the histological morphology and ultrastructures of the rat gastric mucosa after ATR-I treatment. There was improved blood flow, a significant decrease in the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1ß, and IL-18, and a marked increase in prostaglandin E2 (PGE2) expression in ATR-I-treated rats. Furthermore, there was a significant decrease in the mRNA and protein expression levels of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), cysteinyl aspartate specific proteinase-1 (caspase-1), and nuclear factor-κB (NF-κB) in rats treated with ATR-I. The results show that ATR-I inhibits the NLRP3 inflammasome signaling pathway and effectively alleviates local inflammation, thereby improving the therapeutic outcomes against IND-induced gastric ulcers in rats.


Asunto(s)
Atractylodes , Mucosa Gástrica , Indometacina , Inflamasomas , Lactonas , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas Sprague-Dawley , Sesquiterpenos , Úlcera Gástrica , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Indometacina/efectos adversos , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/metabolismo , Ratas , Sesquiterpenos/farmacología , Sesquiterpenos/química , Lactonas/farmacología , Lactonas/química , Inflamasomas/metabolismo , Inflamasomas/genética , Inflamasomas/efectos de los fármacos , Masculino , Atractylodes/química , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/metabolismo , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , FN-kappa B/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/inmunología , Caspasa 1/genética , Caspasa 1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/inmunología , Interleucina-18/genética , Interleucina-18/metabolismo
9.
J Med Food ; 27(6): 533-544, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38836511

RESUMEN

Valproic acid is an effective treatment for generalized seizure and related neurological defects. Despite its efficacy and acceptability, its use is associated with adverse drug effects. Moringa oleifera leaves are rich in phytochemical and nutritional components. It has excellent antioxidant and ethnobotanical benefits, thus popular among folk medicines and nutraceuticals. In the present study, 70% ethanol extract of moringa leaves was assessed for its in vivo biochemical and histological effects against valproate-induced kidney damage. Female Sprague-Dawley rats were randomly divided into four groups: Group I: control animals given physiological saline (n = 8); Group II: Moringa extract-administered group (0.3 g/kg b.w./day, n = 8); Group III: valproate-administered animals (0.5 g/kg b.w./day, n = 15); and Group IV: valproate + moringa extract (given similar doses of both valproate and moringa extract, n = 12) administered group. Treatments were administered orally for 15 days, the animals were fasted overnight, anesthetized, and then tissue samples harvested. In the valproate-administered experimental group, serum urea and uric acid were elevated. In the kidney tissue of the valproate rats, glutathione was depleted, antioxidant enzyme activities (superoxide dismutase, catalase, glutathione reductase, glutathione S-transferase, and glutathione peroxidase) disrupted, while oxidative stress biomarker, inflammatory proteins (Tumor necrosis factor-alpha and interleukin-6), histological damage scores, and the number of PCNA-positive cells were elevated. M. oleifera attenuated all these biochemical defects through its plethora of diverse antioxidant and therapeutic properties.


Asunto(s)
Antioxidantes , Riñón , Moringa oleifera , Estrés Oxidativo , Extractos Vegetales , Ratas Sprague-Dawley , Ácido Valproico , Animales , Moringa oleifera/química , Ácido Valproico/efectos adversos , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Femenino , Ratas , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Superóxido Dismutasa/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Hojas de la Planta/química , Glutatión/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-6/genética , Catalasa/metabolismo , Glutatión Peroxidasa/metabolismo
10.
Viral Immunol ; 37(5): 251-258, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38841881

RESUMEN

The corona virus disease-2019 (COVID-19) pandemic has affected most of the world with varying degrees of morbidity and mortality. The presence of genetic polymorphisms may be associated with the severity and outcome of COVID-19 infection. This work aimed to evaluate the genetic polymorphisms of interleukin (IL-6) and IL-10 genes with the outcome of COVID-19 infection. This cross-sectional study was conducted on 354 patients who were classified into moderate and severe cases (including alive and deceased cases). All individuals were genotyped for one SNP for IL-6 (rs1800795) and one SNP for IL10 (rs1800896) using allelic discrimination real-time PCR technique. In this study, 198 cases were moderate, and 156 cases were severe. The risk of allele carriage of the minor allele of IL-6 rs1800795 (C) was significantly higher among the severe group when compared with that of the moderate group (p < 0.0001), while there was a mild significant difference of same allele carriage among alive cases when compared to that of deceased one (p < 0.04). Furthermore, the risk of the C allele of IL-10 rs1800896 was significantly increased in severe cases when compared with the moderate group (p < 0.0001), while there was no significant difference of the risk of the C allele in deceased cases when compared with that of alive ones (p > 0.05). In conclusion, the C allele (rs1800795) of IL-6 and the C allele (rs1800896) of IL-10 were highly significant in severe cases than in moderate cases. The C allele carriage of IL-6 showed only a significant difference between alive and deceased patients and not with the C allele of IL-10.


Asunto(s)
Alelos , COVID-19 , Predisposición Genética a la Enfermedad , Interleucina-10 , Interleucina-6 , Polimorfismo de Nucleótido Simple , SARS-CoV-2 , Humanos , Interleucina-10/genética , Interleucina-6/genética , COVID-19/genética , COVID-19/inmunología , COVID-19/mortalidad , Femenino , Masculino , Persona de Mediana Edad , Estudios Transversales , Adulto , Anciano , Genotipo , Índice de Severidad de la Enfermedad , Frecuencia de los Genes
11.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892217

RESUMEN

Microglia-mediated inflammatory response is one key cause of many central nervous system diseases, like Alzheimer's disease. We hypothesized that a novel C15orf39 (MAPK1 substrate) plays a critical role in the microglial inflammatory response. To confirm this hypothesis, we used lipopolysaccharide (LPS)-and interferon-gamma (IFN-γ)-induced human microglia HMC3 cells as a representative indicator of the microglial in vitro inflammatory response. We found that C15orf39 was down-regulated when interleukin-6 (IL-6) and tumor necrosis factor-α (TNFα) expression increased in LPS/IFN-γ-stimulated HMC3 cells. Once C15orf39 was overexpressed, IL-6 and TNFα expression were reduced in LPS/IFN-γ-stimulated HMC3 cells. In contrast, C15orf39 knockdown promoted IL-6 and TNFα expression in LPS/IFN-γ-stimulated HMC3 cells. These results suggest that C15orf39 is a suppressive factor in the microglial inflammatory response. Mechanistically, C15orf39 interacts with the cytoplasmic protein arginine methyltransferase 2 (PRMT2). Thus, we termed C15orf39 a PRMT2 interaction protein (PRMT2 IP). Furthermore, the interaction of C15orf39 and PRMT2 suppressed the activation of NF-κB signaling via the PRMT2-IκBα signaling axis, which then led to a reduction in transcription of the inflammatory factors IL6 and TNF-α. Under inflammatory conditions, NF-κBp65 was found to be activated and to suppress C15orf39 promoter activation, after which it canceled the suppressive effect of the C15orf39-PRMT2-IκBα signaling axis on IL-6 and TNFα transcriptional expression. In conclusion, our findings demonstrate that in a steady condition, the interaction of C15orf39 and PRMT2 stabilizes IκBα to inhibit IL-6 and TNFα expression by suppressing NF-κB signaling, which reversely suppresses C15orf39 transcription to enhance IL-6 and TNFα expression in the microglial inflammatory condition. Our study provides a clue as to the role of C15orf39 in microglia-mediated inflammation, suggesting the potential therapeutic efficacy of C15orf39 in some central nervous system diseases.


Asunto(s)
Inflamación , Interleucina-6 , Lipopolisacáridos , Microglía , Proteína-Arginina N-Metiltransferasas , Factor de Necrosis Tumoral alfa , Humanos , Línea Celular , Inflamación/metabolismo , Inflamación/genética , Inflamación/patología , Interferón gamma/metabolismo , Interferón gamma/farmacología , Interleucina-6/metabolismo , Interleucina-6/genética , Lipopolisacáridos/farmacología , Microglía/metabolismo , Microglía/efectos de los fármacos , FN-kappa B/metabolismo , Sistemas de Lectura Abierta , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Cromosomas Humanos Par 15
12.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928498

RESUMEN

Extensive evidence supports the connection between obesity-induced inflammation and the heightened expression of IL-6 adipose tissues. However, the mechanism underlying the IL-6 exacerbation in the adipose tissue remains unclear. There is general agreement that TNF-α and stearate concentrations are mildly elevated in adipose tissue in the state of obesity. We hypothesize that TNF-α and stearate co-treatment induce the increased expression of IL-6 in mouse adipocytes. We therefore aimed to determine IL-6 gene expression and protein production by TNF-α/stearate treated adipocytes and investigated the mechanism involved. To test our hypothesis, 3T3-L1 mouse preadipocytes were treated with TNF-α, stearate, or TNF-α/stearate. IL-6 gene expression was assessed by quantitative real-time qPCR. IL-6 protein production secreted in the cell culture media was determined by ELISA. Acetylation of histone was analyzed by Western blotting. Il6 region-associated histone H3 lysine 9/18 acetylation (H3K9/18Ac) was determined by ChIP-qPCR. 3T3-L1 mouse preadipocytes were co-challenged with TNF-α and stearate for 24 h, which led to significantly increased IL-6 gene expression (81 ± 2.1 Fold) compared to controls stimulated with either TNF-α (38 ± 0.5 Fold; p = 0.002) or stearate (56 ± 2.0 Fold; p = 0.013). As expected, co-treatment of adipocytes with TNF-α and stearate significantly increased protein production (338 ± 11 pg/mL) compared to controls stimulated with either TNF-α (28 ± 0.60 pg/mL; p = 0.001) or stearate (53 ± 0.20 pg/mL, p = 0.0015). Inhibition of histone acetyltransferases (HATs) with anacardic acid or curcumin significantly reduced the IL-6 gene expression and protein production by adipocytes. Conversely, TSA-induced acetylation substituted the stimulatory effect of TNF-α or stearate in their synergistic interaction for driving IL-6 gene expression and protein production. Mechanistically, TNF-α/stearate co-stimulation increased the promoter-associated histone H3 lysine 9/18 acetylation (H3K9/18Ac), rendering a transcriptionally permissive state that favored IL-6 expression at the transcriptional and translational levels. Our data represent a TNF-α/stearate cooperativity model driving IL-6 expression in 3T3-L1 cells via the H3K9/18Ac-dependent mechanism, with implications for adipose IL-6 exacerbations in obesity.


Asunto(s)
Células 3T3-L1 , Adipocitos , Histonas , Interleucina-6 , Factor de Necrosis Tumoral alfa , Animales , Ratones , Acetilación , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Histonas/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Ácidos Esteáricos/farmacología , Ácidos Esteáricos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
13.
Virol J ; 21(1): 134, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849961

RESUMEN

BACKGROUND: The coronavirus pandemic that started in 2019 has caused the highest mortality and morbidity rates worldwide. Data on the role of long non-coding RNAs (lncRNAs) in coronavirus disease 2019 (COVID-19) is scarce. We aimed to elucidate the relationship of three important lncRNAs in the inflammatory states, H19, taurine upregulated gene 1 (TUG1), and colorectal neoplasia differentially expressed (CRNDE) with key factors in inflammation and fibrosis induction including signal transducer and activator of transcription3 (STAT3), alpha smooth muscle actin (α-SMA), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) in COVID-19 patients with moderate to severe symptoms. METHODS: Peripheral blood mononuclear cells from 28 COVID-19 patients and 17 healthy controls were collected. The real-time quantitative polymerase chain reaction (RT-qPCR) was performed to evaluate the expression of RNAs and lncRNAs. Western blotting analysis was also performed to determine the expression levels of STAT3 and α-SMA proteins. Machine learning and receiver operating characteristic (ROC) curve analysis were carried out to evaluate the distinguishing ability of lncRNAs. RESULTS: The expression levels of H19, TUG1, and CRNDE were significantly overexpressed in COVID-19 patients compared to healthy controls. Moreover, STAT3 and α-SMA expression levels were remarkedly increased at both transcript and protein levels in patients with COVID-19 compared to healthy subjects and were correlated with Three lncRNAs. Likewise, IL-6 and TNF-α were considerably upregulated in COVID-19 patients. Machine learning and ROC curve analysis showed that CRNDE-H19 panel has the proper ability to distinguish COVID-19 patients from healthy individuals (area under the curve (AUC) = 0.86). CONCLUSION: The overexpression of three lncRNAs in COVID-19 patients observed in this study may align with significant manifestations of COVID-19. Furthermore, their co-expression with STAT3 and α-SMA, two critical factors implicated in inflammation and fibrosis induction, underscores their potential involvement in exacerbating cardiovascular, pulmonary and common symptoms and complications associated with COVID-19. The combination of CRNDE and H19 lncRNAs seems to be an impressive host-based biomarker panel for screening and diagnosis of COVID-19 patients from healthy controls. Research into lncRNAs can provide a robust platform to find new viral infection-related mediators and propose novel therapeutic strategies for viral infections and immune disorders.


Asunto(s)
COVID-19 , Aprendizaje Automático , ARN Largo no Codificante , SARS-CoV-2 , Factor de Transcripción STAT3 , Humanos , ARN Largo no Codificante/genética , COVID-19/diagnóstico , COVID-19/virología , COVID-19/genética , Masculino , Femenino , Persona de Mediana Edad , SARS-CoV-2/genética , Factor de Transcripción STAT3/genética , Adulto , Curva ROC , Leucocitos Mononucleares/virología , Interleucina-6/genética , Interleucina-6/sangre , Anciano , Actinas/genética , Factor de Necrosis Tumoral alfa/genética
14.
Iran J Allergy Asthma Immunol ; 23(2): 197-220, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38822514

RESUMEN

Systemic sclerosis (SSc) is an autoimmune systemic disease that is characterized by immune dysregulation, inflammation, vasculopathy, and fibrosis. Tissue fibrosis plays an important role in SSc and can affect several organs such as the dermis, lungs, and heart. Dysregulation of interferon (IFN) signaling contributes to the SSc pathogenesis and interferon regulatory factor 1 (IRF1) has been indicated as the main regulator of type I IFN. This study aimed to clarify the effect of IFN-gamma (-γ) and dexamethasone (DEX) on the IRF1, extracellular signal-regulated kinase 1/2 (ERK1/2), and the expression of alpha-smooth muscle actin (α-SMA) in myofibroblasts and genes involved in the inflammation and fibrosis processes in early diffuse cutaneous systemic sclerosis (dcSSc). A total of 10 early dcSSc patients (diffuse cutaneous form) and 10 unaffected control dermis biopsies were obtained to determine IFNγ and DEX effects on inflammation and fibrosis. Fibroblasts were treated with IFNγ and DEX at optimum time and dose. The expression level of genes and proteins involved in the fibrosis and inflammation processes have been quantified by quantitative real-time PCR (RT-qPCR) and western blot, respectively. IFNγ could up-regulate some of the inflammation-related genes (Interleukin-6; IL6) and down-regulate some of the fibrosis-related genes (COL1A1) in cultured fibroblasts of patients with early dcSSc compared to the untreated group. Besides, it has been revealed that IFNγ can induce fibroblast differentiation to the myofibroblast that expresses α-SMA. Concerning the inhibitory effect of IFNγ on some fibrotic genes and its positive effect on the inflammatory genes and myofibroblast differentiation, it seems that IFNγ may play a dual role in SSc.


Asunto(s)
Actinas , Fibroblastos , Interferón gamma , Interleucina-6 , Esclerodermia Sistémica , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Actinas/metabolismo , Actinas/genética , Células Cultivadas , Dexametasona/farmacología , Fibroblastos/metabolismo , Fibroblastos/patología , Fibroblastos/efectos de los fármacos , Fibrosis , Regulación de la Expresión Génica/efectos de los fármacos , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/genética , Interferón gamma/farmacología , Interleucina-6/metabolismo , Interleucina-6/genética , Miofibroblastos/metabolismo , Miofibroblastos/patología , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/patología , Esclerodermia Sistémica/inmunología
15.
Arch Microbiol ; 206(7): 287, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833010

RESUMEN

Hepcidin is a crucial regulator of iron homeostasis with protective effects on liver fibrosis. Additionally, gut microbiota can also affect liver fibrosis and iron metabolism. Although the hepatoprotective potential of Akkermansia muciniphila and Faecalibacterium duncaniae, formerly known as F. prausnitzii, has been reported, however, their effects on hepcidin expression remain unknown. We investigated the direct and macrophage stimulation-mediated effects of active, heat-inactivated, and cell-free supernatant (CFS) forms of A. muciniphila and F. duncaniae on hepcidin expression in HepG2 cells by RT-qPCR analysis. Following stimulation of phorbol-12-myristate-13-acetate (PMA) -differentiated THP-1 cells with A. muciniphila and F. duncaniae, IL-6 concentration was assessed via ELISA. Additionally, the resulting supernatant was treated with HepG2 cells to evaluate the effect of macrophage stimulation on hepcidin gene expression. The expression of genes mediating iron absorption and export was also examined in HepG2 and Caco-2 cells via RT-qPCR. All forms of F. duncaniae increased hepcidin expression while active and heat-inactivated/CFS forms of A. muciniphila upregulated and downregulated its expression, respectively. Active, heat-inactivated, and CFS forms of A. muciniphila and F. duncaniae upregulated hepcidin expression, consistent with the elevation of IL-6 released from THP-1-stimulated cells as a macrophage stimulation effect in HepG2 cells. A. muciniphila and F. duncaniae in active, inactive, and CFS forms altered the expression of hepatocyte and intestinal iron-mediated absorption /exporter genes, namely dcytb and dmt1, and fpn in HepG2 and Caco-2 cells, respectively. In conclusion, A. muciniphila and F. duncaniae affect not only directly but also through macrophage stimulation the expression of hepcidin gene in HepG2 cells. These findings underscore the potential of A. muciniphila and F. duncaniae as a potential therapeutic target for liver fibrosis by modulating hepcidin and intestinal and hepatocyte iron metabolism mediated gene expression.


Asunto(s)
Akkermansia , Hepcidinas , Macrófagos , Humanos , Hepcidinas/genética , Hepcidinas/metabolismo , Células Hep G2 , Células CACO-2 , Macrófagos/inmunología , Macrófagos/microbiología , Macrófagos/metabolismo , Células THP-1 , Hierro/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Activación de Macrófagos , Microbioma Gastrointestinal
16.
Front Immunol ; 15: 1374967, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881895

RESUMEN

Background: Cholangiocarcinoma (CCA) is a typical inflammation-induced malignancy, and elevated serum interleukin-6 (IL-6) levels have been reported to be linked to the onset and progression of CCA. We aim to investigate the potential prognostic value of the IL-6 pathway for CCA. Methods: We detected the expressions of IL-6, IL-6R, glycoprotein (gp130), C-reactive protein (CRP), Janus kinase 2 (JAK2), and signal transducer and activator of transcription 3 (STAT3) in CCA tissue microarray using multiplex immunofluorescence. Furthermore, the clinical associations and prognostic values were assessed. Finally, single-cell transcriptome analysis was performed to evaluate the expression level of IL-6 pathway genes in CCA. Results: The results revealed that the expression of IL-6 was lower, while the expression of STAT3 was higher in tumor tissues compared to normal tissues. Especially in tumor microenvironment, the expression of IL-6 pathway genes was generally downregulated. Importantly, gp130 was strongly correlated with JAK2 in tumor tissues, while it was moderately correlated with JAK2 in normal tissue. Although none of the gene expressions were directly associated with overall survival and disease-free survival, our study found that IL-6, IL-6R, CRP, gp130, and JAK2 were inversely correlated with vascular invasion, which is a risk factor for poor prognosis in patients with CCA. Conclusion: The findings from this study suggest that the IL-6 signaling pathway may have a potential prognostic value for CCA. Further investigation is needed to understand the underlying molecular mechanisms of the IL-6 pathway in CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Receptor gp130 de Citocinas , Interleucina-6 , Janus Quinasa 2 , Factor de Transcripción STAT3 , Transducción de Señal , Humanos , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/mortalidad , Colangiocarcinoma/patología , Interleucina-6/genética , Interleucina-6/metabolismo , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/mortalidad , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Masculino , Femenino , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Persona de Mediana Edad , Pronóstico , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Regulación Neoplásica de la Expresión Génica , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Anciano , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Relevancia Clínica
17.
Int J Mol Sci ; 25(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38891963

RESUMEN

Cutaneous field cancerization (CFC) refers to a skin region containing mutated cells' clones, predominantly arising from chronic exposure to ultraviolet radiation (UVR), which exhibits an elevated risk of developing precancerous and neoplastic lesions. Despite extensive research, many molecular aspects of CFC still need to be better understood. In this study, we conducted ex vivo assessment of cell differentiation, oxidative stress, inflammation, and DNA damage in CFC samples. We collected perilesional skin from 41 patients with skin cancer and non-photoexposed skin from 25 healthy control individuals. These biopsies were either paraffin-embedded for indirect immunofluorescence and immunohistochemistry stain or processed for proteins and mRNA extraction from the epidermidis. Our findings indicate a downregulation of p53 expression and an upregulation of Ki67 and p16 in CFC tissues. Additionally, there were alterations in keratinocyte differentiation markers, disrupted cell differentiation, increased expression of iNOS and proinflammatory cytokines IL-6 and IL-8, along with evidence of oxidative DNA damage. Collectively, our results suggest that despite its outwardly normal appearance, CFC tissue shows early signs of DNA damage, an active inflammatory state, oxidative stress, abnormal cell proliferation and differentiation.


Asunto(s)
Diferenciación Celular , Daño del ADN , Inflamación , Estrés Oxidativo , Neoplasias Cutáneas , Rayos Ultravioleta , Humanos , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/genética , Inflamación/metabolismo , Inflamación/genética , Inflamación/patología , Masculino , Femenino , Persona de Mediana Edad , Rayos Ultravioleta/efectos adversos , Anciano , Queratinocitos/metabolismo , Queratinocitos/patología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Adulto , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Piel/metabolismo , Piel/patología , Piel/efectos de la radiación , Antígeno Ki-67/metabolismo , Antígeno Ki-67/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Interleucina-6/metabolismo , Interleucina-6/genética
18.
PLoS One ; 19(6): e0301859, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38848433

RESUMEN

OBJECTIVE: The purpose of this study is to investigate the relationship between single nucleotide polymorphisms of inflammatory cytokines and neonatal sepsis through meta-analysis. METHODS: We collected research literature on the correlation between inflammatory cytokine polymorphisms and neonatal sepsis published before August 2023 through computer searches of databases such as PubMed, Embase, etc. The Stata 14.0 software was utilized for Meta-analysis. To assess heterogeneity, the chi-squared Q-test and I2 statistics were used. The Egger and Begg tests were conducted to determine the possibility of publication bias. RESULTS: After reviewing 1129 articles, 29 relevant articles involving 3348 cases and 5183 controls were included in the study. The meta-analysis conducted on IL-1ßrs1143643 polymorphism revealed significant findings: the T allele genotype has a lower risk of neonatal sepsis(P = 0.000, OR = 0.224, 95% CI: 0.168-0.299), while the TC and TT genotypes showed an increased risk(TC: P = 0.000,OR = 4.251, 95% CI: 2.226-8.119; TT: P = 0.019,OR = 2.020, 95% CI: 1.122-3.639). Similarly, newborns with the IL-6-174 CC genotype had a significantly higher risk of sepsis(P = 0.000,OR = 1.591, 95% CI: 1.154-2.194), while those with the IL-8-rs4073 TT (P = 0.003,OR = 0.467, 95% CI: 0.280-0.777)and TT + AA(P = 0.003,OR = 0.497, 95% CI: 0.315-0.785) genotypes had a significantly lower risk of sepsis. For the IL-10-1082 gene, newborns with the AA genotype(P = 0.002,OR = 1.702, 95% CI: 1.218-2.377), as well as those with the AA + GA genotype(P = 0.016,OR = 1.731, 95% CI: 1.108-2.705), had a significantly higher risk of sepsis. Lastly, newborns carrying the TNF-α-308 A allele (P = 0.016,OR = 1.257, 95% CI: 1.044-1.513)or the AA genotype(P = 0.009,OR = 1.913, 95% CI: 1.179-3.10) have a significantly increased risk of sepsis. Notwithstanding, additional studies must be included for validation. Applying these cytokines in clinical practice and integrating them into auxiliary examinations facilitates the early detection of susceptible populations for neonatal sepsis, thereby providing a new diagnostic and therapeutic approach for neonatal sepsis.


Asunto(s)
Predisposición Genética a la Enfermedad , Sepsis Neonatal , Polimorfismo de Nucleótido Simple , Humanos , Sepsis Neonatal/genética , Recién Nacido , Citocinas/genética , Genotipo , Alelos , Interleucina-6/genética
19.
Mol Biol Rep ; 51(1): 712, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824221

RESUMEN

INTRODUCTION: Coronary artery disease (CAD) in young adults can have devastating consequences. The cardiac developmental gene MEIS1 plays important roles in vascular networks and heart development. This gene effects on the regeneration capacity of the heart. Considering role of MEIS1 in cardiac tissue development and the progression of myocardial infarction this study investigated the expression levels of the MEIS1, HIRA, and Myocardin genes in premature CAD patients compared to healthy subjects and evaluated the relationships between these genes and possible inflammatory factors. METHODS AND RESULTS: The study conducted a case-control design involving 35 CAD patients and 35 healthy individuals. Peripheral blood mononuclear cells (PBMCs) were collected, and gene expression analysis was performed using real-time PCR. Compared with control group, the number of PBMCs in the CAD group exhibited greater MEIS1 and HIRA gene expression, with fold changes of 2.45 and 3.6. The expression of MEIS1 exhibited a negative correlation with IL-10 (r= -0.312) expression and positive correlation with Interleukin (IL)-6 (r = 0.415) and tumor necrosis factor (TNF)-α (r = 0.534) gene expression. Moreover, there was an inverse correlation between the gene expression of HIRA and that of IL-10 (r= -0.326), and a positive correlation was revealed between the expression of this gene and that of the IL-6 (r = 0.453) and TNF-α (r = 0.572) genes. CONCLUSION: This research demonstrated a disparity in expression levels of MEIS1, HIRA, and Myocardin, between CAD and healthy subjects. The results showed that, MEIS1 and HIRA play significant roles in regulating the synthesis of proinflammatory cytokines, namely, TNF-α and IL-6.


Asunto(s)
Enfermedad de la Arteria Coronaria , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas Nucleares , Transactivadores , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios de Casos y Controles , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Enfermedad de la Arteria Coronaria/genética , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Interleucina-10/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Leucocitos Mononucleares/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
20.
PLoS One ; 19(6): e0302530, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38905184

RESUMEN

At present, the mechanism of fluorosis-induced damage to the hepatic system is unclear. Studies have shown that excess fluoride causes some degree of damage to the liver, including inflammation. The SDF-1/CXCR4 signaling axis has been reported to have an impact on the regulation of inflammation in human cells. In this study, we investigated the role of the SDF-1/CXCR4 signaling axis and related inflammatory factors in fluorosis through in vitro experiments on human hepatic astrocytes (LX-2) cultured with sodium fluoride. CCK-8 assays showed that the median lethal dose at 24 h was 2 mmol/l NaF, and these conditions were used for subsequent enzyme-linked immunosorbent assays (ELISAs) and quantitative real-time polymerase chain reaction (qPCR) analysis. The protein expression levels of SDF-1/CXCR4 and the related inflammatory factors nuclear factor-κB (NF-κB), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin 1ß (IL-1ß) were detected by ELISAs from the experimental and control groups. The mRNA expression levels of these inflammatory indicators were also determined by qPCR in both groups. Moreover, the expression levels of these factors were significantly higher in the experimental group than in the control group at both the protein and mRNA levels (P < 0.05). Excess fluorine may stimulate the SDF-1/CXCR4 signaling axis, activating the inflammatory NF-κB signaling pathway and increasing the expression levels of the related inflammatory factors IL-6, TNF-α and IL-1ß. Identification of this mechanism is important for elucidating the pathogenesis of fluorosis-induced liver injury.


Asunto(s)
Quimiocina CXCL12 , Hepatocitos , Receptores CXCR4 , Fluoruro de Sodio , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Humanos , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Fluoruro de Sodio/toxicidad , Fluoruro de Sodio/farmacología , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Línea Celular , Interleucina-1beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Inflamación/metabolismo , Inflamación/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA