Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 631
Filtrar
1.
Carbohydr Polym ; 339: 122174, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823938

RESUMEN

Segmental bone defects can arise from trauma, infection, metabolic bone disorders, or tumor removal. Hydrogels have gained attention in the field of bone regeneration due to their unique hydrophilic properties and the ability to customize their physical and chemical characteristics to serve as scaffolds and carriers for growth factors. However, the limited mechanical strength of hydrogels and the rapid release of active substances have hindered their clinical utility and therapeutic effectiveness. With ongoing advancements in material science, the development of injectable and biofunctionalized hydrogels holds great promise for addressing the challenges associated with segmental bone defects. In this study, we incorporated lyophilized platelet-rich fibrin (LPRF), which contains a multitude of growth factors, into a genipin-crosslinked gelatin/hyaluronic acid (GLT/HA-0.5 % GP) hydrogel to create an injectable and biofunctionalized composite material. Our findings demonstrate that this biofunctionalized hydrogel possesses optimal attributes for bone tissue engineering. Furthermore, results obtained from rabbit model with segmental tibial bone defects, indicate that the treatment with this biofunctionalized hydrogel resulted in increased new bone formation, as confirmed by imaging and histological analysis. From a translational perspective, this biofunctionalized hydrogel provides innovative and bioinspired capabilities that have the potential to enhance bone repair and regeneration in future clinical applications.


Asunto(s)
Regeneración Ósea , Liofilización , Gelatina , Ácido Hialurónico , Hidrogeles , Iridoides , Fibrina Rica en Plaquetas , Animales , Iridoides/química , Iridoides/farmacología , Gelatina/química , Conejos , Hidrogeles/química , Hidrogeles/farmacología , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Regeneración Ósea/efectos de los fármacos , Fibrina Rica en Plaquetas/química , Ingeniería de Tejidos/métodos , Reactivos de Enlaces Cruzados/química , Andamios del Tejido/química , Tibia/efectos de los fármacos , Tibia/cirugía
2.
Invest Ophthalmol Vis Sci ; 65(5): 24, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38748430

RESUMEN

Purpose: Hydrogels derived from decellularized tissues are promising biomaterials in tissue engineering, but their rapid biodegradation can hinder in vitro cultivation. This study aimed to retard biodegradation of a hydrogel derived from porcine decellularized lacrimal glands (dLG-HG) by crosslinking with genipin to increase the mechanical stability without affecting the function and viability of lacrimal gland (LG)-associated cells. Methods: The effect of different genipin concentrations on dLG-HG stiffness was measured rheologically. Cell-dependent biodegradation was quantified over 10 days, and the impact on matrix metalloproteinase (MMP) activity was quantified by gelatin and collagen zymography. The viability of LG epithelial cells (EpCs), mesenchymal stem cells (MSCs), and endothelial cells (ECs) cultured on genipin-crosslinked dLG-HG was assessed after 10 days, and EpC secretory activity was analyzed by ß-hexosaminidase assay. Results: The 0.5-mM genipin increased the stiffness of dLG-HG by about 46%, and concentrations > 0.25 mM caused delayed cell-dependent biodegradation and reduced MMP activity. The viability of EpCs, MSCs, and ECs was not affected by genipin concentrations of up to 0.5 mM after 10 days. Moreover, up to 0.5-mM genipin did not negatively affect EpC secretory activity compared to control groups. Conclusions: A concentration of 0.5-mM genipin increased dLG-HG stiffness, and 0.25-mM genipin was sufficient to prevent MMP-dependent degradation. Importantly, concentrations of up to 0.5-mM genipin did not compromise the viability of LG-associated cells or the secretory activity of EpCs. Thus, crosslinking with genipin improves the properties of dLG-HG for use as a substrate in LG tissue engineering.


Asunto(s)
Supervivencia Celular , Reactivos de Enlaces Cruzados , Hidrogeles , Iridoides , Ingeniería de Tejidos , Animales , Iridoides/farmacología , Iridoides/metabolismo , Porcinos , Ingeniería de Tejidos/métodos , Reactivos de Enlaces Cruzados/farmacología , Células Cultivadas , Células Madre Mesenquimatosas/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Materiales Biocompatibles
3.
Phytochemistry ; 223: 114144, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754799

RESUMEN

Nine previously undescribed iridoids, ptehosides A-I (1-9), together with 12 known ones (10-21), were isolated from Pterocephalus hookeri (C.B. Clarke) Höeck. Their structures were elucidated using various spectroscopic methods including HR-ESI-MS, NMR, UV, IR and CD, etc. The cytotoxic activities of all isolates were evaluated using MTT method in three human cancer cell lines (Caco2, Huh-7, and SW982). As result, compound 9 exhibited substantial inhibitory activity on Caco2, Huh-7, and SW982 cells with IC50 values of 1.17 ± 0.05, 1.15 ± 0.05 and 1.14 ± 0.04 µM, respectively. A preliminary mechanism study showed that 9 arrested the cell cycle of SW982 cells in the G0/G1 phase and induced apoptosis by upregulating Bax expression and downregulating Bcl-2 expression.


Asunto(s)
Antineoplásicos Fitogénicos , Apoptosis , Ensayos de Selección de Medicamentos Antitumorales , Iridoides , Humanos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Iridoides/química , Iridoides/farmacología , Iridoides/aislamiento & purificación , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
4.
Bioorg Chem ; 148: 107460, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781668

RESUMEN

A series of genipin derivatives were designed and synthesized as potential inhibitors targeted KRAS G12D mutation. The majority of these compounds demonstrated potential antiproliferative effects against KRAS G12D mutant tumor cells (CT26 and A427). Notably, seven compounds exhibited the anticancer effects with IC50 values ranging from 7.06 to 9.21 µM in CT26 (KRASG12D) and A427 (KRASG12D) cells and effectively suppressed the colony formation of CT26 cells. One representative compound SK12 was selected for further investigation into biological activity and action mechanisms. SK12 markedly induced apoptosis in CT26 cells in a concentration-dependent manner. Moreover, SK12 elevated the levels of reactive oxygen species (ROS) in tumor cells and exhibited a modulatory effect on the KRAS signaling pathway, thereby inhibiting the activation of downstream phosphorylated proteins. The binding affinity of SK12 to KRAS G12D protein was further confirmed by the surface plasmon resonance (SPR) assay with a binding KD of 157 µM. SK12 also exhibited notable anticancer efficacy in a nude mice tumor model. The relative tumor proliferation rate (T/C) of the experimental group (50 mg/kg) was 31.04 % (P < 0.05), while maintaining a commendable safety profile.


Asunto(s)
Antineoplásicos , Proliferación Celular , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Iridoides , Ratones Desnudos , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Iridoides/farmacología , Iridoides/química , Animales , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Ratones , Estructura Molecular , Apoptosis/efectos de los fármacos , Descubrimiento de Drogas , Línea Celular Tumoral , Mutación , Ratones Endogámicos BALB C , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Neoplasias Experimentales/metabolismo
5.
PLoS One ; 19(4): e0301086, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38662719

RESUMEN

There is still a great global need for efficient treatments for the management of SARS-CoV-2 illness notwithstanding the availability and efficacy of COVID-19 vaccinations. Olive leaf is an herbal remedy with a potential antiviral activity that could improve the recovery of COVID-19 patients. In this work, the olive leaves major metabolites were screened in silico for their activity against SARS-CoV-2 by molecular docking on several viral targets such as methyl transferase, helicase, Plpro, Mpro, and RdRp. The results of in silico docking study showed that olive leaves phytoconstituents exhibited strong potential antiviral activity against SARS-CoV-2 selected targets. Verbacoside demonstrated a strong inhibition against methyl transferase, helicase, Plpro, Mpro, and RdRp (docking scores = -17.2, -20, -18.2, -19.8, and -21.7 kcal/mol.) respectively. Oleuropein inhibited 5rmm, Mpro, and RdRp (docking scores = -15, -16.6 and -18.6 kcal/mol., respectively) respectively. Apigenin-7-O-glucoside exhibited activity against methyl transferase and RdRp (docking score = -16.1 and -19.4 kcal/mol., respectively) while Luteolin-7-O-glucoside inhibited Plpro and RdRp (docking score = -15.2 and -20 kcal/mol., respectively). The in vitro antiviral assay was carried out on standardized olive leaf extract (SOLE) containing 20% oleuropein and IC50 was calculated. The results revealed that 20% SOLE demonstrated a moderate antiviral activity against SARS-CoV-2 with IC50 of 118.3 µg /mL. Accordingly, olive leaf could be a potential herbal therapy against SARS-CoV-2 but more in vivo and clinical investigations are recommended.


Asunto(s)
Antivirales , Iridoides , Simulación del Acoplamiento Molecular , Olea , Extractos Vegetales , Hojas de la Planta , Polifenoles , SARS-CoV-2 , Olea/química , Antivirales/farmacología , Antivirales/química , SARS-CoV-2/efectos de los fármacos , Hojas de la Planta/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Iridoides/farmacología , Iridoides/química , Humanos , Glucósidos Iridoides/farmacología , Glucósidos Iridoides/química , Glucósidos/farmacología , Glucósidos/química , Metiltransferasas/metabolismo , Metiltransferasas/antagonistas & inhibidores , COVID-19/virología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , Simulación por Computador , Tratamiento Farmacológico de COVID-19 , Luteolina/farmacología , Luteolina/química , ARN Helicasas/metabolismo , ARN Helicasas/antagonistas & inhibidores , Apigenina/farmacología , Apigenina/química
6.
Anticancer Agents Med Chem ; 24(3): 224-234, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629155

RESUMEN

BACKGROUND: The side effects of conventional therapeutics pose a problem for cancer treatment. Recently, combination treatments with natural compounds have attracted attention regarding limiting the side effects of treatment. Oleuropein is a natural polyphenol in olives that has antioxidant and anticancer effects. OBJECTIVES: This study aimed to investigate the oxidative stress effect of a combination of Paclitaxel, a chemotherapeutic agent, and Oleuropein in the MCF-7 cell line. METHODS: The xCELLigence RTCA method was used to determine the cytotoxic effects of Oleuropein and Paclitaxel in the MCF-7 cell line. The Total Oxidant and Total Antioxidant Status were analyzed using a kit. The Oxidative Stress Index was calculated by measuring Total Oxidant and Total Antioxidant states. The levels of superoxide dismutase, reduced glutathione and malondialdehyde, which are oxidative stress markers, were also measured by ELISA assay kit. RESULTS: As a result of the measurement, IC50 doses of Oleuropein and Paclitaxel were determined as 230 µM and 7.5 µM, respectively. Different percentages of combination ratios were generated from the obtained IC50 values. The effect of oxidative stress was investigated at the combination rates of 10%, 20%, 30%, and 40% which were determined to be synergistic. In terms of the combined use of Oleuropein and Paclitaxel on oxidative stress, antioxidant defense increased, and Oxidative Stress Index levels decreased. CONCLUSION: These findings demonstrate that the doses administered to the Oleuropein+Paclitaxel combination group were lower than those administered to groups using one agent alone (e.g. Paclitaxel), the results of which reduce the possibility of administering toxic doses.


Asunto(s)
Neoplasias de la Mama , Glucósidos Iridoides , Paclitaxel , Humanos , Femenino , Paclitaxel/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Células MCF-7 , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Iridoides/farmacología , Estrés Oxidativo , Oxidantes/farmacología , Oxidantes/uso terapéutico
7.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38674064

RESUMEN

Olive leaf contains plenty of phenolic compounds, among which oleuropein (OP) is the main component and belongs to the group of secoiridoids. Additionally, phenolic compounds such as oleocanthal (OL) and oleacein (OC), which share a structural similarity with OP and two aldehyde groups, are also present in olive leaves. These compounds have been studied for several health benefits, such as anti-cancer and antioxidant effects. However, their impact on the skin remains unknown. Therefore, this study aims to compare the effects of these three compounds on melanogenesis using B16F10 cells and human epidermal cells. Thousands of gene expressions were measured by global gene expression profiling with B16F10 cells. We found that glutaraldehyde compounds derived from olive leaves have a potential effect on the activation of the melanogenesis pathway and inducing differentiation in B16F10 cells. Accordingly, the pro-melanogenesis effect was investigated by means of melanin quantification, mRNA, and protein expression using human epidermal melanocytes (HEM). This study suggests that secoiridoid and its derivates have an impact on skin protection by promoting melanin production in both human and mouse cell lines.


Asunto(s)
Glucósidos Iridoides , Melaninas , Melanocitos , Olea , Fenoles , Humanos , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Olea/química , Animales , Melaninas/biosíntesis , Melaninas/metabolismo , Ratones , Fenoles/farmacología , Glucósidos Iridoides/farmacología , Iridoides/farmacología , Aldehídos/farmacología , Diferenciación Celular/efectos de los fármacos , Monoterpenos Ciclopentánicos , Células Epidérmicas/metabolismo , Células Epidérmicas/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Epidermis/metabolismo , Epidermis/efectos de los fármacos , Línea Celular Tumoral , Hojas de la Planta/química , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Melanogénesis
8.
Int Immunopharmacol ; 133: 112082, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38652958

RESUMEN

Psoriasis is an incurable immune-mediated disease affecting the skin or the joints. There are continuing studies on drugs for psoriasis prevention and treatment. This research found that Geniposide (GE) significantly thinned IMQ mice's skin lesions, reduced the scales, and lowered the presence of inflammatory cells in the pathology in a dose-dependent manner. GE inhibited IL-23, IL-22, IL-17A, IL-12, IL-6, and TNF-α levels in psoriatic mice serum. AKT1, TNF, TLR4, MMP9, MAPK3, and EGFR were selected as the top 6 targets of GE against psoriasis via network pharmacology, and GE-TLR4 has the most robust docking score value by molecular docking. Taken together, GE significantly inhibited TLR4 and MMP9 protein expression and influenced MyD88/NF-κB p65 signaling pathway. Finally, TLR4 was verified as the critical target of GE, which engaged in immunomodulatory activities and reduced MMP9 production in LPS and TAK-242-induced HaCaT cells. GE had a medium affinity for TLR4, and the KD value was 1.06 × 10-5 M. GE is an effective treatment and preventative strategy for psoriasis since it impacts TLR4.


Asunto(s)
Iridoides , Metaloproteinasa 9 de la Matriz , Factor 88 de Diferenciación Mieloide , Psoriasis , Transducción de Señal , Receptor Toll-Like 4 , Receptor Toll-Like 4/metabolismo , Animales , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Humanos , Psoriasis/tratamiento farmacológico , Psoriasis/inmunología , Iridoides/farmacología , Iridoides/uso terapéutico , Ratones , Factor de Transcripción ReIA/metabolismo , Piel/efectos de los fármacos , Piel/patología , Piel/inmunología , Piel/metabolismo , Citocinas/metabolismo , Masculino , Simulación del Acoplamiento Molecular , Modelos Animales de Enfermedad , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Células HaCaT , Imiquimod , Línea Celular
9.
Int Immunopharmacol ; 132: 111923, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38565041

RESUMEN

In this study, we aimed to evaluate the protective effect of geniposide (GEN) on imiquimod (IMQ)-induced psoriasis-like skin lesions in mice. Firstly, visual changes of psoriatic skin lesions were observed and the severity was recorded using psoriasis area and severity index (PASI) score. Histological changes were assessed by HE staining for epidermal thickness and Masson's staining for collagen fibers. Then, photographs of microvascular inside the skin were taken for macroscopic observation, and microscopic changes associated with angiogenesis were evaluated. Furthermore, expression of angiogenic factors were analyzed by ELISA, immunohistochemistry and immunofluorescence, separately. Lastly, the expression of VEGFR signaling-related proteins was detected by WB. Compared with control, IMQ drove a significant increment of epidermal thicknesses with higher PASI scores and more dermal collagen deposition. IMQ treatment led to abnormal keratinocyte proliferation, increased microvascular inside skin, growing production of angiogenesis-related factors, up-regulated expression of VEGFR1 and VEGFR2, and enhanced phosphorylation of p38. However, GEN significantly ameliorated the psoriatic skin lesions, the epidermal thickness, the formation of collagen fibers, and abnormal keratinocyte proliferation. Importantly, GEN inhibited angiogenesis, the production of angiogenic factors (VEGF-A, Ang-2, TNF-α, and IL-17A), and the proliferation of vascular endothelial cells. Simultaneously, GEN curbed the expression of VEGFR1, VEGFR2, p38, and P-p38 proteins involved in VEGFR signaling. Of note, the suppressive effect of GEN was reversed in the HUVECs with over-expressed VEGFR1 or VEGFR2 related to the cells without transfection. These findings suggest that VEGFR1 and VEGFR2 participate in the anti-angiogenesis of GEN in IMQ-induced psoriasis-like skin lesions in mice.


Asunto(s)
Imiquimod , Iridoides , Neovascularización Patológica , Psoriasis , Piel , Animales , Masculino , Ratones , Angiogénesis , Inhibidores de la Angiogénesis/uso terapéutico , Inhibidores de la Angiogénesis/farmacología , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Imiquimod/toxicidad , Iridoides/farmacología , Iridoides/uso terapéutico , Queratinocitos/efectos de los fármacos , Ratones Endogámicos BALB C , Neovascularización Patológica/tratamiento farmacológico , Psoriasis/tratamiento farmacológico , Psoriasis/inducido químicamente , Psoriasis/patología , Piel/patología , Piel/efectos de los fármacos , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
10.
Phytomedicine ; 129: 155617, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38614041

RESUMEN

BACKGROUND: Atherosclerosis (AS) is the leading cause of global death, which manifests as arterial lipid stack and plaque formation. Geniposide is an iridoid glycoside extract from Gardenia jasminoides J.Ellis that ameliorates AS by mediating autophagy. However, how Geniposide regulates autophagy and treats AS remains unclear. PURPOSE: To evaluate the efficacy and mechanism of Geniposide in treating AS. STUDY DESIGN AND METHODS: Geniposide was administered to high-fat diet-fed ApoE-/- mice and oxidized low-density lipoprotein-incubated primary vascular smooth muscle cells (VSMCs). AS was evaluated with arterial lipid stack, plaque progression, and collagen loss in the artery. Foam cell formation was detected by lipid accumulation, inflammation, apoptosis, and the expression of foam cell markers. The mechanism of Geniposide in treating AS was assessed using network pharmacology. Lipophagy was measured by lysosomal activity, expression of lipophagy markers, and the co-localization of lipids and lipophagy markers. The effects of lipophagy were blocked using Chloroquine. The role of PARP1 was assessed by Olaparib (a PARP1 inhibitor) intervention and PARP1 overexpression. RESULTS: In vivo, Geniposide reversed high-fat diet-induced hyperlipidemia, plaque progression, and inflammation. In vitro, Geniposide inhibited VSMC-derived foam cell formation by suppressing lipid stack, apoptosis, and the expressions of foam cell markers. Network pharmacological analysis and in vitro validation suggested that Geniposide treated AS by enhancing lipophagy via suppressing the PI3K/AKT signaling pathway. The benefits of Geniposide in alleviating AS were offset by Chloroquine in vivo and in vitro. Inhibiting PARP1 using Olaparib promoted lipophagy and alleviated AS progression, while PARP1 overexpression exacerbated foam cell formation and lipophagy blockage. The above effects of PARP1 were weakened by PI3K inhibitor LY294002. PARP1 also inhibited the combination of the ABCG1 and PLIN1. CONCLUSION: Geniposide alleviated AS by restoring PARP1/PI3K/AKT signaling pathway-suppressed lipophagy. This study is the first to present the lipophagy-inducing effect of Geniposide and the binding of ABCG1 and PLIN1 inhibited by PARP1.


Asunto(s)
Aterosclerosis , Dieta Alta en Grasa , Iridoides , Fosfatidilinositol 3-Quinasas , Poli(ADP-Ribosa) Polimerasa-1 , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Iridoides/farmacología , Aterosclerosis/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Autofagia/efectos de los fármacos , Gardenia/química , Músculo Liso Vascular/efectos de los fármacos , Ratones Endogámicos C57BL , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Farmacología en Red , Lipoproteínas LDL
11.
Phytomedicine ; 129: 155596, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38626646

RESUMEN

BACKGROUND: Traditional Chinese medicine (TCM) is useful in disease treatment and prevention. Genipin is an active TCM compound used to treat diabetic retinopathy (DR). In this study, a network pharmacology (NP)-based approach was employed to investigate the therapeutic mechanisms underlying genipin administration in DR. METHODS: The potential targets of DR were identified using the gene expression omnibus (GEO) database. TCM database screening and NP were used to predict the potential active targets and pathways of genipin in DR. Cell viability was tested in vitro to determine the effects of different doses of glucose and genipin on Human Retinal Microvascular Endothelial Cells (hRMECs). CCK-8, CCK-F, colony formation, CellTiter-Lum, Annexin V-FITC, wound healing, Transwell, tube-forming, reactive oxygen species (ROS), and other assay kits were used to detect the effects of genipin on hRMECs during high levels of glucose. In vivo, a streptozotocin (STZ)-mouse intraocular genipin injection (IOI.) model was used to explore the effects of genipin on diabetes-induced retinal dysfunction. Western blotting was performed to identify the cytokines involved in proliferation, apoptosis, angiogenesis, ROS, and inflammation. The protein expression of the AKT/ PI3K/ HIF-1α and AGEs/ RAGE pathways was also examined. RESULTS: Approximately 14 types of TCM, and nearly 300 active ingredients, including genipin, were identified. The NP approach successfully identified the HIF-1α and AGEs-RAGE pathways, with the EGR1 and UCP2 genes, as key targets of genipin in DR. In the in vitro and in vivo models, we discovered that high glucose increased cell proliferation, apoptosis, angiogenesis, ROS, and inflammation. However, genipin application regulated cell proliferation and apoptosis, inhibited angiogenesis, and reduced ROS and inflammation in the HRMECs exposed to high glucose. Furthermore, the retinal thickness in the genipin-treated group was lower than that in the untreated group. AKT/ PI3K/ HIF-1α and AGEs/ RAGE signaling was increased by high glucose levels; however, genipin treatment decreased AKT/ PI3K and AGEs/ RAGE pathway expressions. Genipin also increased HIF-1α phosphorylation, oxidative phosphorylation of ATP synthesis, lipid peroxidation, and the upregulation of oxidoreductase. Genipin was found to protect HG-induced hRMECs and the retina of STZ-mice, based on; 1 the inhibition of UCP2 and Glut1 decreased intracellular glucose, and glycosylation; 2 the increased presence of HIF-1α, which increased oxidative phosphorylation and decreased substrate phosphorylation; 3 the increase in oxidative phosphorylation from ATP synthesis increased lipid peroxidation and oxidoreductase activity, and; 4 the parallel effect of phosphorylation and glycosylation on vascular endothelial growth factor (VEGF), MMP9, and Scg3. CONCLUSION: Based on NP, we demonstrated the potential targets and pathways of genipin in the treatment of DR and confirmed its effective molecular mechanism in vitro and in vivo. Genipin protects cells and tissues from high glucose levels by regulating phosphorylation and glycosylation. The activation of the HIF-1α pathway can also be used to treat DR. Our study provides new insights into the key genes and pathways associated with the prognosis and pathogenesis of DR.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Células Endoteliales , Productos Finales de Glicación Avanzada , Subunidad alfa del Factor 1 Inducible por Hipoxia , Iridoides , Ratones Endogámicos C57BL , Transducción de Señal , Retinopatía Diabética/tratamiento farmacológico , Animales , Iridoides/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Masculino , Ratones , Células Endoteliales/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Retina/efectos de los fármacos , Apoptosis/efectos de los fármacos , Glucosa/metabolismo
12.
Int Immunopharmacol ; 131: 111820, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38508092

RESUMEN

Exogenous hydrogen peroxide (H2O2) may generate excessive oxidative stress, inducing renal cell apoptosis related with kidney dysfunction. Geniposide (GP) belongs to the iridoid compound with anti-inflammatory, antioxidant and anti-apoptotic effects. This study aimed to observe the intervention effect of GP on H2O2-induced apoptosis in human kidney-2 (HK-2) cells and to explore its potential mechanism in relation to N6-methyladenosine (m6A) RNA methylation. Cell viability, apotosis rate and cell cycle were tested separately after different treatments. The mRNA and protein levels of m6A related enzymes and phosphoinositide 3-kinase (PI3K)/a serine/threonine-specific protein kinase 3 (AKT3)/forkhead boxo 1 (FOXO1) and superoxide dismutase 2 (SOD2) were detected by reverse transcription-quantitative real-time PCR (RT-qPCR) and Western blot. The whole m6A methyltransferase activity and the m6A content were measured by ELISA-like colorimetric methods. The changes of m6A methylation levels of PI3K/AKT3/FOXO1 and SOD2 were determined by methylated RNA immunoprecipitation (MeRIP)-qPCR. Multiple comparisons were performed by ANOVA with Turkey's post hoc test. Exposed to 400 µmol/L H2O2, cells were arrested in G1 phase and the apoptosis rate increased, which were significantly alleviated by GP. Compared with the H2O2 apoptosis group, both the whole m6A RNA methyltransferase activity and the m6A contents were increased due to GP intervention. Besides, the SOD2 protein was increased, while PI3K and FOXO1 decreased. The m6A methylation level of AKT3 was negatively correlated with its protein level. Taken together, GP affects the global m6A methylation microenvironment and regulates the expression of PI3K/AKT3/FOXO1 signaling pathway via m6A modification, alleviating cell cycle arrest and apoptosis caused by oxidative stress in HK-2 cells with a good application prospect.


Asunto(s)
Adenina , Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Humanos , Peróxido de Hidrógeno , Riñón , Iridoides/farmacología , Apoptosis , Estrés Oxidativo , ARN , Metiltransferasas , Proteína Forkhead Box O1 , Proteínas Proto-Oncogénicas c-akt
13.
Biomed Pharmacother ; 174: 116449, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518607

RESUMEN

Traumatic nerve injuries are nowadays a significant clinical challenge and new substitutes with adequate biological and mechanical properties are in need. In this context, fibrin-agarose hydrogels (FA) have shown the possibility to generate tubular scaffolds with promising results for nerve repair. However, to be clinically viable, these scaffolds need to possess enhanced mechanical properties. In this line, genipin (GP) crosslinking has demonstrated to improve biomechanical properties with good biological properties compared to other crosslinkers. In this study, we evaluated the impact of different GP concentrations (0.05, 0.1 and 0.2% (m/v)) and reaction times (6, 12, 24, 72 h) on bioartificial nerve substitutes (BNS) consisting of nanostructured FA scaffolds. First, crosslinked BNS were studied histologically, ultrastructurally and biomechanically and then, its biocompatibility and immunomodulatory effects were ex vivo assessed with a macrophage cell line. Results showed that GP was able to improve the biomechanical resistance of BNS, which were dependent on both the GP treatment time and concentration without altering the structure. Moreover, biocompatibility analyses on macrophages confirmed high cell viability and a minimal reduction of their metabolic activity by WST-1. In addition, GP-crosslinked BNS effectively directed macrophage polarization from a pro-inflammatory (M1) towards a pro-regenerative (M2) phenotype, which was in line with the cytokines release profile. In conclusion, this study considers time and dose-dependent effects of GP in FA substitutes which exhibited increased biomechanical properties while reducing immunogenicity and promoting pro-regenerative macrophage shift. These tubular substitutes could be useful for nerve application or even other tissue engineering applications such as urethra.


Asunto(s)
Reactivos de Enlaces Cruzados , Iridoides , Macrófagos , Andamios del Tejido , Iridoides/farmacología , Animales , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Andamios del Tejido/química , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/farmacología , Ratones , Hidrogeles/química , Hidrogeles/farmacología , Fenómenos Biomecánicos , Supervivencia Celular/efectos de los fármacos , Fibrina/metabolismo , Sefarosa/química , Sefarosa/farmacología , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Células RAW 264.7
14.
Chem Biodivers ; 21(4): e202400188, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38372184

RESUMEN

Two rare 5/5/5/6 four-ring system iridoids, allamancins A and B (1 and 2) together with one known biogenetically related iridoid derivative, 3-O-methyallamancin (3) were isolated from the flowers of Plumeria alba L. The structures of these iridoid derivatives were determined by comprehensive spectroscopic analyses. The absolute configuration of 1 was confirmed by X-ray crystallographic analysis. The inhibitory activities of compounds 1-3 against nitric oxide (NO) production induced and three cancer cell lines were evaluated in vitro. Compounds 1 and 3 showed inhibitory activities on NO production with IC50 values of 18.3±0.12 and 22.1±0.14 µM, respectively. Compounds 1-3 showed moderate inhibitory activities against cancer cell lines of A549, Hela and MCF-7.


Asunto(s)
Apocynaceae , Iridoides , Humanos , Iridoides/farmacología , Iridoides/química , Células HeLa , Apocynaceae/química , Óxido Nítrico/metabolismo , Cristalografía por Rayos X , Estructura Molecular
15.
Pharmacol Ther ; 254: 108595, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38301769

RESUMEN

Over the years, health challenges have become increasingly complex and global and, at the beginning of the 21st century, chronic diseases, including cardiovascular, neurological, and chronic respiratory diseases, as well as cancer and diabetes, have been identified by World Health Organization as one of the biggest threats to human health. Recently, antimicrobial resistance has also emerged as a growing problem of public health for the management of infectious diseases. In this scenario, the exploration of natural products as supplementation or alternative therapeutic options is acquiring great importance, and, among them, the olive tree, Olea europaea L, specifically leaves, fruits, and oil, has been increasingly investigated for its health promoting properties. Traditionally, these properties have been largely attributed to the high concentration of monounsaturated fatty acids, although, in recent years, beneficial effects have also been associated to other components, particularly polyphenols. Among them, the most interesting group is represented by Olea europaea L secoiridoids, comprising oleuropein, oleocanthal, oleacein, and ligstroside, which display anti-inflammatory, antioxidant, cardioprotective, neuroprotective and anticancer activities. This review provides an overview of the multiple health beneficial effects, the molecular mechanisms, and the potential applications of secoiridoids from Olea europaea L.


Asunto(s)
Neoplasias , Olea , Humanos , Iridoides/farmacología , Iridoides/uso terapéutico , Polifenoles , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Neoplasias/tratamiento farmacológico
16.
J Asian Nat Prod Res ; 26(6): 690-698, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38192122

RESUMEN

Two neolignan glycosides including a new one (1), along with seven iridoid glycosides (3 - 9) and nine flavonoid glycosides (10 - 18), were isolated from the leaves of Vaccinium bracteatum. Their structures were established mainly on the basis of 1D/2D NMR and ESIMS analyses, as well as comparison to known compounds in the literature. The structure of 1 with absolute stereochemistry was also confirmed by chemical degradation and ECD calculation. Selective compounds showed antiradical activity against ABTS and/or DPPH. Moreover, several isolates also suppressed the production of ROS in RAW264.7 cells and exerted neuroprotective effect toward PC12 cells.


Asunto(s)
Flavonoides , Glicósidos , Lignanos , Hojas de la Planta , Hojas de la Planta/química , Flavonoides/química , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Animales , Ratones , Células PC12 , Glicósidos/química , Glicósidos/farmacología , Glicósidos/aislamiento & purificación , Estructura Molecular , Lignanos/química , Lignanos/farmacología , Lignanos/aislamiento & purificación , Ratas , Células RAW 264.7 , Vaccinium/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/aislamiento & purificación , Iridoides/química , Iridoides/farmacología , Iridoides/aislamiento & purificación , Glicósidos Iridoides/química , Glicósidos Iridoides/farmacología , Glicósidos Iridoides/aislamiento & purificación , Especies Reactivas de Oxígeno , Picratos/farmacología
17.
Med Oncol ; 41(2): 46, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175425

RESUMEN

Ferroptosis has been demonstrated to suppress cancer development and is targeted for cancer therapy. Genipin, an iridoid constituent in Gardeniae Fructus, has been reported to exert anti-cancer abilities. However, whether genipin could induce ferroptosis remains unclear. The purpose of this study is to explore the anti-gastric cancer (GC) effects of genipin by inducing ferroptosis and to identify the potential targets. CCK-8 and colony formation assays were performed to evaluate the anti-GC effects of genipin. Flowcytometry and western blot were used to indicate ferroptosis-inducing ability of genipin. The potential targets of genipin were analyzed by network pharmacology, screened using UALCAN and KM-plotter database and evaluated by molecular docking. The results showed that genipin inhibited cell viability and proliferation of GC cells. Genipin treatment decreased levels of GPX4 and SLC7A11, induced accumulation of lipid peroxidation intracellularly and led to ferroptosis in GC cells. Network pharmacology analysis identified that lipid- and ROS-related pathways involved in ferroptosis ranked high among genipin-GC common targets. Data from UALCAN and KM-plotter database demonstrated that expression levels of ferroptosis-related targets, including AURKA, BCAT2, DHODH, and GPI, increased in GC tissues and the higher levels of the above four targets were related to tumor stage, tumor grade, and poor prognosis. Among these four targets, AURKA, BCAT2, and DHODH were confirmed by molecular docking with binding energies less than - 5. Taken together, our study demonstrates that genipin could exert anti-GC ability by inducing ferroptosis and provides evidence for the potential application of genipin in GC treatment.


Asunto(s)
Ferroptosis , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Dihidroorotato Deshidrogenasa , Aurora Quinasa A , Simulación del Acoplamiento Molecular , Farmacología en Red , Iridoides/farmacología , Biología Computacional , Proliferación Celular
18.
Phytochemistry ; 218: 113934, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029951

RESUMEN

Fifty-nine compounds, including nineteen previously undescribed iridoids (valeriananols A-S) and an undescribed alkaloid (5'-isovaleryl uridine), were isolated from the leaves and stems of Valeriana officinalis var. latifolia. Their structures were elucidated based on Mass spectrometry and NMR spectroscopy. The absolute configuration of valeriananols A-C, E-N, P, Q and S was determined by experimental and calculated electronic circular dichroism. Structurally, valeriananols A and B were two 1,3-seco-iridoids with a 3,6-epoxy moiety, valeriananols K and L were a pair of C-4 epimers, while valeriananol S was a 4'-deoxy iridoid glycoside. In addition, valeriananol P, stenopterin A and patriscabioin C exhibited significant inhibition on nitric oxide production with IC50 values of 10.31, 3.93 and 8.69 µM, respectively. Furthermore, stenopterin A and patriscabioin C showed anti-proliferation activity on the MCF-7 cell line with IC50 values of 17.28 and 13.89 µM, respectively.


Asunto(s)
Valeriana , Estructura Molecular , Valeriana/química , Iridoides/farmacología , Iridoides/química , Raíces de Plantas/química , Espectroscopía de Resonancia Magnética
19.
Acta Pharm ; 73(4): 601-616, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38147483

RESUMEN

Olive leaves as a main byproduct of olive oil and fruit industry are a valuable source of phytochemicals such as polyphenols, with multiple biomedical effects. Apart from leaves, olive branches and stems make up a significant amount of olive waste. It is well known that the drying process and long-term storage affect the stability and concentration of polyphenols present in raw materials. For that matter, two different means of storing olive waste, at room temperature and +4 °C, were compared by determining the content of the polyphenol oleuropein (OLE) in olive leaf, branch, and stem extracts (LE, BE, and SE) by HPLC-DAD method. Total phenols (TPC), o-diphenols (o-DPC), and total flavonoids (TFC) content in extracts were assessed by UV-Vis measurements. LE prepared from leaves stored at +4 °C had the highest OLE content, 30.7 mg g-1 of dry extract (DE). SE from stems stored at +4 °C was the richest in TPC and TFC (193 mg GAE/g DE and 82.9 mg CE/g DE, respectively), due to the higher purity of the extract. The biological activity of extracts was determined on cervical cancer (HeLa), melanoma (A375), metastatic melanoma (A375M) tumor cell lines, and on spontaneously immortalized cell line of keratinocytes (HaCaT), using the MTT assay. The data show that all extracts had a similar dose-dependent effect on cell viability in HeLa cells, while the effect of LE on melanoma A375 and A375M, and HaCaT cells was cell-line dependent.


Asunto(s)
Melanoma , Olea , Neoplasias del Cuello Uterino , Femenino , Humanos , Melanoma/tratamiento farmacológico , Células HeLa , Iridoides/farmacología , Iridoides/química , Polifenoles/farmacología , Olea/química , Antioxidantes/análisis , Hojas de la Planta/química , Extractos Vegetales/química
20.
Phytomedicine ; 120: 155077, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37716032

RESUMEN

BACKGROUND: Autoimmune hepatitis (AIH) poses an important public health concern worldwide, with few therapeutic options available. Cornuside, a primary cornel iridoid glycoside present in Cornus officinalis Sieb. et Zucc., is a well-known traditional Chinese medicine that possesses anti-inflammatory, antioxidant and anti-apoptotic properties. However, the effects of cornuside on autoimmune diseases including AIH is still not defined, neither is clear on the mechanisms of cornuside in the suppression of inflammatory responses. PURPOSE: The study was aimed to investigate the therapeutic effects of cornuside on AIH using murine models. STUDY DESIGN: A murine model of AIH induced by concanavalin A (Con A) was used to examine the pharmacological activity of cornuside in suppressing the inflammatory responses in vivo. METHODS: C57BL/6J mice were intravenously with different doses of cornuside and challenged with 18 mg/kg Con A 3 h later. Network pharmacological analysis was performed to identify the potential target genes and signaling pathways by cornuside in AIH. Next serum and liver tissues were collected 12 h after Con A injection to analyze the levels of markers for hepatic injury, apoptosis, oxidative stress, immune responses, and inflammation. RESULTS: Network pharmacological analysis revealed that cornuside may modulate oxidative stress and apoptosis in AIH. Compared with the Con A group, cornuside pretreatment significantly reduced the serum levels of alanine aminotransferase and aspartate aminotransferase, improving histopathological damage and apoptosis in the livers. In addition, cornuside decreased the levels of malondialdehyde, myeloperoxidase, but increased superoxide dismutase levels, suggesting the relieving of oxidative stress. Furthermore, cornuside suppressed the activation of T and natural killer T cells, whereas the proportion of myeloid-derived suppressor cells was significantly increased. The production of proinflammatory cytokines, including interleukin (IL)-6, IL-12, IL-1ß, and tumor necrosis factor-alpha (TNF-α), was also clearly decreased. Finally, western blot analysis displayed that cornuside inhibited the phosphorylation of extracellular receptor kinase (ERK) and c-Jun N-terminal kinase (JNK). CONCLUSIONS: We demonstrated that cornuside has protective effects for Con A-induced immune-mediated hepatitis by suppressing the oxidative stress, apoptosis, and the inflammatory responses through the ERK and JNK signaling pathways, as well as by modulating the activation and recruitment of immune cells.


Asunto(s)
Hepatitis Autoinmune , Animales , Ratones , Ratones Endogámicos C57BL , Hepatitis Autoinmune/tratamiento farmacológico , Glucósidos , Iridoides/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA