Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
2.
Mol Biol (Mosk) ; 45(5): 755-64, 2011.
Artículo en Ruso | MEDLINE | ID: mdl-22393773

RESUMEN

Phosphorylation is the universal regulatory mechanism in key physiological processes such as development, cell differentiation, proliferation, survival and malignant transformation. In this review we analyze serine/threonine protein kinases of the Pim (proviral integration of Moloney virus) family that have been initially discovered in experimental lymphomas. We provide data on gene structure, evolution, functions and substrates of Pim protein kinases. Focusing on Pim-1 as the major isoform, we analyze its role in the biology of hematopoietic malignancies. Pim-1 is a pro-proliferative and pro-survival protein kinase. It is constitutively active due to autophosphorylation, and its downstream partners positively regulate the cell cycle. Pim-1 cooperates with c-Myc oncoprotein in leukemogenesis; furthermore, Pim-1, like the Akt protein kinase, prevents cell death. Thus, Pim kinases are regarded as new therapeutic targets. Finally, we present an original test system f or screening of Pim inhibitors. In this test system the growth of a genetically engineered Escherichia coli strain in the presence of kanamycin is dependent on the phosphorylation of aminoglycoside-3' phosphotransferase VIII by Pim-1: pharmacological inhibition of this phosphorylation increases the bacterial cell lysis.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Linfoma/enzimología , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Transducción de Señal/genética , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Transformación Celular Neoplásica/genética , Escherichia coli/enzimología , Escherichia coli/genética , Ensayos Analíticos de Alto Rendimiento , Humanos , Kanamicina , Kanamicina Quinasa/antagonistas & inhibidores , Kanamicina Quinasa/metabolismo , Linfoma/tratamiento farmacológico , Linfoma/genética , Linfoma/patología , Modelos Moleculares , Fosforilación , Filogenia , Dominios y Motivos de Interacción de Proteínas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/química , Proteínas Proto-Oncogénicas c-pim-1/genética
3.
Chem Biol ; 10(2): 189-96, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12618191

RESUMEN

The action of aminoglycoside antibiotics is inhibited by chemical modification catalyzed by aminoglycoside inactivating enzymes, which bind these cationic saccharides with active site pockets that contain a preponderance of negatively charged residues. In this study, it was observed that several cationic antimicrobial peptides, representing different structural classes, could serve as inhibitors of such aminoglycoside resistance enzymes. The bovine antimicrobial peptide indolicidin and synthetic analogs appeared to be especially effective against a range of resistance enzymes, inhibiting enzymes belonging to both aminoglycoside phosphotransferase and aminoglycoside acetyltransferase classes, where the mode of action was dependent on the class of antibiotic resistance enzyme. These peptides represent the first example of broad-spectrum inhibitors of aminoglycoside resistance enzymes.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/enzimología , Farmacorresistencia Bacteriana/fisiología , Péptidos/farmacología , Acetiltransferasas/antagonistas & inhibidores , Algoritmos , Aminoglicósidos , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Kanamicina Quinasa/antagonistas & inhibidores , Nucleotidiltransferasas/antagonistas & inhibidores , Péptidos/síntesis química , Péptidos/química , Relación Estructura-Actividad
4.
Curr Drug Targets Infect Disord ; 2(2): 143-60, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12462145

RESUMEN

Acquired resistance to the aminoglycoside family of antibiotics has rendered this large and important family of compounds virtually unusable. Resistance is primarily mediated by three classes of enzymes, typically residing on transposable elements in resistant bacteria. These enzymes, the phosphotransferases, acetyltransferases and adenyltransferases, chemically modify the aminoglycosides, which either interferes with drug transport or the binding of the drug at the site of antibacterial action, the 30S ribosomal subunit. The structures of several members of the aminoglycoside-modifying enzyme family are now known, and it is hoped that through a better understanding of these enzymes, both from a structural and mechanistic view-point, could lead to the development of either rationally-designed novel aminoglycosides, or specific structure-based enzyme inhibitors. Such developments could help to bring these compounds back to the forefront of modern antimicrobial chemotherapy. This review focuses on the structural details of the enzymes whose crystal structures are known and on the implications of these findings for devising novel strategies to overcome resistance to this broad class of antibiotics.


Asunto(s)
Acetiltransferasas/antagonistas & inhibidores , Antibacterianos/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Kanamicina Quinasa/antagonistas & inhibidores , Nucleotidiltransferasas/antagonistas & inhibidores , Acetiltransferasas/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Aminoglicósidos , Antibacterianos/metabolismo , Farmacorresistencia Bacteriana , Kanamicina Quinasa/química , Datos de Secuencia Molecular , Nucleotidiltransferasas/química
5.
Chem Biol ; 9(11): 1209-17, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12445771

RESUMEN

A key contact in the active site of an aminoglycoside phosphotransferase enzyme (APH(3')-IIIa) is a pi-pi stacking interaction between Tyr42 and the adenine ring of bound nucleotides. We investigated the prevalence of similar Tyr-adenine contacts and found that many different protein systems employ Tyr residues in the recognition of the adenine ring. The geometry of these stacking interactions suggests that electrostatics play a role in the attraction between these aromatic systems. Kinetic and calorimetric experiments on wild-type and mutant forms of APH(3')-IIIa yielded further experimental evidence of the importance of electrostatics in the adenine binding region and suggested that the stacking interaction contributes approximately 2 kcal/mol of binding energy. This type of information concerning the forces that govern nucleotide binding in APH(3')-IIIa will facilitate inhibitor design strategies that target the nucleotide binding site of APH-type enzymes.


Asunto(s)
Adenosina Difosfato/química , Electrones , Kanamicina Quinasa/antagonistas & inhibidores , Modelos Moleculares , Adenina , Adenosina Difosfato/farmacología , Calorimetría , Kanamicina Quinasa/química , Cinética , Ligandos , Unión Proteica , Electricidad Estática , Termodinámica , Tirosina
6.
J Org Chem ; 65(22): 7422-31, 2000 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-11076599

RESUMEN

Aminoglycoside 3'-phosphotransferases [APH(3')s] phosphorylate aminoglycoside antibiotics, a reaction that inactivates the antibiotics. These enzymes are the primary cause of resistance to aminoglycosides in bacteria. APH(3')-Ia operates by a random-equilibrium BiBi mechanism, whereas APH(3')-IIIa catalyzes its reaction by the Theorell-Chance mechanism, a form of ordered BiBi mechanism. Hence, both substrates have to be present in the active site prior to the transfer of phosphate by both mechanisms. Four bisubstrate analogues, compounds 1-4, were designed and synthesized as inhibitors for APH(3')s. These compounds are made of adenosine linked covalently to the 3'-hydroxyl of neamine (an aminoglycoside) via all-methylene tethers of 5-8 carbons. The K(i) values measured for these compounds indicated that affinities of APH(3')-Ia and APH(3')-IIa for compounds 2 and 3 (six- and seven-carbon tethers, respectively) were the best, and the inhibition constants for the two were comparable.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Kanamicina Quinasa/antagonistas & inhibidores , Kanamicina Quinasa/química , Secuencia de Carbohidratos , Inhibidores Enzimáticos/química , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA