Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Food Funct ; 15(9): 4832-4851, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38623620

RESUMEN

This study aimed to assess the impact of Lactobacillaceae (L or H represents a low or high dose), inulin (I), and polydextrose (P) combined with aerobic exercise (A) on the composition of the gut microbiota and metabolic profiles in db/db mice. After a 12-week intervention, LIP, LIPA, and HIPA groups exhibited significant improvements in hyperglycemia, glucose tolerance, insulin resistance, inflammatory response, and short-chain fatty acid (SCFA) and blood lipid levels compared to type 2 diabetes mice (MC). After treatment, the gut microbiota composition shifted favorably in the treatment groups which significantly increased the abundance of beneficial bacteria, such as Bacteroides, Blautia, Akkermansia, and Faecalibaculum, and significantly decreased the abundance of Proteus. Metabolomics analysis showed that compared to the MC group, the contents of 5-hydroxyindoleacetic acid, 3-hydroxysebacic acid, adenosine monophosphate (AMP), xanthine and hypoxanthine were significantly decreased, while 3-ketosphinganine, sphinganine, and sphingosine were significantly increased in the LIP and LIPA groups, respectively. Additionally, LIP and LIPA not only improved sphingolipid metabolism and purine metabolism pathways but also activated AMP-activated protein kinase to promote ß-oxidation by increasing the levels of SCFAs. Faecalibaculum, Blautia, Bacteroides, and Akkermansia exhibited positive correlations with sphingosine, 3-ketosphinganine, and sphinganine, and exhibited negative correlations with hypoxanthine, xanthine and AMP. Faecalibaculum, Blautia, Bacteroides, and Akkermansia may have the potential to improve sphingolipid metabolism and purine metabolism pathways. These findings suggest that the synergism of Lactobacillaceae, inulin, polydextrose, and aerobic exercise provides a promising strategy for the prevention and management of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hiperglucemia , Inulina , Lactobacillaceae , Condicionamiento Físico Animal , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Inulina/farmacología , Hiperglucemia/metabolismo , Masculino , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Lactobacillaceae/metabolismo , Glucanos/metabolismo , Metaboloma , Ratones Endogámicos C57BL , Ácidos Grasos Volátiles/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación
2.
J Agric Food Chem ; 72(10): 5428-5438, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38415591

RESUMEN

Food-fermenting lactobacilli convert glycosylated phytochemicals to glycosyl hydrolases and thereby alter their biological activity. This study aimed to investigate the microbial transformation of ß-glucosides of phytochemicals in comparison with utilization of cellobiose. Four homofermentative and four heterofermentative lactobacilli were selected to represent the metabolic diversity of Lactobacillaceae. The genomes of Lactobacillus crispatus, Companilactobacillus paralimentarius, Lacticaseibacillus paracasei, and Lactiplantibacillus plantarum encoded for 8 to 22 enzymes, predominantly phospho-ß-glucosidases, with predicted activity on ß-glucosides. Levilactobacillus hammesii and Furfurilactobacillus milii encoded for 3 ß-glucosidases, Furfurilactobacillus rossiae for one, and Fructilactobacillus sanfranciscensis for none. The hydrolysis of amygdalin, esculin, salicin, glucosides of quercetin and genistein, and ginsenosides demonstrated that several strains hydrolyzed ß-glucosides of phytochemicals but not cellobiose. Taken together, several of the carbohydrate-active enzymes of food-fermenting lactobacilli are specific for glycosides of phytochemicals.


Asunto(s)
Celulasas , Disacáridos , Glucósidos/metabolismo , Lactobacillaceae/metabolismo , Celobiosa , Fitoquímicos
3.
Nutrients ; 15(17)2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37686878

RESUMEN

Cystic Fibrosis-related gut dysbiosis (CFRGD) has become a recognised complication in children with this condition, and current evidence remains insufficient to guide the selection of probiotic strains for supplementation treatments. The aim of this study was to characterise the effect of three probiotic strains on CFRGD by means of a dynamic in vitro simulation of the colonic fermentation (SHIME®). The configuration of the system included three bioreactors colonised with the faecal inoculum of a child with cystic fibrosis. For 20 days, each bioreactor was supplied daily with either Lacticaseibacillus rhamnosus GG (ATCC 53103 TM), Limosilactobacillus reuteri (DSM 17938) or Lactiplantibacillus plantarum (DSM 22266). The baseline microbiota was characterised by a high abundance of Prevotella, Faecalibacterium and Acidaminococcus genera. After 20 days of supplementation, L. rhamnosus and L. plantarum reduced Prevotella significantly, and the three strains led to increased Faecalibacterium and Bifidobacterium and decreased Acidaminococcus, with some of these changes being maintained 10 days after ceasing supplementation. The metabolic activity remained unaltered in terms of short-chain fatty acids, but branched-chain fatty acids showed a significant decrease, especially with L. plantarum. Additionally, ammonia decreased at 20 days of supplementation, and lactate continuously increased with the three strains. The effects on colonic microbiota of L. rhamnosus, L. reuteri or L. plantarum were established, including increased beneficial bacteria, such as Faecalibacterium, and beneficial metabolites such as lactate; and on the other hand, a reduction in pathogenic genera, including Prevotella or Acidaminococcus and branched-chain fatty acids, overall supported their use as probiotics in the context of CFRGD.


Asunto(s)
Fibrosis Quística , Limosilactobacillus reuteri , Microbiota , Niño , Humanos , Lactobacillaceae , Ácido Láctico , Disbiosis , Faecalibacterium , Ácidos Grasos
4.
Pol J Microbiol ; 72(3): 285-297, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37725896

RESUMEN

The study aimed to isolate Lactobacillaceae strains with in vitro hypoglycemic activity and probiotic properties and to determine their antidiabetic abilities in vivo. Lactiplantibacillus plantarum 22, L. plantarum 25, Limosilactobacillus fermentum 11, and L. fermentum 305 with high in vitro hypoglycemic activity were screened from 23 strains of Lactobacillaceae isolated from human feces and identified by 16S rDNA sequencing. The fasting blood glucose (FBG) of the mice was recorded weekly. After 12 weeks, liver, kidney, and pancreas tissues were stained with hematoxylin and eosin (H&E) to observe histomorphology; the inflammatory factors were assayed by Quantitative Real-time PCR; PI3K and AKT were measured by Western blot; the short-chain fatty acids (SCFAs) were determined by LC-MS/MS. Inhibitory activities of L. plantarum 22, L. plantarum 25, L. fermentum 11, and L. fermentum 305 against α-amylase were 62.29 ± 0.44%, 51.81 ± 3.65%, 58.40 ± 1.68%, and 57.48 ± 5.04%, respectively. Their inhibitory activities to α-glucosidase were 14.89 ± 0.38%, 15.32 ± 0.89%, 52.63 ± 3.07%, and 51.79 ± 1.13%, respectively. Their survival rate after simulated gastrointestinal test were 12.42 ± 2.84%, 9.10 ± 1.12%, 5.86 ± 0.52%, and 8.82 ± 2.50% and their adhesion rates to Caco-2 cell were 6.09 ± 0.39%, 6.37 ± 0.28%, 6.94 ± 0.27%, and 6.91 ± 0.11%, respectively. The orthogonal tests of bacterial powders of the four strains showed that the maximum inhibitory activities to α-amylase and α-glucosidase were 93.18 ± 1.19% and 75.33 ± 2.89%, respectively. The results showed that the mixture of Lactobacillaceae could lower FBG, reduce inflammation, and liver, kidney, and pancreas damage, promote PI3K/AKT signaling pathway, and increase the content of SCFAs. The combination of L. plantarum 22, L. plantarum 25, L. fermentum 11, and L. fermentum 305 can potentially improve type 2 diabetes mellitus (T2DM).


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Ratones , Animales , Lactobacillaceae , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Células CACO-2 , Cromatografía Liquida , alfa-Glucosidasas , Espectrometría de Masas en Tándem , Hipoglucemiantes/farmacología , Transducción de Señal
5.
Int J Biol Macromol ; 246: 125700, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37414312

RESUMEN

The rapid spread of multidrug-resistant pathogens with the low efficacy of common antibiotics for humans and animals in its clinical therapeutics are a global health concern. Therefore, there is a need to develop new treatment strategies to control them clinically. The study aimed to evaluate the effects of Plantaricin Bio-LP1 bacteriocin produced from Lactiplantibacillus plantarum NWAFU-BIO-BS29 to alleviate the inflammation caused by multidrug-resistance Escherichia Coli (MDR-E. coli) infection in BALB/c mice-model. The focus was given on aspects linked to the mechanism of the immune response. Results indicated that Bio-LP1 had highly promising effects on partially ameliorating MDR-E. coli infection by reducing the inflammatory response through inhibiting the overexpression of proinflammatory-cytokines such as secretion of tumor necrosis factor (TNF-α) and interleukin (IL-6 and IL-ß) and strongly regulated theTLR4 signaling-pathway. Additionally, avoided the villous destruct, colon length shortening, loss of intestinal barrier integrity, and increased disease activity index. Furthermore, significantly increased the relative abundance of beneficial-intestinal-bacteria including Ligilactobacillus, Enterorhabdus, Pervotellaceae, etc. Finally, improved the intestinal mucosal barrier to alleviate the pathological damages and promote the production of short-chain fatty acids (SCFAs) a source of energy for the proliferation. In conclusion, plantaricin Bio-LP1 bacteriocin can be considered a safe alternative to antibiotics against MDR-E. coli-induced intestinal inflammation.


Asunto(s)
Bacteriocinas , Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli , Escherichia coli , Lactobacillaceae , Animales , Ratones , Bacteriocinas/administración & dosificación , Bacteriocinas/aislamiento & purificación , Bacteriocinas/farmacología , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/prevención & control , Microbioma Gastrointestinal , Inflamación/prevención & control , Intestinos/metabolismo , Intestinos/microbiología , Lactobacillaceae/química , Ratones Endogámicos BALB C , Estrés Oxidativo , Ácidos Grasos Volátiles/análisis
6.
Biosci Biotechnol Biochem ; 87(8): 907-915, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37169920

RESUMEN

We characterized the membrane vesicle fraction (RD-MV fraction) from bacterial strain RD055328, which is related to members of the genus Companilactobacillus and Lactiplantibacillus plantarum. RD-MVs and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were detected in the RD-MV fraction. Immunoglobulin A (IgA) was produced by Peyer's patch cells following the addition of the RD-MV fraction. In the presence of the RD-MV fraction, RAW264 cells produced the pro-inflammatory cytokine IL-6. Recombinant GAPDH probably induced the production of IL-6 by RAW264 cells via superficial toll-like receptor 2 (TLR2) recognition. A confocal laser scanning microscopy image analysis indicated that RD-MVs and GAPDH were taken up by RAW264 cells. GAPDH wrapped around RAW264 cells. We suggest that GAPDH from strain RD055328 enhanced the production of IgA by acquired immune cells via the production of IL-6 by innate immune cells through TLR2 signal transduction.


Asunto(s)
Proteínas Bacterianas , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante) , Lactobacillaceae , Transducción de Señal , Receptor Toll-Like 2 , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 2/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Inmunoglobulina A/inmunología , Interleucina-6/inmunología , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/aislamiento & purificación , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/farmacología , Adyuvantes Inmunológicos/genética , Adyuvantes Inmunológicos/aislamiento & purificación , Adyuvantes Inmunológicos/farmacología , Animales , Ratones , Lactobacillaceae/clasificación , Lactobacillaceae/enzimología , Lactobacillaceae/genética , Lactobacillaceae/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , FN-kappa B/inmunología , Activación Transcripcional/efectos de los fármacos
7.
Lett Appl Microbiol ; 76(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36881723

RESUMEN

The present work aimed to produce a cupuassu juice (Theobroma grandiflorum) fermented by the probiotic bacterium Lactiplantibacillus plantarum Lp62 and to analyze its antioxidant potential, antimicrobial activity, and resistance to biological barriers. The fermented beverage showed an increase in the content of phenolics, flavonoids, and antioxidant potential. The culture showed antagonistic activity against pathogens, but this result was not observed when the juice was tested. The probiotic strain remained viable under refrigeration, even in an acidified environment, and survived simulated gastrointestinal transit in vitro. L. plantarum Lp62 showed 30% adherence to HT-29 intestinal cells and proved to be safe in terms of antibiotic resistance and production of virulence factors. Fermentation increased the functional characteristics of cupuassu juice. This drink proved to be a good vehicle for the delivery of the probiotic bacteria L. plantarum Lp62.


Asunto(s)
Jugos de Frutas y Vegetales , Lactobacillaceae , Malvaceae , Probióticos , Humanos , Farmacorresistencia Bacteriana , Fermentación , Jugos de Frutas y Vegetales/análisis , Jugos de Frutas y Vegetales/microbiología , Células HT29 , Lactobacillaceae/efectos de los fármacos , Lactobacillaceae/metabolismo
8.
Int J Food Microbiol ; 394: 110167, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-36913840

RESUMEN

To understand the deterioration of vinegar that has frequently occurred in China recently and to address such a concern, the physicochemical indicators and bacterial structure of the spoiled vinegar collected from Sichuan were preliminarily investigated. Results showed that Lactobacillaceae was most likely responsible for the decrease of vinegar total sugar and furfural, through which total acid and furfuryl alcohol were generated. Then, an unreported difficult-to-cultivate gas-producing bacterium named Z-1 was isolated using a modified MRS medium. Strain Z-1 was identified as Acetilactobacillus jinshanensis subsp. aerogenes on the basis of physiological, biochemical, molecular biological and whole genome analyses. According to the investigation, such species was present throughout the fermentation process and not limited in Sichuan. The analysis of genetic diversity indicated that all the obtained A. jinshanensis isolates displayed high sequence similarity and an absence of recombination. Although it demonstrated acid resistance, Z-1 could be completely deactivated through heating (60 °C). Based on the above results, suggestions for safe production are made for vinegar enterprises.


Asunto(s)
Ácido Acético , Bacterias , Ácido Acético/farmacología , Ácido Acético/análisis , Bacterias/genética , Fermentación , Lactobacillaceae , China
9.
Science ; 379(6634): 826-833, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36821686

RESUMEN

The intestinal microbiota is known to influence postnatal growth. We previously found that a strain of Lactiplantibacillus plantarum (strain LpWJL) buffers the adverse effects of chronic undernutrition on the growth of juvenile germ-free mice. Here, we report that LpWJL sustains the postnatal growth of malnourished conventional animals and supports both insulin-like growth factor-1 (IGF-1) and insulin production and activity. We have identified cell walls isolated from LpWJL, as well as muramyl dipeptide and mifamurtide, as sufficient cues to stimulate animal growth despite undernutrition. Further, we found that NOD2 is necessary in intestinal epithelial cells for LpWJL-mediated IGF-1 production and for postnatal growth promotion in malnourished conventional animals. These findings indicate that, coupled with renutrition, bacteria cell walls or purified NOD2 ligands have the potential to alleviate stunting.


Asunto(s)
Microbioma Gastrointestinal , Crecimiento , Intestinos , Lactobacillaceae , Desnutrición , Proteína Adaptadora de Señalización NOD2 , Animales , Ratones , Pared Celular/química , Células Epiteliales/microbiología , Células Epiteliales/fisiología , Microbioma Gastrointestinal/fisiología , Vida Libre de Gérmenes , Trastornos del Crecimiento/fisiopatología , Trastornos del Crecimiento/terapia , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/fisiología , Intestinos/microbiología , Intestinos/fisiología , Lactobacillaceae/fisiología , Desnutrición/fisiopatología , Desnutrición/terapia , Proteína Adaptadora de Señalización NOD2/metabolismo , Crecimiento/efectos de los fármacos , Crecimiento/fisiología , Acetilmuramil-Alanil-Isoglutamina/farmacología , Acetilmuramil-Alanil-Isoglutamina/uso terapéutico
10.
World J Microbiol Biotechnol ; 39(4): 95, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36759385

RESUMEN

The aim of this work was to use consortia (two or three strains) of lactic acid bacteria (LAB) [Lactiplantibacillus plantarum CRL 1964 and CRL 1973, and Leuconostoc mesenteroides subsp. mesenteroides CRL 2131] to obtain quinoa sourdoughs (QS) for further manufacturing of quinoa sourdough-based biscuits (QB). Microbial grow and acidification were evaluated in QS while antioxidant activity (AOA), total phenolic compounds (TPC) and total flavonoid compounds (TFC) were determined in QS and QB. QS inoculated with LAB consortia respect to monocultures showed higher growth and acidification, AOA (7.9?42.6%), TPC (19.9?35.0%) and TFC (6.1?31.6%). QB prepared with QS inoculated by LAB consortia showed higher AOA (5.0-81.1%), TPC (22.5?57.5%) and TFC (14.0-79.9%) than biscuits inoculated by monocultures sourdoughs. These results were attributed to a synergic effect from LAB consortia. Principal component analysis showed the highest scores of the evaluated characteristics for biscuits made with consortia sourdough of two (CRL1964?+?CRL2131) and three (CRL1964?+?CRL1973?+?CRL2131) strains.


Asunto(s)
Chenopodium quinoa , Lactobacillales , Antioxidantes , Chenopodium quinoa/microbiología , Pan/microbiología , Lactobacillaceae , Fermentación , Microbiología de Alimentos
11.
J Microbiol Biotechnol ; 33(1): 75-82, 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36517044

RESUMEN

Lactic acid bacteria (LAB) isolated from kimchi (a traditional Korean dish typically made of fermented cabbage) can provide various health benefits, including anti-obesity, antioxidant, anti-inflammatory, anticancer, and antimicrobial effects. In this study, we examined the antimicrobial and immunomodulatory effects of Lactiplantibacillus plantarum WiKim0125 cultured in de Man, Rogosa, and Sharpe (MRS) medium containing vegetable waste. Live bacterial cells were eliminated via supernatant filtration or heat treatment. The cell-free supernatant (CFS) obtained from culture broth containing kimchi cabbage waste (KCW), cabbage waste (CW), or onion waste (OW) showed significantly higher antimicrobial activity against skin pathogens (Propionibacterium acnes and Staphylococcus aureus) and foodborne pathogens (Escherichia coli and Salmonella typhimurium), with inhibition zones ranging between 4.4 and 8.5 mm, compared to that in conventional MRS medium (4.0-7.3 mm). In lipopolysaccharide-stimulated RAW264.7 cells, both supernatant and heat-inactivated Lb. plantarum WiKim0125 from culture media containing KCW and CW suppressed the production of inflammatory cytokines (72.8% and 49.6%, respectively) and nitric oxide (62.2% and 66.7%, respectively) without affecting cell viability. These results indicate that vegetable waste can potentially increase the antimicrobial and immunoregulatory potency of LAB while presenting a molecular basis for applying postbiotics to health products.


Asunto(s)
Antiinfecciosos , Brassica , Alimentos Fermentados , Lactobacillales , Humanos , Verduras/microbiología , Lactobacillaceae , Brassica/microbiología
12.
Probiotics Antimicrob Proteins ; 15(1): 160-174, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36028786

RESUMEN

Beneficial effects of Lactiplantibacillus plantarum strains have been widely reported. Knowing that the effects of probiotic bacteria are strain-dependent, this study aimed to characterize the probiotic properties and investigate the gastrointestinal protective effects of nine novel L. plantarum strains isolated from Bahia, Brazil. The probiotic functionality was first evaluated in vitro by characterizing bile salt and acidic tolerance, antibacterial activity, and adhesion to Caco-2 cells. Antibiotic resistance profile, mucin degradation, and hemolytic activity assays were also performed to evaluate safety features. In vivo analyses were conducted to investigate the anti-inflammatory effects of the strains on a mouse model of 5-Fluorouracil-induced mucositis. Our results suggest that the used L. plantarum strains have good tolerance to bile salts and low pH and can inhibit commonly gastrointestinal pathogens. Lp2 and Lpl1 strains also exhibited high adhesion rates to Caco-2 cells (13.64 and 9.05%, respectively). Phenotypical resistance to aminoglycosides, vancomycin, and tetracycline was observed for most strains. No strain showed hemolytic or mucolytic activity. Seven strains had a protective effect against histopathological and inflammatory damage induced by 5-FU. Gene expression analysis of inflammatory markers showed that five strains upregulated interleukin 10 (Il10), while four downregulated both interleukin 6 (Il6) and interleukin 1b (Il1b). Additionally, all strains reduced eosinophilic and neutrophilic infiltration; however, they could not prevent weight loss or reduced liquid/ food intake. Altogether, our study suggests these Brazilian L. plantarum strains present good probiotic characteristics and safety levels for future applications and can be therapeutically adjuvant alternatives to prevent/treat intestinal mucositis.


Asunto(s)
Lactobacillus plantarum , Mucositis , Probióticos , Animales , Humanos , Ratones , Antibacterianos/metabolismo , Brasil , Células CACO-2 , Fluorouracilo , Lactobacillaceae , Lactobacillus plantarum/metabolismo , Probióticos/farmacología
13.
Braz. J. Vet. Res. Anim. Sci. (Online) ; 60: e204539, 2023. tab, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1451775

RESUMEN

This study aimed to evaluate methods for studying the in vitro antimicrobial activity of lactic acid bacteria (LAB) against Brucella abortus and to evaluate the antagonistic effect of LAB on the viability of this pathogen. A total of 18 LAB strains (Lactobacillus plantarum, n = 11; Pediococcus acidilactici, n = 1; Lactobacillus rhamnosus, n = 4; and Lactobacillus brevis,n = 2), isolated from Minas artisanal cheeses produced in three regions (Canastra, Campos das Vertentes, and Araxá) of Minas Gerais State, Brazil, were tested for their antimicrobial activity against B. abortus using three methods: spot-on-lawn, agar well diffusion assay, and antagonistic activity of the culture supernatants. None of the tested LAB strains could inhibit B. abortus in the spot-on-lawn and agar-well diffusion assays. The supernatants produced by LAB had an acidic pH, with intensity depending on bacterial growth and strain, and could inhibit the growth of B. abortus. In contrast, pH-neutralized (pH 7.0) LAB supernatants did not suppress the growth of B. abortus. The results showed that the best technique to study the in vitro antagonism of LAB against B. abortus was the antagonistic activity of culture supernatants. The growth of B. abortus may have been inhibited by acid production.(AU)


Este estudo teve como objetivo avaliar métodos de estudo in vitro da atividade antimicrobiana de bactérias lácticas contra Brucella abortus e avaliar o efeito antagônico das mesmas sobre a viabilidade deste patógeno. Um total de 18 amostras de bactérias lácteas (Lactobacillus plantarum, n = 11; Pediococcus acidilactici, n = 1; Lactobacillus rhamnosus, n = 4; e Lactobacillus brevis, n = 2), isoladas de exemplares de Queijo Minas Artesanal produzidos em três regiões (Canastra, Campos das Vertentes e Araxá) do estado de Minas Gerais, Brasil, foram testados quanto à sua atividade antimicrobiana contra B. abortus usando três métodos: spot-on-lawn, ensaio de difusão em poço e atividade antagonista de sobrenadante de cultura. Nenhuma das cepas testadas foi capaz de inibir B. abortus nos ensaios spot-on-lawm e de difusão em poço. Os sobrenadantes produzidos pelas bactérias lácteas apresentaram pH ácido, com intensidade dependente do crescimento bacteriano e da amostra, podendo inibir o crescimento de B. abortus. Em contraste, os sobrenadantes com pH neutralizado (pH 7,0) não inibiram o crescimento de B. abortus. Os resultados mostraram que a melhor técnica para estudar o antagonismo in vitro de bactérias lácteas contra B. abortus foi a atividade antagonista de sobrenadante de cultura. O crescimento de B. abortus pode ter sido inibido pela produção de ácido.(AU)


Asunto(s)
Lactobacillaceae/aislamiento & purificación , Queso/microbiología , Microbiota , Brasil , Brucella abortus , Abastecimiento de Alimentos
14.
Adv Med Sci ; 67(2): 304-310, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35994929

RESUMEN

PURPOSE: Serum levels of inflammatory cytokines and uremic toxins, and their inter-correlations with the diversity of Bacteroidaceae, Bifidobacteriaceae, Prevotellaceae and Lactobacillaceae families in intestinal microbiota were investigated in patients with end stage renal disease (ESRD). METHODS: Stool and blood samples from 20 ESRD patients on maintenance hemodialysis were collected. DNA genome of the bacterial composition of the stool samples was extracted and evaluated by the sequencing analysis of 16S rRNA genes. Serum levels of inflammatory cytokines and uremic toxins were then analyzed. RESULTS: The mean serum concentrations of TNF-α, IL-6, indoxyl sulfate (IS) and p-cresol (PC) were 305.99 â€‹± â€‹12.03 â€‹ng/L, 159.95 â€‹± â€‹64.22 â€‹ng/L, 36.76 â€‹± â€‹5.09 â€‹µg/mL and 0.39 â€‹± â€‹0.15 â€‹µg/mL, respectively. The most significant positive correlation was observed between Prevotellaceae family and total antioxidant capacity (TAC), Lactobacilli species and CRP and PC, as well as Scardovia wiggsiae and IS (p â€‹< â€‹0.001). A negative correlation was also found between Bacteroides clarus and PC. Patients with ESRD on maintenance hemodialysis had elevated levels of PC and IS and increased levels of the inflammatory markers. The most positive correlation was found between microbiota and CRP and PC, while the most negative one was between microbiota and IL-1 and TAC. CONCLUSIONS: The abundance and diversity of Bacteroidaceae, Bifidobacteriaceae, Prevotellaceae and Lactobacillaceae families and their correlations with clinical parameters could provide benefits in the ESRD patients but they could not promote the symptoms.


Asunto(s)
Microbioma Gastrointestinal , Fallo Renal Crónico , Humanos , Microbioma Gastrointestinal/genética , Indicán , ARN Ribosómico 16S/genética , Lactobacillaceae/genética , Bacteroidaceae/genética , Antioxidantes , Factor de Necrosis Tumoral alfa , Interleucina-6 , Fallo Renal Crónico/terapia , Biomarcadores , Interleucina-1
15.
J Agric Food Chem ; 70(27): 8365-8376, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35758868

RESUMEN

Food-derived bioactive peptides (BPs) have received considerable attention as postbiotics for human gut health. Here we used a genomics-based semirational approach to expand the postbiotic potential of collagen peptides (CPs) produced from probiotic fermentation. In silico digestion revealed distinct BPs embedded in fish collagen in a protease-dependent manner. Anaerobic digestion of collagen by representative Lactobacillaceae species revealed differential substrate utilization and collagen degradation patterns. Nanoliquid chromatography-mass spectrometry analysis of CPs showed that each species exhibited different cleavage patterns and unique peptide profiles. Remarkably, the 1-10 kDa CPs produced by Lacticaseibacillus paracasei showed agonistic activities toward G protein-coupled receptor 35 (GPR35). These CPs could repair intestinal epithelium through the GPR35-mediated extracellular signal-regulated protein kinase (ERK) 1/2 signaling pathway, suggesting that probiotic-aided collagen hydrolysates can serve as postbiotics for host-microbe interactions. Therefore, this study provides an effective strategy for the rapid screening of CPs for gut health in the gastrointestinal tract.


Asunto(s)
Colágeno , Lactobacillaceae , Animales , Antioxidantes/química , Colágeno/química , Genómica , Humanos , Lactobacillaceae/metabolismo , Péptidos/química
16.
Nutrients ; 14(9)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35565884

RESUMEN

In our previous research, Lactiplantibacillus plantarum-12 alleviated inflammation in dextran sodium sulfate (DSS)-induced mice by regulating intestinal microbiota and preventing colon shortening (p < 0.05). The purpose of the present study was to evaluate whether L. plantarum-12 could ameliorate the colon cancer symptoms of azoxymethane (AOM)/DSS-treated C57BL/6 mice. The results showed that L. plantarum-12 alleviated colonic shortening (from 7.43 ± 0.15 to 8.23 ± 0.25) and weight loss (from 25.92 ± 0.21 to 27.75 ± 0.88) in AOM/DSS-treated mice. L. plantarum-12 oral administration down-regulated pro-inflammatory factors TNF-α (from 350.41 ± 15.80 to 247.72 ± 21.91), IL-8 (from 322.19 ± 11.83 to 226.08 ± 22.06), and IL-1ß (111.43 ± 8.14 to 56.90 ± 2.70) levels and up-regulated anti-inflammatory factor IL-10 (from 126.08 ± 24.92 to 275.89 ± 21.87) level of AOM/DSS-treated mice. L. plantarum-12 oral administration restored the intestinal microbiota dysbiosis of the AOM/DSS treated mice by up-regulating beneficial Muribaculaceae, Lactobacillaceae, and Bifidobacteriaceae levels and down-regulating pathogenic Proteobacteria, Desulfovibrionaceae, and Erysipelotrichaceae levels. As a result, the fecal metabolites of the AOM/DSS-treated mice were altered, including xanthosine, uridine, 3,4-methylenesebacic acid, 3-hydroxytetradecanedioic acid, 4-hydroxyhexanoylglycine, beta-leucine, and glycitein, by L. plantarum-12 oral administration. Furthermore, L. plantarum-12 oral administration significantly ameliorated the colon injury of the AOM/DSS-treated mice by enhancing colonic tight junction protein level and promoting tumor cells death via down-regulating PCNA (proliferating cell nuclear antigen) and up-regulating pro-apoptotic Bax. (p < 0.05). Taken together, L. plantarum-12 oral administration could ameliorate the colon cancer burden and inflammation of AOM-DSS-treated C57BL/6 mice through regulating the intestinal microbiota, manipulating fecal metabolites, enhancing colon barrier function, and inhibiting NF-κB signaling. These results suggest that L. plantarum-12 might be an excellent probiotic candidate for the prevention of colon cancer.


Asunto(s)
Colitis , Neoplasias del Colon , Microbioma Gastrointestinal , Animales , Azoximetano/toxicidad , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/metabolismo , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/metabolismo , Neoplasias del Colon/prevención & control , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Disbiosis/metabolismo , Inflamación/metabolismo , Lactobacillaceae , Metaboloma , Ratones , Ratones Endogámicos C57BL
17.
Arch Microbiol ; 204(6): 331, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35579801

RESUMEN

The production of functional foods containing prebiotic ingredients is an area of particular interest and a very promising market with the potential to dominate the food industry. This study aims to explore the potential of starch-based prebiotic tapioca and skim milk, as low-cost and easily accessible food sources and as natural and "clean label" food ingredients on the probiotic activities of Lactiplantibacillus plantarum (formerly Lactobacillus plantarum). The results show that concomitant use of the modified tapioca starch and skim milk promotes the antibacterial and anti-cancer properties of L. plantarum post-fermentation media pointing out how the functionality of probiotic products can be regulated by growth supplements.


Asunto(s)
Lactobacillus plantarum , Manihot , Neoplasias , Probióticos , Animales , Medios de Cultivo , Fermentación , Lactobacillaceae , Leche/microbiología , Almidón
18.
Biomed Pharmacother ; 149: 112755, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35276466

RESUMEN

Lactobacilli have been shown to inhibit or suppress cancer cell growth through the release of strain-specific bioactive metabolites and their inclusion in functional foods could exert a health promoting activity on human health. Herein, we examined the antiproliferative activity of the Lactiplantibacillus plantarum strains S2T10D and O2T60C, which have been previously shown to exert different butyrogenic activities. Human HT-29 cells were employed as an in vitro colon cancer model and both bacterial strains were found to inhibit their growth. However, the strain S2T10D showed a greater antiproliferative activity which, interestingly, was correlated to its butyrogenic capability. Noteworthy, for the non-butyrogenic strain O2T60C, the growth inhibitory capability was rather limited. Furthermore, both the butyrate-containing supernatant of S2T10D and glucose-deprived cell culture medium supplemented with the same concentration of butyrate found in S2T10D supernatant, induced a pH-independent cancer cell growth inhibition accompanied by downregulation of cyclin D1 at mRNA level. The downregulation of cyclin D1 gene expression was accompanied by cell cycle arrest in G2/M phase and decrease of cyclin B1 and D1 protein levels. This in vitro study underlines the impact of Lpb. plantarum in the growth inhibition of cancer cells, and proposes butyrate-mediated cell cycle regulation as a potential involved mechanism. Since the production of butyric acid in Lpb. plantarum has been proven strain-dependent and differentially boosted by specific prebiotic compounds, our results open future research paths to determine whether this metabolic activity could be modulated in vivo by enhancing this antiproliferative effects on cancer cells.


Asunto(s)
Neoplasias del Colon , Ciclina D1 , Ácido Butírico , Proliferación Celular , Ciclina D1/metabolismo , Humanos , Lactobacillaceae/metabolismo
19.
J Microbiol Biotechnol ; 32(1): 72-80, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-34750286

RESUMEN

In this study, the survival capacity (acid and bile salt tolerance, and adhesion to gut epithelial cells) and probiotic properties (enzyme activity-inhibition and anti-inflammatory activities, inhibition of adipogenesis, and stress hormone level reduction) of Lactiplantibacillus plantarum LRCC5314, isolated from kimchi (Korean traditional fermented cabbage), were investigated. LRCC5314 exhibited very stable survival at ph 2.0 and in 0.2% bile acid with 89.9% adhesion to Caco-2 intestinal epithelial cells after treatment for 2 h. LRCC5314 also inhibited the activities of α-amylase and α-glucosidase, which are involved in elevating postprandial blood glucose levels, by approximately 72.9% and 51.2%, respectively. Treatment of lipopolysaccharide (LPS)-stimulated RAW 264.7 cells with the LRCC5314 lysate decreased the levels of the inflammatory factors nitric oxide, tumor necrosis factor (TNF-α), interleukin (IL)-1ß, and interferon-γ by 88.5%, 49.3%, 97.2%, and 99.8%, respectively, relative to those of the cells treated with LPS alone. LRCC5314 also inhibited adipogenesis in differentiating preadipocytes (3T3-L1 cells), showing a 14.7% decrease in lipid droplet levels and a 74.0% decrease in triglyceride levels, as well as distinct reductions in the mRNA expression levels of adiponectin, FAS, PPAR/γ, C/EBPα, TNF-α, and IL-6. Moreover, LRCC5314 reduced the level of cortisol, a hormone with important effect on stress, by approximately 35.6% in H295R cells. L. plantarum LRCC5314 is identified as a new probiotic with excellent in vitro multifunctional properties. Subsequent in vivo studies may further demonstrate its potential as a functional food or pharmabiotic.


Asunto(s)
Alimentos Fermentados/microbiología , Lactobacillaceae/aislamiento & purificación , Lactobacillaceae/fisiología , Probióticos/farmacología , Células 3T3-L1 , Adipogénesis/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Ácidos y Sales Biliares , Células CACO-2 , Citocinas/metabolismo , Tolerancia a Medicamentos , Fermentación , Humanos , Interferón gamma/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/efectos adversos , Ratones , Óxido Nítrico , Células RAW 264.7 , Factor de Necrosis Tumoral alfa
20.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34913426

RESUMEN

In Japan, during a screening of lactic acid bacteria in spent mushroom substrates, an unknown bacterium was isolated and could not be assigned to any known species. Strain YK48GT is Gram-stain-positive, rod-shaped, non-motile, non-spore-forming and catalase-negative. The isolate grew in 0-4 % (w/v) NaCl, at 15-37 °C (optimum, 30 °C) and at pH 4.0-8.0 (optimum, pH 6.0). The genomic DNA G+C content of strain YK48GT was 42.5 mol%. Based on its 16S rRNA gene sequence, strain YK48GT represented a member of the genus Lentilactobacillus and showed the highest pairwise similarity to Lentilactobacillus rapi DSM 19907T (97.86 %). Phylogenetic analyses based on amino acid sequences of 466 shared protein-encoding genes also revealed that the strain was phylogenetically positioned in the genus Lentilactobacillus but did not suggest an affiliation with previously described species. The average nucleotide identity and digital DNA-DNA hybridization values between strain YK48GT and the type strains of phylogenetically related species were 72.2-76.6% and 19.0-21.2 %, respectively, indicating that strain YK48GT represents a novel species within the genus Lentilactobacillus. Phenotypic data further confirmed the differentiation of strain YK48GT from other members of the genus Lentilactobacillus. According to the results of the polyphasic characterization presented in this study, strain YK48GT represents a novel species of the genus Lentilactobacillus, for which the name Lentilactobacillus fungorum sp. nov. is proposed. The type strain is YK48GT (=JCM 32598T=DSM 107968T).


Asunto(s)
Agaricales , Lactobacillaceae/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Japón , Lactobacillaceae/aislamiento & purificación , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA