Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 748
Filtrar
1.
Elife ; 132024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264364

RESUMEN

Alzheimer's disease (AD) leads to progressive memory decline, and alterations in hippocampal function are among the earliest pathological features observed in human and animal studies. GABAergic interneurons (INs) within the hippocampus coordinate network activity, among which type 3 interneuron-specific (I-S3) cells expressing vasoactive intestinal polypeptide and calretinin play a crucial role. These cells provide primarily disinhibition to principal excitatory cells (PCs) in the hippocampal CA1 region, regulating incoming inputs and memory formation. However, it remains unclear whether AD pathology induces changes in the activity of I-S3 cells, impacting the hippocampal network motifs. Here, using young adult 3xTg-AD mice, we found that while the density and morphology of I-S3 cells remain unaffected, there were significant changes in their firing output. Specifically, I-S3 cells displayed elongated action potentials and decreased firing rates, which was associated with a reduced inhibition of CA1 INs and their higher recruitment during spatial decision-making and object exploration tasks. Furthermore, the activation of CA1 PCs was also impacted, signifying early disruptions in CA1 network functionality. These findings suggest that altered firing patterns of I-S3 cells might initiate early-stage dysfunction in hippocampal CA1 circuits, potentially influencing the progression of AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Región CA1 Hipocampal , Interneuronas , Péptido Intestinal Vasoactivo , Animales , Humanos , Masculino , Ratones , Potenciales de Acción/fisiología , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Región CA1 Hipocampal/fisiopatología , Región CA1 Hipocampal/patología , Modelos Animales de Enfermedad , Interneuronas/fisiología , Interneuronas/metabolismo , Ratones Transgénicos , Péptido Intestinal Vasoactivo/metabolismo
2.
Elife ; 132024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39297605

RESUMEN

In the mammalian neocortex, inhibition is important for dynamically balancing excitation and shaping the response properties of cells and circuits. The various computational functions of inhibition are thought to be mediated by different inhibitory neuron types, of which a large diversity exists in several species. Current understanding of the function and connectivity of distinct inhibitory neuron types has mainly derived from studies in transgenic mice. However, it is unknown whether knowledge gained from mouse studies applies to the non-human primate, the model system closest to humans. The lack of viral tools to selectively access inhibitory neuron types has been a major impediment to studying their function in the primate. Here, we have thoroughly validated and characterized several recently developed viral vectors designed to restrict transgene expression to GABAergic cells or their parvalbumin (PV) subtype, and identified two types that show high specificity and efficiency in marmoset V1. We show that in marmoset V1, AAV-h56D induces transgene expression in GABAergic cells with up to 91-94% specificity and 79% efficiency, but this depends on viral serotype and cortical layer. AAV-PHP.eB-S5E2 induces transgene expression in PV cells across all cortical layers with up to 98% specificity and 86-90% efficiency, depending on layer. Thus, these viral vectors are promising tools for studying GABA and PV cell function and connectivity in the primate cortex.


Asunto(s)
Callithrix , Neuronas GABAérgicas , Vectores Genéticos , Interneuronas , Parvalbúminas , Animales , Parvalbúminas/metabolismo , Parvalbúminas/genética , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Dependovirus/genética , Corteza Visual Primaria/metabolismo , Expresión Génica , Transgenes , Corteza Visual/metabolismo , Corteza Visual/fisiología , Corteza Visual/virología
3.
Sci Rep ; 14(1): 21174, 2024 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256434

RESUMEN

Vasoactive intestinal polypeptide (VIP) is known to be present in a subclass of cortical interneurons. Here, using three different antibodies, we demonstrate that VIP is also present in the giant layer 5 pyramidal (Betz) neurons which are characteristic of the limb and axial representations of the marmoset primary motor cortex (cytoarchitectural area 4ab). No VIP staining was observed in smaller layer 5 pyramidal cells present in the primary motor facial representation (cytoarchitectural area 4c), or in the premotor cortex (e.g. the caudal subdivision of the dorsal premotor cortex, A6DC), indicating the selective expression of VIP in Betz cells. VIP in Betz cells was colocalized with neuronal specific marker (NeuN) and a calcium-binding protein parvalbumin (PV). PV also intensely labelled axon terminals surrounding Betz cell somata. VIP-positive interneurons were more abundant in the superficial cortical layers and constituted about 5-7% of total cortical neurons, with the highest density observed in area 4c. Our results demonstrate the expression of VIP in the largest excitatory neurons of the primate cortex, which may offer new functional insights into the role of VIP in the brain, and provide opportunities for genetic manipulation of Betz cells.


Asunto(s)
Callithrix , Interneuronas , Corteza Motora , Células Piramidales , Péptido Intestinal Vasoactivo , Animales , Femenino , Masculino , Biomarcadores/metabolismo , Interneuronas/metabolismo , Corteza Motora/metabolismo , Corteza Motora/citología , Parvalbúminas/metabolismo , Células Piramidales/metabolismo , Péptido Intestinal Vasoactivo/análisis , Péptido Intestinal Vasoactivo/metabolismo
4.
Cell Rep ; 43(8): 114531, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39058591

RESUMEN

Spontaneous and sensory-evoked activity sculpts developing circuits. Yet, how these activity patterns intersect with cellular programs regulating the differentiation of neuronal subtypes is not well understood. Through electrophysiological and in vivo longitudinal analyses, we show that C-X-C motif chemokine ligand 14 (Cxcl14), a gene previously characterized for its association with tumor invasion, is expressed by single-bouquet cells (SBCs) in layer I (LI) of the somatosensory cortex during development. Sensory deprivation at neonatal stages markedly decreases Cxcl14 expression. Additionally, we report that loss of function of this gene leads to increased intrinsic excitability of SBCs-but not LI neurogliaform cells-and augments neuronal complexity. Furthermore, Cxcl14 loss impairs sensory map formation and compromises the in vivo recruitment of superficial interneurons by sensory inputs. These results indicate that Cxcl14 is required for LI differentiation and demonstrate the emergent role of chemokines as key players in cortical network development.


Asunto(s)
Diferenciación Celular , Quimiocinas CXC , Interneuronas , Corteza Somatosensorial , Corteza Somatosensorial/metabolismo , Corteza Somatosensorial/citología , Animales , Interneuronas/metabolismo , Quimiocinas CXC/metabolismo , Quimiocinas CXC/genética , Ratones , Ratones Endogámicos C57BL
5.
Brain Behav Immun ; 122: 241-255, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39084540

RESUMEN

Pediatric Acute-onset Neuropsychiatric Syndrome (PANS) is characterized by the abrupt onset of significant obsessive-compulsive symptoms (OCS) and/or severe food restriction, together with other neuropsychiatric manifestations. An autoimmune pathogenesis triggered by infection has been proposed for at least a subset of PANS. The older diagnosis of Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcus (PANDAS) describes rapid onset of OCD and/or tics associated with infection with Group A Streptococcus. The pathophysiology of PANS and PANDAS remains incompletely understood. We recently found serum antibodies from children with rigorously defined PANDAS to selectively bind to cholinergic interneurons (CINs) in the striatum. Here we examine this binding in children with relapsing and remitting PANS, a more heterogeneous condition, collected in a distinct clinical context from those examined in our previous work, from children with a clinical history of Streptococcus infection. IgG from PANS cases showed elevated binding to striatal CINs in both mouse and human brain. Patient plasma collected during symptom flare decreased a molecular marker of CIN activity, phospho-riboprotein S6, in ex vivo brain slices; control plasma did not. Neither elevated antibody binding to CINs nor diminished CIN activity was seen with plasma collected from the same children during remission. These findings replicate what we have seen previously in PANDAS and support the hypothesis that at least a subset of PANS cases have a neuroimmune pathogenesis. Given the critical role of CINs in modulating basal ganglia function, these findings confirm striatal CINs as a locus of interest in the pathophysiology of both PANS and PANDAS.


Asunto(s)
Cuerpo Estriado , Interneuronas , Trastorno Obsesivo Compulsivo , Infecciones Estreptocócicas , Humanos , Niño , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/metabolismo , Masculino , Trastorno Obsesivo Compulsivo/metabolismo , Trastorno Obsesivo Compulsivo/inmunología , Femenino , Animales , Interneuronas/metabolismo , Interneuronas/inmunología , Ratones , Cuerpo Estriado/metabolismo , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Adolescente , Inmunoglobulina G/metabolismo , Autoanticuerpos/metabolismo , Autoanticuerpos/inmunología , Neuronas Colinérgicas/metabolismo , Preescolar
6.
Cells ; 13(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39056776

RESUMEN

Bipolar disorder (BP) is a recurring psychiatric condition characterized by alternating episodes of low energy (depressions) followed by manias (high energy). Cortical network activity produced by GABAergic interneurons may be critical in maintaining the balance in excitatory/inhibitory activity in the brain during development. Initially, GABAergic signaling is excitatory; with maturation, these cells undergo a functional switch that converts GABAA channels from depolarizing (excitatory) to hyperpolarizing (inhibitory), which is controlled by the intracellular concentration of two chloride transporters. The earliest, NKCC1, promotes chloride entry into the cell and depolarization, while the second (KCC2) stimulates movement of chloride from the neuron, hyperpolarizing it. Perturbations in the timing or expression of NKCC1/KCC2 may affect essential morphogenetic events including cell proliferation, migration, synaptogenesis and plasticity, and thereby the structure and function of the cortex. We derived induced pluripotent stem cells (iPSC) from BP patients and undiagnosed control (C) individuals, then modified a differentiation protocol to form GABAergic interneurons, harvesting cells at sequential stages of differentiation. qRT-PCR and RNA sequencing indicated that after six weeks of differentiation, controls transiently expressed high levels of NKCC1. Using multi-electrode array (MEA) analysis, we observed that BP neurons exhibit increased firing, network bursting and decreased synchrony compared to C. Understanding GABA signaling in differentiation may identify novel approaches and new targets for treatment of neuropsychiatric disorders such as BP.


Asunto(s)
Trastorno Bipolar , Diferenciación Celular , Neuronas GABAérgicas , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Neuronas GABAérgicas/metabolismo , Trastorno Bipolar/metabolismo , Trastorno Bipolar/patología , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Interneuronas/metabolismo
7.
Eur J Neurosci ; 60(5): 4937-4953, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39080914

RESUMEN

Cholinergic interneurons (ChIs) act as master regulators of striatal output, finely tuning neurotransmission to control motivated behaviours. ChIs are a cellular target of many peptide and hormonal neuromodulators, including corticotropin-releasing factor, opioids, insulin and leptin, which can influence an animal's behaviour by signalling stress, pleasure, pain and nutritional status. However, little is known about how sex hormones via estrogen receptors influence the function of these other neuromodulators. Here, we performed in situ hybridisation on mouse striatal tissue to characterise the effect of sex and sex hormones on choline acetyltransferase (Chat), estrogen receptor alpha (Esr1) and corticotropin-releasing factor type 1 receptor (Crhr1) expression. Although we did not detect sex differences in ChAT protein levels in the dorsal striatum or nucleus accumbens, we found that female mice have more Chat mRNA-expressing neurons than males in both the dorsal striatum and nucleus accumbens. At the population level, we observed a sexually dimorphic distribution of Esr1- and Crhr1-expressing ChIs in the ventral striatum that was negatively correlated in intact females, which was abolished by ovariectomy and not present in males. Only in the NAc did we find a significant population of ChIs that co-express Crhr1 and Esr1 in females and to a lesser extent in males. At the cellular level, Crhr1 and Esr1 transcript levels were negatively correlated only during the estrus phase in females, indicating that changes in sex hormone levels can modulate the interaction between Crhr1 and Esr1 mRNA levels.


Asunto(s)
Neuronas Colinérgicas , Hormona Liberadora de Corticotropina , Receptor alfa de Estrógeno , Estrógenos , Interneuronas , Núcleo Accumbens , Receptores de Hormona Liberadora de Corticotropina , Animales , Masculino , Núcleo Accumbens/metabolismo , Femenino , Hormona Liberadora de Corticotropina/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Interneuronas/metabolismo , Receptor alfa de Estrógeno/metabolismo , Ratones , Neuronas Colinérgicas/metabolismo , Estrógenos/metabolismo , Caracteres Sexuales , Ratones Endogámicos C57BL , Colina O-Acetiltransferasa/metabolismo , Ovariectomía
8.
Cell Rep ; 43(5): 114212, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38743567

RESUMEN

Diverse types of inhibitory interneurons (INs) impart computational power and flexibility to neocortical circuits. Whereas markers for different IN types in cortical layers 2-6 (L2-L6) have been instrumental for generating a wealth of functional insights, only the recent identification of a selective marker (neuron-derived neurotrophic factor [NDNF]) has opened comparable opportunities for INs in L1 (L1INs). However, at present we know very little about the connectivity of NDNF L1INs with other IN types, their input-output conversion, and the existence of potential NDNF L1IN subtypes. Here, we report pervasive inhibition of L2/3 INs (including parvalbumin INs and vasoactive intestinal peptide INs) by NDNF L1INs. Intersectional genetics revealed similar physiology and connectivity in the NDNF L1IN subpopulation co-expressing neuropeptide Y. Finally, NDNF L1INs prominently and selectively engage in persistent firing, a physiological hallmark disconnecting their output from the current input. Collectively, our work therefore identifies NDNF L1INs as specialized master regulators of superficial neocortex according to their pervasive top-down afferents.


Asunto(s)
Interneuronas , Animales , Ratones , Interneuronas/metabolismo , Neocórtex/metabolismo , Neocórtex/citología , Neocórtex/fisiología , Neuropéptido Y/metabolismo , Parvalbúminas/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
9.
J Neurophysiol ; 132(1): 34-44, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38774975

RESUMEN

When adult mice are repeatedly exposed to a particular visual stimulus for as little as 1 h per day for several days while their visual cortex (V1) is in the high-gain state produced by locomotion, that specific stimulus elicits much stronger responses in V1 neurons for the following several weeks, even when measured in anesthetized animals. Such stimulus-specific enhancement (SSE) is not seen if locomotion is prevented. The effect of locomotion on cortical responses is mediated by vasoactive intestinal peptide (VIP) positive interneurons, which can release both the peptide and the inhibitory neurotransmitter GABA. Previous studies have examined the role of VIP-ergic interneurons, but none have distinguished the individual roles of peptide from GABA release. Here, we used genetic ablation to determine which of those molecules secreted by VIP-ergic neurons is responsible for SSE. SSE was not impaired by VIP deletion but was prevented by compromising release of GABA from VIP cells. This finding suggests that SSE may result from Hebbian mechanisms that remain present in adult V1.NEW & NOTEWORTHY Many neurons package and release a peptide along with a conventional neurotransmitter. The conventional view is that such peptides exert late, slow effects on plasticity. We studied a form of cortical plasticity that depends on the activity of neurons that express both vasoactive intestinal peptide (VIP) and the inhibitory neurotransmitter GABA. GABA release accounted for their action on plasticity, with no effect of deleting the peptide on this phenomenon.


Asunto(s)
Interneuronas , Péptido Intestinal Vasoactivo , Corteza Visual , Ácido gamma-Aminobutírico , Animales , Péptido Intestinal Vasoactivo/metabolismo , Interneuronas/metabolismo , Interneuronas/fisiología , Ácido gamma-Aminobutírico/metabolismo , Ratones , Corteza Visual/metabolismo , Corteza Visual/fisiología , Ratones Endogámicos C57BL , Masculino , Estimulación Luminosa , Femenino
10.
Acta Neuropathol ; 147(1): 80, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714540

RESUMEN

GABAergic interneurons play a critical role in maintaining neural circuit balance, excitation-inhibition regulation, and cognitive function modulation. In tuberous sclerosis complex (TSC), GABAergic neuron dysfunction contributes to disrupted network activity and associated neurological symptoms, assumingly in a cell type-specific manner. This GABAergic centric study focuses on identifying specific interneuron subpopulations within TSC, emphasizing the unique characteristics of medial ganglionic eminence (MGE)- and caudal ganglionic eminence (CGE)-derived interneurons. Using single-nuclei RNA sequencing in TSC patient material, we identify somatostatin-expressing (SST+) interneurons as a unique and immature subpopulation in TSC. The disrupted maturation of SST+ interneurons may undergo an incomplete switch from excitatory to inhibitory GABAergic signaling during development, resulting in reduced inhibitory properties. Notably, this study reveals markers of immaturity specifically in SST+ interneurons, including an abnormal NKCC1/KCC2 ratio, indicating an imbalance in chloride homeostasis crucial for the postsynaptic consequences of GABAergic signaling as well as the downregulation of GABAA receptor subunits, GABRA1, and upregulation of GABRA2. Further exploration of SST+ interneurons revealed altered localization patterns of SST+ interneurons in TSC brain tissue, concentrated in deeper cortical layers, possibly linked to cortical dyslamination. In the epilepsy context, our research underscores the diverse cell type-specific roles of GABAergic interneurons in shaping seizures, advocating for precise therapeutic considerations. Moreover, this study illuminates the potential contribution of SST+ interneurons to TSC pathophysiology, offering insights for targeted therapeutic interventions.


Asunto(s)
Neuronas GABAérgicas , Interneuronas , Esclerosis Tuberosa , Humanos , Neuronas GABAérgicas/patología , Neuronas GABAérgicas/metabolismo , Eminencia Ganglionar , Interneuronas/patología , Interneuronas/metabolismo , Eminencia Media/patología , Eminencia Media/metabolismo , Receptores de GABA-A/metabolismo , Somatostatina/metabolismo , Esclerosis Tuberosa/patología , Esclerosis Tuberosa/metabolismo , Animales
11.
STAR Protoc ; 5(2): 102936, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38735042

RESUMEN

GABAergic interneurons are inhibitory neurons of the CNS, playing a fundamental role in neural circuitry and activity. Here, we provide a robust protocol for the successful enrichment of human cerebellar GABAergic interneurons from human induced pluripotent stem cells (iPSCs) and measuring intracellular calcium transients. We describe in detail steps for culturing iPSCs; generating embryoid bodies; and differentiating and enriching for cerebellar GABAergic neurons (cGNs), with precise steps for their molecular characterization. We then detail the procedure for adeno-associated virus-mediated transduction of cGNs with genetically encoded calcium indicators, followed by intracellular calcium imaging and analyses. For complete details on the use and execution of this protocol, please refer to Pilotto et al.1.


Asunto(s)
Calcio , Diferenciación Celular , Cerebelo , Neuronas GABAérgicas , Células Madre Pluripotentes Inducidas , Interneuronas , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Calcio/metabolismo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/citología , Interneuronas/metabolismo , Interneuronas/citología , Diferenciación Celular/fisiología , Cerebelo/citología , Cerebelo/metabolismo , Técnicas de Cultivo de Célula/métodos , Células Cultivadas
12.
Cell Rep ; 43(5): 114197, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38733587

RESUMEN

Interneurons (INs), specifically those in disinhibitory circuits like somatostatin (SST) and vasoactive intestinal peptide (VIP)-INs, are strongly modulated by the behavioral context. Yet, the mechanisms by which these INs are recruited during active states and whether their activity is consistent across sensory cortices remain unclear. We now report that in mice, locomotor activity strongly recruits SST-INs in the primary somatosensory (S1) but not the visual (V1) cortex. This diverse engagement of SST-INs cannot be explained by differences in VIP-IN function but is absent in the presence of visual input, suggesting the involvement of feedforward sensory pathways. Accordingly, inactivating the somatosensory thalamus, but not decreasing VIP-IN activity, significantly reduces the modulation of SST-INs by locomotion. Model simulations suggest that the differences in SST-INs across behavioral states can be explained by varying ratios of VIP- and thalamus-driven activity. By integrating feedforward activity with neuromodulation, SST-INs are anticipated to be crucial for adapting sensory processing to behavioral states.


Asunto(s)
Interneuronas , Somatostatina , Péptido Intestinal Vasoactivo , Animales , Interneuronas/metabolismo , Interneuronas/fisiología , Somatostatina/metabolismo , Ratones , Péptido Intestinal Vasoactivo/metabolismo , Corteza Somatosensorial/fisiología , Corteza Somatosensorial/metabolismo , Masculino , Ratones Endogámicos C57BL , Locomoción/fisiología , Conducta Animal/fisiología , Corteza Visual/fisiología , Corteza Visual/metabolismo , Tálamo/fisiología , Tálamo/metabolismo
13.
Epilepsia ; 65(8): 2483-2496, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38819633

RESUMEN

OBJECTIVE: Methyl CpG-binding protein 2 (MECP2) duplication syndrome is a rare X-linked genomic disorder affecting predominantly males, which is usually manifested as epilepsy and autism spectrum disorder (ASD) comorbidity. The transgenic line MeCP2Tg1 was used for mimicking MECP2 duplication syndrome and showed autism-epilepsy co-occurrence. Previous works suggested that the excitatory/inhibitory (E/I) imbalance is a potential common mechanism for both epilepsy and ASD. The projection neurons and parvalbumin (PV) interneurons account for the majority of E/I balance in the hippocampus. Therefore, we explored how structural changes of projection and PV+ neurons occur in the hippocampus of MeCP2Tg1 mice and whether these morphological changes contribute to epilepsy susceptibility. METHODS: We used the interneuron Designer receptors exclusively activated by designer drugs mouse model to inhibit inhibitory neurons in the hippocampus to verify the epilepsy susceptibility of MeCP2Tg1 (FVB, an inbred strain named as sensitivity to Friend leukemia virus) mice. Electroencephalograms were recorded for the definition of seizure. We performed retro-orbital injection of virus in MeCP2Tg1 (FVB):CaMKIIα-Cre (C57BL/6) mice or MeCP2Tg1:PV-Cre (C57BL/6) mice and their littermate controls to specifically label projection and PV+ neurons for structural analysis. RESULTS: Epilepsy susceptibility was increased in MeCP2Tg1 mice. There was a reduced number of PV neurons and reduced dendritic complexity in the hippocampus of MeCP2Tg1 mice. The dendritic complexity in MeCP2Tg1 mice was increased compared to wild-type mice, and total dendritic spine density in dentate gyrus of MeCP2Tg1 mice was also increased. Total dendritic spine density was increased in CA1 of MeCP2Tg1 mice. SIGNIFICANCE: Overexpression of MeCP2 may disrupt crucial signaling pathways, resulting in decreased dendritic complexity of PV interneurons and increased dendritic spine density of projection neurons. This reciprocal modulation of excitatory and inhibitory neuronal structures associated with MeCP2 implies its significance as a potential target in the development of epilepsy and offers a novel perspective on the co-occurrence of autism and epilepsy.


Asunto(s)
Epilepsia , Hipocampo , Interneuronas , Parvalbúminas , Animales , Masculino , Ratones , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia/patología , Epilepsia/genética , Hipocampo/patología , Hipocampo/metabolismo , Interneuronas/patología , Interneuronas/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/patología , Proteína 2 de Unión a Metil-CpG/genética , Ratones Transgénicos , Parvalbúminas/metabolismo
14.
Neuropharmacology ; 255: 110019, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810926

RESUMEN

The endogenous opioid system has been implicated in alcohol consumption and preference in both humans and animals. The mu opioid receptor (MOR) is expressed on multiple cells in the striatum, however little is known about the contributions of specific MOR populations to alcohol drinking behaviors. The current study used mice with a genetic deletion of MOR in cholinergic cells (ChAT-Cre/Oprm1fl/fl) to examine the role of MORs expressed in cholinergic interneurons (CINs) in home cage self-administration paradigms. Male and female ChAT-Cre/Oprm1fl/fl mice were generated and heterozygous Cre+ (knockout) and Cre- (control) mice were tested for alcohol consumption in two drinking paradigms: limited access "Drinking in the Dark" and intermittent access. Quinine was added to the drinking bottles in the DID experiment to test aversion-resistant, "compulsive" drinking. Nicotine and sucrose drinking were also assessed so comparisons could be made with other rewarding substances. Cholinergic MOR deletion did not influence consumption or preference for ethanol (EtOH) in either drinking task. Differences were observed in aversion-resistance in males with Cre + mice tolerating lower concentrations of quinine than Cre-. In contrast to EtOH, preference for nicotine was reduced following cholinergic MOR deletion while sucrose consumption and preference was increased in Cre+ (vs. Cre-) females. Locomotor activity was also greater in females following the deletion. These results suggest that cholinergic MORs participate in preference for rewarding substances. Further, while they are not required for consumption of alcohol alone, cholinergic MORs may influence the tendency to drink despite negative consequences.


Asunto(s)
Consumo de Bebidas Alcohólicas , Ratones Noqueados , Quinina , Receptores Opioides mu , Recompensa , Animales , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Masculino , Femenino , Ratones , Quinina/farmacología , Quinina/administración & dosificación , Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/psicología , Nicotina/farmacología , Etanol/farmacología , Etanol/administración & dosificación , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/fisiología , Neuronas Colinérgicas/metabolismo , Autoadministración , Sacarosa/administración & dosificación , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Interneuronas/metabolismo
15.
J Nutr Sci Vitaminol (Tokyo) ; 70(2): 164-173, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38684387

RESUMEN

Bitterness and astringency are the aversive tastes in mammals. In humans, aversion to bitterness and astringency may be reduced depending on the eating experience. However, the cellular and molecular mechanisms underlying plasticity in preference to bitter and astringent tastants remain unknown. This study aimed to investigate the preference plasticity to bitter and astringent tea polyphenols, including catechins and tannic acids, in the model animal Caenorhabditis elegans. C. elegans showed avoidance behavior against epigallocatechin gallate (EGCG), tannic acid, and theaflavin. However, they displayed diminishing avoidance against EGCG depending on their EGCG-feeding regime at larval stages. Additionally, the behavioral plasticity in avoiding EGCG required the transcription factor DAF-16/FOXO. Isoform-specific deletion mutant analysis and cell-specific rescue analysis revealed that the function of daf-16 isoform b in AIY interneurons is necessary for experience-dependent behavioral plasticity to EGCG.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Catequina , Factores de Transcripción Forkhead , Interneuronas , Animales , Catequina/análogos & derivados , Catequina/farmacología , Caenorhabditis elegans/efectos de los fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Factores de Transcripción Forkhead/metabolismo , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Reacción de Prevención/efectos de los fármacos , Biflavonoides/farmacología , Gusto/efectos de los fármacos , Té/química , Conducta Animal/efectos de los fármacos , Larva/efectos de los fármacos
16.
Cell Rep ; 43(4): 114115, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607918

RESUMEN

In the CA1 hippocampus, vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) play a prominent role in disinhibitory circuit motifs. However, the specific behavioral conditions that lead to circuit disinhibition remain uncertain. To investigate the behavioral relevance of VIP-IN activity, we employed wireless technologies allowing us to monitor and manipulate their function in freely behaving mice. Our findings reveal that, during spatial exploration in new environments, VIP-INs in the CA1 hippocampal region become highly active, facilitating the rapid encoding of novel spatial information. Remarkably, both VIP-INs and pyramidal neurons (PNs) exhibit increased activity when encountering novel changes in the environment, including context- and object-related alterations. Concurrently, somatostatin- and parvalbumin-expressing inhibitory populations show an inverse relationship with VIP-IN and PN activity, revealing circuit disinhibition that occurs on a timescale of seconds. Thus, VIP-IN-mediated disinhibition may constitute a crucial element in the rapid encoding of novelty and the acquisition of recognition memory.


Asunto(s)
Región CA1 Hipocampal , Interneuronas , Reconocimiento en Psicología , Péptido Intestinal Vasoactivo , Animales , Interneuronas/metabolismo , Interneuronas/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/citología , Ratones , Masculino , Reconocimiento en Psicología/fisiología , Células Piramidales/metabolismo , Células Piramidales/fisiología , Ratones Endogámicos C57BL , Memoria/fisiología , Parvalbúminas/metabolismo , Conducta Exploratoria/fisiología , Somatostatina/metabolismo
17.
Dis Model Mech ; 17(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616770

RESUMEN

Dystonia is thought to arise from abnormalities in the motor loop of the basal ganglia; however, there is an ongoing debate regarding cerebellar involvement. We adopted an established cerebellar dystonia mouse model by injecting ouabain to examine the contribution of the cerebellum. Initially, we examined whether the entopeduncular nucleus (EPN), substantia nigra pars reticulata (SNr), globus pallidus externus (GPe) and striatal neurons were activated in the model. Next, we examined whether administration of a dopamine D1 receptor agonist and dopamine D2 receptor antagonist or selective ablation of striatal parvalbumin (PV, encoded by Pvalb)-expressing interneurons could modulate the involuntary movements of the mice. The cerebellar dystonia mice had a higher number of cells positive for c-fos (encoded by Fos) in the EPN, SNr and GPe, as well as a higher positive ratio of c-fos in striatal PV interneurons, than those in control mice. Furthermore, systemic administration of combined D1 receptor agonist and D2 receptor antagonist and selective ablation of striatal PV interneurons relieved the involuntary movements of the mice. Abnormalities in the motor loop of the basal ganglia could be crucially involved in cerebellar dystonia, and modulating PV interneurons might provide a novel treatment strategy.


Asunto(s)
Cuerpo Estriado , Modelos Animales de Enfermedad , Distonía , Interneuronas , Parvalbúminas , Proteínas Proto-Oncogénicas c-fos , Receptores de Dopamina D2 , Animales , Interneuronas/metabolismo , Interneuronas/efectos de los fármacos , Parvalbúminas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Distonía/patología , Distonía/metabolismo , Distonía/fisiopatología , Cuerpo Estriado/patología , Cuerpo Estriado/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D1/metabolismo , Cerebelo/patología , Cerebelo/metabolismo , Ouabaína/farmacología , Ratones Endogámicos C57BL , Ratones , Masculino
18.
ACS Chem Neurosci ; 15(9): 1738-1754, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38613458

RESUMEN

Iboga alkaloids, also known as coronaridine congeners, have shown promise in the treatment of alcohol and opioid use disorders. The objective of this study was to evaluate the effects of catharanthine and 18-methoxycoronaridine (18-MC) on dopamine (DA) transmission and cholinergic interneurons in the mesolimbic DA system, nicotine-induced locomotor activity, and nicotine-taking behavior. Utilizing ex vivo fast-scan cyclic voltammetry (FSCV) in the nucleus accumbens core of male mice, we found that catharanthine or 18-MC differentially inhibited evoked DA release. Catharanthine inhibition of evoked DA release was significantly reduced by both α4 and α6 nicotinic acetylcholine receptors (nAChRs) antagonists. Additionally, catharanthine substantially increased DA release more than vehicle during high-frequency stimulation, although less potently than an α4 nAChR antagonist, which confirms previous work with nAChR antagonists. Interestingly, while catharanthine slowed DA reuptake measured via FSCV ex vivo, it also increased extracellular DA in striatal dialysate from anesthetized mice in vivo in a dose-dependent manner. Superfusion of catharanthine or 18-MC inhibited the firing rate of striatal cholinergic interneurons in a concentration dependent manner, which are known to potently modulate presynaptic DA release. Catharanthine or 18-MC suppressed acetylcholine currents in oocytes expressing recombinant rat α6/α3ß2ß3 or α6/α3ß4 nAChRs. In behavioral experiments using male Sprague-Dawley rats, systemic administration of catharanthine or 18-MC blocked nicotine enhancement of locomotor activity. Importantly, catharanthine attenuated nicotine self-administration in a dose-dependent manner while having no effect on food reinforcement. Lastly, administration of catharanthine and nicotine together greatly increased head twitch responses, indicating a potential synergistic hallucinogenic effect. These findings demonstrate that catharanthine and 18-MC have similar, but not identical effects on striatal DA dynamics, striatal cholinergic interneuron activity and nicotine psychomotor effects.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Dopamina , Ibogaína , Ibogaína/análogos & derivados , Nicotina , Receptores Nicotínicos , Animales , Dopamina/metabolismo , Masculino , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Nicotina/farmacología , Ibogaína/farmacología , Ratones , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Ratones Endogámicos C57BL , Antagonistas Nicotínicos/farmacología , Oocitos/efectos de los fármacos , Agonistas Nicotínicos/farmacología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Autoadministración , Xenopus laevis , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Relación Dosis-Respuesta a Droga , Actividad Motora/efectos de los fármacos
19.
Biochem Pharmacol ; 222: 116053, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38354958

RESUMEN

Cancer-induced bone pain (CIBP) stands out as one of the most challenging issues in clinical practice due to its intricate and not fully elucidated pathophysiological mechanisms. Existing evidence has pointed toward the significance of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) down-regulation in contributing to pain behaviors in various rodent models of neuropathic pain. In our current study, we aimed to investigate the role of PGC-1α in CIBP. Our results unveiled a reduction in PGC-1α expression within the spinal cord of CIBP rats, particularly in GABAergic interneurons. Notably, intrathecal administration of the PGC-1α activator ZLN005 suppressed the loss of spinal GABAergic interneurons. This suppression was achieved by inhibiting caspase-3-mediated apoptosis, ultimately leading to the alleviation of mechanical allodynia in CIBP rats. Further exploration into the mechanism revealed that PGC-1α activation played a pivotal role in mitigating ATP depletion and reactive oxygen species accumulation linked to mitochondrial dysfunction. This was achieved through the restoration of mitochondrial biogenesis and the activation of the SIRT3-SOD2 pathway. Impressively, the observed effects were prominently reversed upon the application of SR18292, a specific PGC-1α inhibitor. In conclusion, our findings strongly suggest that PGC-1α activation acts as a potent inhibitor of apoptosis in spinal GABAergic interneurons. This inhibition is mediated by the improvement of mitochondrial function, facilitated in part through the enhancement of mitochondrial biogenesis and the activation of the SIRT3-SOD2 pathway. The results of our study shed light on potential therapeutic avenues for addressing CIBP.


Asunto(s)
Neoplasias , Sirtuina 3 , Ratas , Animales , Sirtuina 3/metabolismo , Apoptosis , Interneuronas/metabolismo , Dolor/tratamiento farmacológico , Dolor/etiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
20.
Mol Neurobiol ; 61(9): 6968-6983, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38363536

RESUMEN

The pathogenesis of schizophrenia begins in early neurodevelopment and leads to excitatory-inhibitory imbalance. It is therefore essential that preclinical models used to understand disease, select drug targets and evaluate novel therapeutics encompass similar neurochemical deficits. One approach to improved preclinical modelling incorporates dual-hit neurodevelopmental insults, like neonatal administration of phencyclidine (PCP, to disrupt development of glutamatergic circuitry) then post-weaning isolation (Iso, to mimic adolescent social stress). We recently showed that male Lister-hooded rats exposed to PCP-Iso exhibit reduced hippocampal expression of the GABA interneuron marker calbindin. The current study expanded on this by investigating changes to additional populations of GABAergic interneurons in frontal cortical and hippocampal tissue from the same animals (by immunohistochemistry) as well as levels of GABA itself (via ELISA). Because inflammatory changes are also implicated in schizophrenia, we performed additional immunohistochemical evaluations of Iba-1 positive microglia as well as ELISA analysis of IL-6 in the same brain regions. Single-hit isolation-reared and dual-hit PCP-Iso rats both showed reduced parvalbumin immunoreactivity in the prelimbic/infralimbic region of the frontal cortex. However, this was more widespread in PCP-Iso, extending to the medial/ventral and lateral/dorsolateral orbitofrontal cortices. Loss of GABAergic markers was accompanied by increased microglial activation in the medial/ventral orbitofrontal cortices of PCP-Iso, together with frontal cortical IL-6 elevations not seen following single-hit isolation rearing. These findings enhance the face validity of PCP-Iso, and we advocate the use of this preclinical model for future evaluation of novel therapeutics-especially those designed to normalise excitatory-inhibitory imbalance or reduce neuroinflammation.


Asunto(s)
Animales Recién Nacidos , Modelos Animales de Enfermedad , Lóbulo Frontal , Fenciclidina , Esquizofrenia , Aislamiento Social , Ácido gamma-Aminobutírico , Animales , Esquizofrenia/metabolismo , Esquizofrenia/patología , Esquizofrenia/inducido químicamente , Masculino , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Lóbulo Frontal/efectos de los fármacos , Ratas , Fenciclidina/toxicidad , Ácido gamma-Aminobutírico/metabolismo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Parvalbúminas/metabolismo , Microglía/metabolismo , Microglía/patología , Microglía/efectos de los fármacos , Inflamación/patología , Inflamación/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Interleucina-6/metabolismo , Interneuronas/metabolismo , Interneuronas/patología , Proteínas de Unión al Calcio/metabolismo , Proteínas de Microfilamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA