Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 573
Filtrar
1.
J Nanobiotechnology ; 22(1): 333, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877492

RESUMEN

In the realm of large-area trauma flap transplantation, averting ischaemic necrosis emerges as a pivotal concern. Several key mechanisms, including the promotion of angiogenesis, the inhibition of oxidative stress, the suppression of cell death, and the mitigation of inflammation, are crucial for enhancing skin flap survival. Apoptotic bodies (ABs), arising from cell apoptosis, have recently emerged as significant contributors to these functions. This study engineered three-dimensional (3D)-ABs using tissue-like mouse adipose-derived stem cells (mADSCs) cultured in a 3D environment to compare their superior biological effects against 2D-ABs in bolstering skin flap survival. The findings reveal that 3D-ABs (85.74 ± 4.51) % outperform 2D-ABs (76.48 ± 5.04) % in enhancing the survival rate of ischaemic skin flaps (60.45 ± 8.95) % (all p < 0.05). Mechanistically, they stimulated angiogenesis, mitigated oxidative stress, suppressed apoptosis, and facilitated the transition of macrophages from M1 to M2 polarization (all p < 0.05). A comparative analysis of microRNA (miRNA) profiles in 3D- and 2D-ABs identified several specific miRNAs (miR-423-5p-up, miR30b-5p-down, etc.) with pertinent roles. In summary, ABs derived from mADSCs cultured in a 3D spheroid-like arrangement exhibit heightened biological activity compared to those from 2D-cultured mADSCs and are more effective in promoting ischaemic skin flap survival. These effects are attributed to their influence on specific miRNAs.


Asunto(s)
Tejido Adiposo , Apoptosis , Técnicas de Cultivo de Célula , Isquemia , Células Madre , Células Cultivadas , Humanos , Animales , Ratones , Células Madre/citología , Células Madre/metabolismo , Masculino , Ratones Endogámicos C57BL , Técnicas de Cultivo de Célula/métodos , Separación Celular/métodos , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Isquemia/genética , Isquemia/patología , Hipoxia de la Célula , Supervivencia Celular , MicroARNs/genética , Estrés Oxidativo , Neovascularización Patológica , Perfilación de la Expresión Génica
2.
Clin Transl Med ; 14(6): e1725, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38886900

RESUMEN

BACKGROUND: Angiogenesis is critical for forming new blood vessels from antedating vascular vessels. The endothelium is essential for angiogenesis, vascular remodelling and minimisation of functional deficits following ischaemia. The insulin-like growth factor (IGF) family is crucial for angiogenesis. Insulin-like growth factor-binding protein 5 (IGFBP5), a binding protein of the IGF family, may have places in angiogenesis, but the mechanisms are not yet completely understood. We sought to probe whether IGFBP5 is involved in pathological angiogenesis and uncover the molecular mechanisms behind it. METHODS AND RESULTS: IGFBP5 expression was elevated in the vascular endothelium of gastrocnemius muscle from critical limb ischaemia patients and hindlimb ischaemic (HLI) mice and hypoxic human umbilical vein endothelial cells (HUVECs). In vivo, loss of endothelial IGFBP5 (IGFBP5EKO) facilitated the recovery of blood vessel function and limb necrosis in HLI mice. Moreover, skin damage healing and aortic ring sprouting were faster in IGFBP5EKO mice than in control mice. In vitro, the genetic inhibition of IGFBP5 in HUVECs significantly promoted tube formation, cell proliferation and migration by mediating the phosphorylation of IGF1R, Erk1/2 and Akt. Intriguingly, pharmacological treatment of HUVECs with recombinant human IGFBP5 ensued a contrasting effect on angiogenesis by inhibiting the IGF1 or IGF2 function. Genetic inhibition of IGFBP5 promoted cellular oxygen consumption and extracellular acidification rates via IGF1R-mediated glycolytic adenosine triphosphate (ATP) metabolism. Mechanistically, IGFBP5 exerted its role via E3 ubiquitin ligase Von Hippel-Lindau (VHL)-regulated HIF1α stability. Furthermore, the knockdown of the endothelial IGF1R partially abolished the reformative effect of IGFBP5EKO mice post-HLI. CONCLUSION: Our findings demonstrate that IGFBP5 ablation enhances angiogenesis by promoting ATP metabolism and stabilising HIF1α, implying IGFBP5 is a novel therapeutic target for treating abnormal angiogenesis-related conditions.


Asunto(s)
Miembro Posterior , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina , Animales , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Ratones , Miembro Posterior/irrigación sanguínea , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Isquemia/metabolismo , Isquemia/genética , Modelos Animales de Enfermedad , Masculino , Neovascularización Fisiológica/genética , Angiogénesis
3.
J Cell Mol Med ; 28(12): e18489, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38899522

RESUMEN

This study explores the impact of senescence on autocrine C-C motif chemokine ligand 5 (CCL5) in human endothelial progenitor cell (EPCs), addressing the poorly understood decline in number and function of EPCs during ageing. We examined the effects of replication-induced senescence on CCL5/CCL5 receptor (CCR5) signalling and angiogenic activity of EPCs in vitro and in vivo. We also explored microRNAs controlling CCL5 secretion in senescent EPCs, its impact on EPC angiogenic activity, and validated our findings in humans. CCL5 secretion and CCR5 levels in senescent EPCs were reduced, leading to attenuated angiogenic activity. CCL5 enhanced EPC proliferation via the CCR5/AKT/P70S6K axis and increased vascular endothelial growth factor (VEGF) secretion. Up-regulation of miR-409 in senescent EPCs resulted in decreased CCL5 secretion, inhibiting the angiogenic activity, though these negative effects were counteracted by the addition of CCL5 and VEGF. In a mouse hind limb ischemia model, CCL5 improved the angiogenic activity of senescent EPCs. Analysis involving 62 healthy donors revealed a negative association between CCL5 levels, age and Framingham Risk Score. These findings propose CCL5 as a potential biomarker for detection of EPC senescence and cardiovascular risk assessment, suggesting its therapeutic potential for age-related cardiovascular disorders.


Asunto(s)
Senescencia Celular , Quimiocina CCL5 , Células Progenitoras Endoteliales , MicroARNs , Neovascularización Fisiológica , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/citología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Animales , Neovascularización Fisiológica/genética , Ratones , Proliferación Celular , Masculino , Receptores CCR5/metabolismo , Receptores CCR5/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Regulación hacia Abajo/genética , Isquemia/metabolismo , Isquemia/patología , Isquemia/genética , Transducción de Señal , Angiogénesis
4.
Sci Rep ; 14(1): 11372, 2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762650

RESUMEN

The aim of this study was to identify angiogenic microRNAs (miRNAs) that could be used in the treatment of hindlimb ischemic tissues. miRNAs contained in extracellular vesicles (EVs) deriving from the plasma were analyzed in C57BL/6 mice, which have ischemia tolerance, and in BALB/c mice without ischemia tolerance as part of a hindlimb ischemia model; as a result 43 angiogenic miRNA candidates were identified. An aortic ring assay was employed by using femoral arteries isolated from BALC/c mice and EVs containing miRNA; as a result, the angiogenic miRNA candidates were limited to 14. The blood flow recovery was assessed after injecting EVs containing miRNA into BALB/c mice with hindlimb ischemia, and miR-709 was identified as a promising angiogenic miRNA. miR-709-encapsulating EVs were found to increase the expression levels of the fibroblast growth factor 2 (FGF2) mRNA in the thigh tissues of hindlimb ischemia model BALB/c mice. miR-709 was also found to bind to the 3'UTR of glycogen synthase kinase 3 beta (GSK3B) in three places. GSK3B-knockdown human artery-derived endothelial cells were found to express high levels of FGF2, and were characterized by increased cell proliferation. These findings indicate that miR-709 induces an upregulation of FGF2 through the downregulation of GSK3B.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Glucógeno Sintasa Quinasa 3 beta , Miembro Posterior , Isquemia , Ratones Endogámicos BALB C , MicroARNs , Neovascularización Fisiológica , Animales , Humanos , Masculino , Ratones , Regiones no Traducidas 3' , Proliferación Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Miembro Posterior/irrigación sanguínea , Isquemia/metabolismo , Isquemia/genética , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Neovascularización Fisiológica/genética , Regulación hacia Arriba
5.
Adv Sci (Weinh) ; 11(24): e2307238, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639443

RESUMEN

Preventing and treating avascular necrosis at the distal end of the flaps are critical to surgery success, but current treatments are not ideal. A recent study shows that apoptotic bodies (ABs) generated near the site of apoptosis can be taken up and promote cell proliferation. The study reveals that ABs derived from fibroblast-like cells in the subcutaneous connective tissue (FSCT cells) of skin flaps promoted ischaemic flap survival. It is also found that ABs inhibited cell death and oxidative stress and promoted M1-to-M2 polarization in macrophages. Transcriptome sequencing and protein level testing demonstrated that ABs promoted ischaemic flap survival in endothelial cells and macrophages by inhibiting ferroptosis via the KEAP1-Nrf2 axis. Furthermore, microRNA (miR) sequencing data and in vitro and in vivo experiments demonstrated that ABs inhibited KEAP1 by delivering miR-339-5p to exert therapeutic effects. In conclusion, FSCT cell-derived ABs inhibited ferroptosis, promoted the macrophage M1-to-M2 transition via the miR-339-5p/KEAP1/Nrf2 axis and promoted ischaemic flap survival. These results provide a potential therapeutic strategy to promote ischaemic flap survival by administering ABs.


Asunto(s)
Ferroptosis , Fibroblastos , Proteína 1 Asociada A ECH Tipo Kelch , MicroARNs , Factor 2 Relacionado con NF-E2 , Colgajos Quirúrgicos , Animales , Ratones , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Ferroptosis/genética , MicroARNs/genética , MicroARNs/metabolismo , Fibroblastos/metabolismo , Modelos Animales de Enfermedad , Isquemia/metabolismo , Isquemia/genética , Masculino , Apoptosis/genética , Tejido Conectivo/metabolismo , Transducción de Señal/genética
6.
Atherosclerosis ; 391: 117487, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492245

RESUMEN

BACKGROUND AND AIMS: Therapeutic arteriogenesis is a promising direction for the treatment of ischemic disease caused by atherosclerosis. However, pharmacological or biological approaches to stimulate functional collateral vessels are not yet available. Identifying new drug targets to promote and explore the underlying mechanisms for therapeutic arteriogenesis is necessary. METHODS: Peptide OM-LV20 (20 ng/kg) was administered for 7 consecutive days on rat hindlimb ischemia model, collateral vessel growth was assessed by H&E staining, liquid latex perfusion, and specific immunofluorescence. In vitro, we detected the effect of OM-LV20 on human umbilical vein endothelial cells (HUVEC) proliferation and migration. After transfection, we performed quantitative real-time polymerase chain reaction, in situ-hybridization and dual luciferase reporters to assessed effective miRNAs and target genes. The proteins related to downstream signaling pathways were detected by Western blot. RESULTS: OM-LV20 significantly increased visible collateral vessels and endothelial nitric oxide synthase (eNOS), together with enhanced inflammation cytokine and monocytes/macrophage infiltration in collateral vessels. In vitro, we defined a novel microRNA (miR-29b-3p), and its inhibition enhanced proliferation and migration of HUVEC, as well as the expression of vascular endothelial growth factor A (VEGFA). OM-LV20 also promoted migration and proliferation of HUVEC, and VEGFA expression was mediated via inhibition of miR-29b-3p. Furthermore, OM-LV20 influenced the protein levels of VEGFR2 and phosphatidylinositol3-kinase (PI3K)/AKT and eNOS in vitro and invivo. CONCLUSIONS: Our data indicated that OM-LV20 enhanced arteriogenesis via the miR-29b-3p/VEGFA/VEGFR2-PI3K/AKT/eNOS axis, and highlighte the application potential of exogenous peptide molecular probes through miRNA, which could promote effective therapeutic arteriogenesis in ischemic conditions.


Asunto(s)
MicroARNs , Péptidos , Factor A de Crecimiento Endotelial Vascular , Humanos , Ratas , Animales , Arteria Femoral/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Isquemia/genética , Proliferación Celular
7.
Folia Biol (Praha) ; 69(2): 69-73, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38063003

RESUMEN

Although hypothermic treatment has been reported to have some beneficial effects on ischaemia at the clinical level, the mechanism of ischaemia suppression by hypothermia remains unclear due to a lack of mechanism understanding and insufficient data. The aim of this study was to isolate and characterize microRNAs specifically expressed in ischaemia-hypothermia for the dihydropyrimidinase-like 3 (Dpysl3) gene. PC12 cells were induced with CoCl2 for chemical ischaemia and incubated at 32 ℃ for hypothermia. In ischaemia-hypothermia, four types of microRNAs (miR-106b-5p, miR-194-5p, miR-326-5p, and miR-497-5p) were highly related to the Dpysl3 gene based on exosomal microRNA analysis. Dpysl3 gene expression was up-regulated by miR-497-5p but down-regulated by miR-106b-5p, miR-194-5p and miR-326-5p. Our results suggest that these four microRNAs are involved in the regulation of Dpysl3 gene expression. These findings provide valuable clues that exosomal microRNAs could be used as therapeutic targets for effective treatment of ischaemia.


Asunto(s)
Hipotermia , MicroARNs , Animales , Humanos , Ratas , Expresión Génica , Hipotermia/genética , Isquemia/inducido químicamente , Isquemia/genética , MicroARNs/genética , MicroARNs/metabolismo , Células PC12
8.
Methodist Debakey Cardiovasc J ; 19(5): 47-57, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38028966

RESUMEN

Peripheral arterial disease (PAD) represents a global health concern with a rising prevalence attributed to factors such as obesity, diabetes, aging, and smoking. Among patients with PAD, chronic limb-threatening ischemia (CLTI) is the most severe manifestation, associated with substantial morbidity and mortality. While revascularization remains the primary therapy for CLTI, not all patients are candidates for such interventions, highlighting the need for alternative approaches. Impaired angiogenesis, the growth of new blood vessels, is a central feature of PAD, and despite decades of research, effective clinical treatments remain elusive. Epigenetics, the study of heritable changes in gene expression, has gained prominence in understanding PAD pathogenesis. Here, we explore the role of epigenetic regulation in angiogenesis within the context of PAD, with a focus on long non-coding RNAs and fibroblast-endothelial cell transdifferentiation. Additionally, we discuss the interplay between metabolic control and epigenetic regulation, providing insights into potential novel therapeutic avenues for improving PAD treatments. This review aims to offer a concise update on the application of epigenetics in angiogenesis and PAD research, inspiring further investigations in this promising field.


Asunto(s)
Epigénesis Genética , Enfermedad Arterial Periférica , Humanos , Enfermedad Arterial Periférica/genética , Isquemia/genética
9.
Atherosclerosis ; 385: 117343, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37871404

RESUMEN

BACKGROUND AND AIMS: Peripheral arterial disease (PAD) is a leading cause of morbimortality worldwide. Lipocalin-2 (LCN2) has been associated with higher risk of amputation or mortality in PAD and might be involved in muscle regeneration. Our aim is to unravel the role of LCN2 in skeletal muscle repair and PAD. METHODS AND RESULTS: WT and Lcn2-/- mice underwent hindlimb ischemia. Blood and crural muscles were analyzed at the inflammatory and regenerative phases. At day 2, Lcn2-/- male mice, but not females, showed increased blood and soleus muscle neutrophils, and elevated circulating pro-inflammatory monocytes (p < 0.05), while locally, total infiltrating macrophages were reduced (p < 0.05). Moreover, Lcn2-/- soleus displayed an elevation of Cxcl1 (p < 0.001), and Cxcr2 (p < 0.01 in males), and a decrease in Ccl5 (p < 0.05). At day 15, Lcn2 deficiency delayed muscle recovery, with higher density of regenerating myocytes (p < 0.04) and arterioles (αSMA+, p < 0.025). Reverse target prediction analysis identified miR-138-5p as a potential regulator of LCN2, showing an inverse correlation with Lcn2 mRNA in skeletal muscles (rho = -0.58, p < 0.01). In vitro, miR-138-5p mimic reduced Lcn2 expression and luciferase activity in murine macrophages (p < 0.05). Finally, in human serum miR-138-5p was inversely correlated with LCN2 (p ≤ 0.001 adjusted, n = 318), and associated with PAD (Odds ratio 0.634, p = 0.02, adjusted, PAD n = 264, control n = 54). CONCLUSIONS: This study suggests a possible dual role of LCN2 in acute and chronic conditions, with a probable role in restraining inflammation early after skeletal muscle ischemia, while being associated with vascular damage in PAD, and identifies miR-138-5p as one potential post-transcriptional regulator of LCN2.


Asunto(s)
MicroARNs , Enfermedad Arterial Periférica , Animales , Humanos , Masculino , Ratones , Arteriolas/metabolismo , Modelos Animales de Enfermedad , Miembro Posterior/metabolismo , Isquemia/genética , Lipocalina 2/genética , Lipocalina 2/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad Arterial Periférica/genética
10.
Cell Mol Biol (Noisy-le-grand) ; 69(8): 203-208, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37715380

RESUMEN

To study the expression of miR-744 in the rat model of ischemia-reperfusion (I-R) and its related mechanism. Seventy-five Wistar rats were randomly divided into 3 groups: sham operation group (SOG), model group (MG) and miR-744 group, with 25 in each group. The expression levels of IL-1ß, IL-6 and TNF-α were observed by Western Blot after the model preparation, while miR-744 expression was detected by reverse transcription polymerase chain reaction (RT-PCR). The cerebral infarction volume of rats in the MG was significantly larger than that in the miR-744 group (P<0.05). The MG exhibited a markedly higher brain tissue water content than the SOG and the miR-744 group (P<0.05). When compared within the latter two groups, the brain tissue water content in the SOG was significantly lower than that in the miR-744 group (P<0.05). As to miR-744 expression, the relative expression of miR-744 in the brain tissue of the MG was the lowest among the three groups. When compared within the remaining two groups, the miR-744 expression of the miR-744 group was remarkably higher than that of the SOG (P<0.05). In terms of the expression levels of inflammatory factors, the expressions of IL-1ß, IL-6 and TNF-α in the brain tissue of the SOG and the miR-744 group were significantly lower than those in the MG, and those of the SOG were significantly lower than that of the miR-744 group. MiR-744 may be involved in the development and progression of I-R in rats, and its mechanism may be related to the regulation of inflammatory response.


Asunto(s)
Isquemia , MicroARNs , Reperfusión , Animales , Ratas , Interleucina-6/genética , Isquemia/genética , MicroARNs/genética , Ratas Wistar , Factor de Necrosis Tumoral alfa/genética , Agua
11.
J Am Heart Assoc ; 12(16): e028880, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37548153

RESUMEN

Background Peripheral arterial disease and critical limb ischemia are cardiovascular complications associated with vascular insufficiency, oxidative metabolic dysfunction, and myopathy in the limbs. Estrogen-related receptor gamma (ERRγ) has emerged as a dual regulator of paracrine angiogenesis and oxidative metabolism through transgenic mouse studies. Here our objective was to investigate whether postischemic intramuscular targeting of ERRγ via gene therapy promotes ischemic recovery in a preclinical model of peripheral arterial disease/critical limb ischemia. Methods and Results Adeno-associated virus 9 (AAV9) Esrrg gene delivery vector was developed and first tested via intramuscular injection in murine skeletal muscle. AAV9-Esrrg robustly increased ERRγ protein expression, induced angiogenic and oxidative genes, and boosted capillary density and succinate dehydrogenase oxidative metabolic activity in skeletal muscles of C57Bl/6J mice. Next, hindlimb ischemia was induced via unilateral femoral vessel ligation in mice, followed by intramuscular AAV9-Esrrg (or AAV9-green fluorescent protein) gene delivery 24 hours after injury. ERRγ overexpression increased ischemic neoangiogenesis and markers of endothelial activation, and significantly improved ischemic revascularization measured using laser Doppler flowmetry. Moreover, ERRγ overexpression restored succinate dehydrogenase oxidative metabolic capacity in ischemic muscle, which correlated with increased mitochondrial respiratory complex protein expression. Most importantly, myofiber size to number quantification revealed that AAV9-Esrrg restores myofibrillar size and mitigates ischemia-induced myopathy. Conclusions These results demonstrate that intramuscular AAV9-Esrrg delivery rescues ischemic pathology after hindlimb ischemia, underscoring that Esrrg gene therapy or pharmacological activation could be a promising strategy for the management of peripheral arterial disease/critical limb ischemia.


Asunto(s)
Enfermedad Arterial Periférica , Succinato Deshidrogenasa , Ratones , Animales , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Isquemia Crónica que Amenaza las Extremidades , Neovascularización Fisiológica/genética , Músculo Esquelético/irrigación sanguínea , Terapia Genética , Ratones Transgénicos , Enfermedad Arterial Periférica/terapia , Isquemia/genética , Isquemia/terapia , Isquemia/patología , Estrógenos/metabolismo , Miembro Posterior/irrigación sanguínea , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
12.
Stem Cells Transl Med ; 12(6): 379-390, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37263619

RESUMEN

Human multipotent mesenchymal stromal/stem cells (MSCs) have been utilized in cell therapy for various diseases and their clinical applications are expected to increase in the future. However, the variation in MSC-based product quality due to the MSC heterogeneity has resulted in significant constraints in the clinical utility of MSCs. Therefore, we hypothesized that it might be important to identify and ensure/enrich suitable cell subpopulations for therapies using MSC-based products. In this study, we aimed to identify functional cell subpopulations to predict the efficacy of angiogenic therapy using bone marrow-derived MSCs (BM-MSCs). To assess its angiogenic potency, we observed various levels of vascular endothelial growth factor (VEGF) secretion among 11 donor-derived BM-MSC lines under in vitro ischemic culture conditions. Next, by clarifying the heterogeneity of BM-MSCs using single-cell RNA-sequencing analysis, we identified a functional cell subpopulation that contributed to the overall VEGF production in BM-MSC lines under ischemic conditions. We also found that leucine-rich repeat-containing 75A (LRRC75A) was more highly expressed in this cell subpopulation than in the others. Importantly, knockdown of LRRC75A using small interfering RNA resulted in significant inhibition of VEGF secretion in ischemic BM-MSCs, indicating that LRRC75A regulates VEGF secretion under ischemic conditions. Therefore, LRRC75A may be a useful biomarker to identify cell subpopulations that contribute to the angiogenic effects of BM-MSCs. Our work provides evidence that a strategy based on single-cell transcriptome profiles is effective for identifying functional cell subpopulations in heterogeneous MSC-based products.


Asunto(s)
Células Madre Mesenquimatosas , Factor A de Crecimiento Endotelial Vascular , Humanos , Células de la Médula Ósea , Diferenciación Celular , Proliferación Celular , Isquemia/genética , Isquemia/terapia , Isquemia/metabolismo , Análisis de Expresión Génica de una Sola Célula , Células Madre , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular/farmacología
13.
Arterioscler Thromb Vasc Biol ; 43(6): 836-851, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37128915

RESUMEN

Peripheral artery disease (PAD) is a vascular disorder caused by occlusive atherosclerosis, which commonly impairs blood flow to the lower extremities. The prevalence of PAD is increasing globally with >200 million people affected. PAD remains a growing global health problem as the population continues to age and diabetes incidence grows. Many patients with PAD, most notably those with critical limb ischemia, fail attempts at surgical and percutaneous intervention to improve blood flow and are at risk of amputation. Gene therapy provides an opportunity to change the clinical course of PAD in these patients via strategies that increase vascular supply through angiogenesis and arteriogenesis improving muscle perfusion and function in ischemic legs. This article discusses gene therapy approaches in the context of PAD, both intermittent claudication and critical limb ischemia, and the promise of adeno-associated virus-based strategies delivering not just VEGFs (vascular endothelial growth factors) but a range of other mediators as potential new therapeutics. We also highlight challenges and failures in the clinical translation of gene therapy for PAD and how at least some of these obstacles may be overcome using adeno-associated virus.


Asunto(s)
Dependovirus , Enfermedad Arterial Periférica , Humanos , Dependovirus/genética , Isquemia Crónica que Amenaza las Extremidades , Enfermedad Arterial Periférica/genética , Enfermedad Arterial Periférica/terapia , Enfermedad Arterial Periférica/metabolismo , Claudicación Intermitente/terapia , Extremidad Inferior , Isquemia/genética , Isquemia/terapia , Isquemia/metabolismo
14.
Pediatr Res ; 94(5): 1650-1658, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37225778

RESUMEN

BACKGROUND: Patients with testicular torsion (TT) may exhibit impaired spermatogenesis from reperfusion injury after detorsion surgery. Alteration in the expressions of spermatogenesis-related genes induced by TT have not been fully elucidated. METHODS: Eight-week-old Sprague-Dawley rats were grouped as follows: group 1 (sham-operated), group 2 (TT without reperfusion) and group 3 (TT with reperfusion). TT was induced by rotating the left testis 720° for 1 h. Testicular reperfusion proceeded for 24 h. Histopathological examination, oxidative stress biomarker measurements, RNA sequencing and RT-PCR were performed. RESULTS: Testicular ischemia/reperfusion injury induced marked histopathological changes. Germ cell apoptosis was significantly increased in group 3 compared with group 1 and 2 (mean apoptotic index: 26.22 vs. 0.64 and 0.56; p = 0.024, and p = 0.024, respectively). Johnsen score in group 3 was smaller than that in group 1 and 2 (mean: 8.81 vs 9.45 and 9.47 points/tubule; p = 0.001, p < 0.001, respectively). Testicular ischemia/reperfusion injury significantly upregulated the expression of genes associated with apoptosis and antioxidant enzymes and significantly downregulated the expression of genes associated with spermatogenesis. CONCLUSION: One hour of TT followed by reperfusion injury caused histopathological testicular damage. The relatively high Johnsen score indicated spermatogenesis was maintained. Genes associated with spermatogenesis were downregulated in the TT rat model. IMPACT: How ischemia/reperfusion injury in testicular torsion (TT) affects the expressions of genes associated with spermatogenesis has not been fully elucidated. This is the first study to report comprehensive gene expression profiles using next generation sequencing for an animal model of TT. Our results revealed that ischemia/reperfusion injury downregulated the expression of genes associated with spermatogenesis and sperm function in addition to histopathological damage, even though the duration of ischemia was short.


Asunto(s)
Daño por Reperfusión , Torsión del Cordón Espermático , Humanos , Ratas , Masculino , Animales , Torsión del Cordón Espermático/genética , Ratas Sprague-Dawley , Semen/metabolismo , Espermatogénesis , Testículo/patología , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Isquemia/genética , Isquemia/patología
15.
Cardiovasc Ther ; 2023: 6679390, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251271

RESUMEN

The response to ischemia in peripheral artery disease (PAD) depends on compensatory neovascularization and coordination of tissue regeneration. Identifying novel mechanisms regulating these processes is critical to the development of nonsurgical treatments for PAD. E-selectin is an adhesion molecule that mediates cell recruitment during neovascularization. Therapeutic priming of ischemic limb tissues with intramuscular E-selectin gene therapy promotes angiogenesis and reduces tissue loss in a murine hindlimb gangrene model. In this study, we evaluated the effects of E-selectin gene therapy on skeletal muscle recovery, specifically focusing on exercise performance and myofiber regeneration. C57BL/6J mice were treated with intramuscular E-selectin/adeno-associated virus serotype 2/2 gene therapy (E-sel/AAV) or LacZ/AAV2/2 (LacZ/AAV) as control and then subjected to femoral artery coagulation. Recovery of hindlimb perfusion was assessed by laser Doppler perfusion imaging and muscle function by treadmill exhaustion and grip strength testing. After three postoperative weeks, hindlimb muscle was harvested for immunofluorescence analysis. At all postoperative time points, mice treated with E-sel/AAV had improved hindlimb perfusion and exercise capacity. E-sel/AAV gene therapy also increased the coexpression of MyoD and Ki-67 in skeletal muscle progenitors and the proportion of Myh7+ myofibers. Altogether, our findings demonstrate that in addition to improving reperfusion, intramuscular E-sel/AAV gene therapy enhances the regeneration of ischemic skeletal muscle with a corresponding benefit on exercise performance. These results suggest a potential role for E-sel/AAV gene therapy as a nonsurgical adjunct in patients with life-limiting PAD.


Asunto(s)
Neovascularización Fisiológica , Enfermedad Arterial Periférica , Ratones , Animales , Selectina E/genética , Ratones Endogámicos C57BL , Músculo Esquelético/irrigación sanguínea , Isquemia/genética , Isquemia/terapia , Terapia Genética/métodos , Enfermedad Arterial Periférica/genética , Enfermedad Arterial Periférica/terapia , Miembro Posterior/irrigación sanguínea , Desarrollo de Músculos , Modelos Animales de Enfermedad
16.
Chin Med J (Engl) ; 136(10): 1177-1187, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37083129

RESUMEN

BACKGROUND: Ischemic acute kidney injury (AKI) is a common syndrome associated with considerable mortality and healthcare costs. Up to now, the underlying pathogenesis of ischemic AKI remains incompletely understood, and specific strategies for early diagnosis and treatment of ischemic AKI are still lacking. Here, this study aimed to define the transcriptomic landscape of AKI patients through single-cell RNA sequencing (scRNA-seq) analysis in kidneys. METHODS: In this study, scRNA-seq technology was applied to kidneys from two ischemic AKI patients, and three human public scRNA-seq datasets were collected as controls. Differentially expressed genes (DEGs) and cell clusters of kidneys were determined. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, as well as the ligand-receptor interaction between cells, were performed. We also validated several DEGs expression in kidneys from human ischemic AKI and ischemia/reperfusion (I/R) injury induced AKI mice through immunohistochemistry staining. RESULTS: 15 distinct cell clusters were determined in kidney from subjects of ischemic AKI and control. The injured proximal tubules (PT) displayed a proapoptotic and proinflammatory phenotype. PT cells of ischemic AKI had up-regulation of novel pro-apoptotic genes including USP47 , RASSF4 , EBAG9 , IER3 , SASH1 , SEPTIN7 , and NUB1 , which have not been reported in ischemic AKI previously. Several hub genes were validated in kidneys from human AKI and renal I/R injury mice, respectively. Furthermore, PT highly expressed DEGs enriched in endoplasmic reticulum stress, autophagy, and retinoic acid-inducible gene I (RIG-I) signaling. DEGs overexpressed in other tubular cells were primarily enriched in nucleotide-binding and oligomerization domain (NOD)-like receptor signaling, estrogen signaling, interleukin (IL)-12 signaling, and IL-17 signaling. Overexpressed genes in kidney-resident immune cells including macrophages, natural killer T (NKT) cells, monocytes, and dendritic cells were associated with leukocyte activation, chemotaxis, cell adhesion, and complement activation. In addition, the ligand-receptor interactions analysis revealed prominent communications between macrophages and monocytes with other cells in the process of ischemic AKI. CONCLUSION: Together, this study reveals distinct cell-specific transcriptomic atlas of kidney in ischemic AKI patients, altered signaling pathways, and potential cell-cell crosstalk in the development of AKI. These data reveal new insights into the pathogenesis and potential therapeutic strategies in ischemic AKI.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Humanos , Ratones , Animales , Transcriptoma/genética , Ligandos , Riñón/metabolismo , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Isquemia/genética , Isquemia/metabolismo , Daño por Reperfusión/metabolismo , Análisis de Secuencia de ARN , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Supresoras de Tumor/metabolismo
17.
JCI Insight ; 8(10)2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37097749

RESUMEN

Patients with peripheral artery disease (PAD) and diabetes compose a high-risk population for development of critical limb ischemia (CLI) and amputation, although the underlying mechanisms remain poorly understood. Comparison of dysregulated microRNAs from diabetic patients with PAD and diabetic mice with limb ischemia revealed the conserved microRNA, miR-130b-3p. In vitro angiogenic assays demonstrated that miR-130b rapidly promoted proliferation, migration, and sprouting in endothelial cells (ECs), whereas miR-130b inhibition exerted antiangiogenic effects. Local delivery of miR-130b mimics into ischemic muscles of diabetic mice (db/db) following femoral artery ligation (FAL) promoted revascularization by increasing angiogenesis and markedly improved limb necrosis and amputation. RNA-Seq and gene set enrichment analysis from miR-130b-overexpressing ECs revealed the BMP/TGF-ß signaling pathway as one of the top dysregulated pathways. Accordingly, overlapping downregulated transcripts from RNA-Seq and miRNA prediction algorithms identified that miR-130b directly targeted and repressed the TGF-ß superfamily member inhibin-ß-A (INHBA). miR-130b overexpression or siRNA-mediated knockdown of INHBA induced IL-8 expression, a potent angiogenic chemokine. Lastly, ectopic delivery of silencer RNAs (siRNA) targeting Inhba in db/db ischemic muscles following FAL improved revascularization and limb necrosis, recapitulating the phenotype of miR-130b delivery. Taken together, a miR-130b/INHBA signaling axis may provide therapeutic targets for patients with PAD and diabetes at risk of developing CLI.


Asunto(s)
Diabetes Mellitus Experimental , MicroARNs , Animales , Humanos , Ratones , Isquemia Crónica que Amenaza las Extremidades , Células Endoteliales/metabolismo , Inhibinas , Isquemia/genética , MicroARNs/metabolismo , Necrosis , ARN Interferente Pequeño , Transducción de Señal , Factor de Crecimiento Transformador beta
18.
Clin Exp Rheumatol ; 41(4): 910-915, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36912345

RESUMEN

OBJECTIVES: Since interleukin-6 (IL-6) is a pivotal proinflammatory cytokine implicated in the pathogenesis of giant cell arteritis (GCA), we aimed to determine the potential association of the functional IL6 -174 G/C polymorphism with GCA as well as if the single base change variation at the promoter region in the human IL-6 gene may account for differences in the clinical spectrum of GCA between cranial and extracranial large vessel vasculitis (LVV)-GCA. METHODS: The IL6 -174 G/C polymorphism (rs1800795) was genotyped in 191 patients with biopsy-proven GCA who had typical cranial manifestations of the disease, 109 patients with extracranial LVV-GCA, without cranial ischaemic manifestations of GCA, and 877 ethnically matched unaffected controls. A comparative study was carried out between patients with cranial and extracranial LVV-GCA and controls. RESULTS: No significant differences in genotype and allele frequencies of IL6 -174 G/C polymorphism were found between the whole cohort of GCA patients and healthy controls. It was also the case when cranial and extracranial LVV-GCA were compared or when each of these subgroups was compared to controls. Moreover, no significant results in genotype and allele frequencies of IL6 -174 G/C polymorphism were disclosed when the whole cohort of GCA patients were stratified according to the presence of polymyalgia rheumatica, severe ischaemic manifestations, including permanent visual loss and peripheral arteriopathy, and HLA-DRB1*04:01 status. CONCLUSIONS: Our results show that the IL6 -174 G/C polymorphism does not influence the phenotypic expression of GCA.


Asunto(s)
Arteritis de Células Gigantes , Polimialgia Reumática , Humanos , Arteritis de Células Gigantes/genética , Arteritis de Células Gigantes/patología , Interleucina-6/genética , Polimorfismo Genético , Frecuencia de los Genes , Isquemia/genética , Predisposición Genética a la Enfermedad
19.
J Am Heart Assoc ; 12(7): e027986, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36974760

RESUMEN

Background In endothelial cells (ECs), glycolysis, regulated by PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase, isoform-3), is the major metabolic pathway for ATP generation. In preclinical peripheral artery disease models, VEGF165a (vascular endothelial growth factor165a) and microRNA-93 both promote angiogenesis. Methods and Results Mice following hind-limb ischemia (HLI) and ECs with, and without, hypoxia and serum starvation were examined with, and without, microRNA-93 and VEGF165a. Post-HLI perfusion recovery was monitored. EC metabolism was studied using seahorse assay, and the expression and activity of major metabolism genes were assessed. Reactive oxygen species levels and EC permeability were evaluated. C57Bl/6J mice generated a robust angiogenic response to HLI, with ECs from ischemic versus nonischemic muscle demonstrating no increase in glycolysis. Balb/CJ mice generated a poor angiogenic response post-HLI; ischemic versus nonischemic ECs demonstrated significant increase in glycolysis. MicroRNA-93-treated Balb/CJ mice post-HLI showed better perfusion recovery, with ischemic versus nonischemic ECs showing no increase in glycolysis. VEGF165a-treated Balb/CJ mice post-HLI showed no improvement in perfusion recovery with ischemic versus nonischemic ECs showing significant increase in glycolysis. ECs under hypoxia and serum starvation upregulated PFKFB3. In ECs under hypoxia and serum starvation, VEGF165a versus control significantly upregulated PFKFB3 and glycolysis, whereas miR-93 versus control demonstrated no increase in PFKFB3 or glycolysis. MicroRNA-93 versus VEGF165a upregulated glucose-6-phosphate dehydrogenase expression and activity, activating the pentose phosphate pathway. MicroRNA-93 versus control increased reduced nicotinamide adenine dinucleotide phosphate and virtually eliminated the increase in reactive oxygen species. In ECs under hypoxia and serum starvation, VEGF165a significantly increased and miR-93 decreased EC permeability. Conclusions In peripheral artery disease, activation of the pentose phosphate pathway to promote angiogenesis may offer potential therapeutic advantages.


Asunto(s)
MicroARNs , Enfermedad Arterial Periférica , Ratones , Animales , Células Endoteliales/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Enfermedad Arterial Periférica/metabolismo , Hipoxia/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Glucólisis/fisiología , Isquemia/genética
20.
Arterioscler Thromb Vasc Biol ; 43(6): 889-906, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36891902

RESUMEN

BACKGROUND: Peripheral ischemia caused by peripheral artery disease is associated with systemic inflammation, which may aggravate underlying comorbidities such as atherosclerosis and heart failure. However, the mechanisms of increased inflammation and inflammatory cell production in patients with peripheral artery disease remain poorly understood. METHODS: We used peripheral blood collected from patients with peripheral artery disease and performed hind limb ischemia (HI) in Apoe-/- mice fed a Western diet and C57BL/6J mice with a standard laboratory diet. Bulk and single-cell RNA sequencing analysis, whole-mount microscopy, and flow cytometry were performed to analyze hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and relocation. RESULTS: We observed augmented numbers of leukocytes in the blood of patients with peripheral artery disease and Apoe-/- mice with HI. RNA sequencing and whole-mount imaging of the bone marrow revealed HSPC migration into the vascular niche from the osteoblastic niche and their exaggerated proliferation and differentiation. Single-cell RNA sequencing demonstrated alterations in the genes responsible for inflammation, myeloid cell mobilization, and HSPC differentiation after HI. Heightened inflammation in Apoe-/- mice after HI aggravated atherosclerosis. Surprisingly, bone marrow HSPCs expressed higher amounts of the receptors for IL (interleukin)-1 and IL-3 after HI. Concomitantly, the promoters of Il1r1 and Il3rb had augmented H3K4me3 and H3K27ac marks after HI. Genetic and pharmacological inhibition of these receptors resulted in suppressed HSPC proliferation, reduced leukocyte production, and ameliorated atherosclerosis. CONCLUSIONS: Our findings demonstrate increased inflammation, HSPC abundance in the vascular niches of the bone marrow, and elevated IL-3Rb and IL-1R1 (IL-1 receptor 1) expression in HSPC following HI. Furthermore, the IL-3Rb and IL-1R1 signaling plays a pivotal role in HSPC proliferation, leukocyte abundance, and atherosclerosis aggravation after HI.


Asunto(s)
Aterosclerosis , Enfermedad Arterial Periférica , Animales , Ratones , Ratones Endogámicos C57BL , Células Madre Hematopoyéticas/metabolismo , Aterosclerosis/metabolismo , Inflamación/metabolismo , Isquemia/genética , Isquemia/metabolismo , Enfermedad Arterial Periférica/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Epigénesis Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA