Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.965
Filtrar
1.
J Nat Prod ; 87(7): 1817-1825, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38964296

RESUMEN

Our ongoing exploration of Australian rainforest plants for the biodiscovery of anti-inflammatory agents led to the isolation and structural elucidation of eight new arylalkenyl α,ß-unsaturated-δ-lactones, triplinones A-H (1-8), from the leaves of the Australian rainforest plant Cryptocarya triplinervis B. Hyland (Lauraceae). The chemical structures of these compounds were established by NMR spectroscopic data analysis, while their relative and absolute configurations were established using a combination of Mosher ester analysis utilizing both Riguera's and Kishi's methods, ECD experiments, and X-ray crystallography analysis. Compounds 1-8 exhibited good inhibitory activities toward nitric oxide (NO) production in lipopolysaccharide (LPS) and interferon (IFN)-γ induced RAW 264.7 macrophages, in particular compounds 1-3 and 5, with IC50 values of 7.3 ± 0.5, 6.0 ± 0.3, 5.6 ± 0.3, and 5.4 ± 2.5 µM, respectively.


Asunto(s)
Antiinflamatorios , Cryptocarya , Lactonas , Óxido Nítrico , Hojas de la Planta , Bosque Lluvioso , Hojas de la Planta/química , Ratones , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Australia , Células RAW 264.7 , Estructura Molecular , Lactonas/farmacología , Lactonas/química , Lactonas/aislamiento & purificación , Óxido Nítrico/biosíntesis , Óxido Nítrico/antagonistas & inhibidores , Cryptocarya/química , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Cristalografía por Rayos X
2.
J Sep Sci ; 47(11): e2400181, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38863110

RESUMEN

Topotecan (TPT) is used in the treatment of retinoblastoma, the most common malignant intraocular tumor in children. TPT undergoes pH-dependent hydrolysis of the lactone ring to the ring-opened carboxylate form, with the lactone form showing antitumor activity. A selective, and highly sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed for the determination of both forms of TPT in one mobile phase composition in plasma and vitreous humor matrices. The method showed an excellent linear range of 0.375-120 ng/mL for the lactone. For the carboxylate, the linear range was from 0.75 to 120 ng/mL. The matrix effect and the recovery for the lactone ranged from 98.5% to 106.0% in both matrices, for the carboxylate form, it ranged from 94.9% to 101.2%. The dynamics of the transition between TPT lactone and TPT carboxylate were evaluated at different pH environments. The stability of TPT forms was assessed in plasma and vitreous humor at 8 and 37°C and a very fast conversion of lactone to carboxylate form occurred at 37°C in both matrices. The method developed facilitates the investigation of TPT pharmacodynamics and the release kinetics in the development of the innovative local drug delivery systems.


Asunto(s)
Lactonas , Espectrometría de Masas en Tándem , Topotecan , Cuerpo Vítreo , Cromatografía Líquida de Alta Presión , Lactonas/química , Lactonas/análisis , Cuerpo Vítreo/química , Topotecan/química , Topotecan/análisis , Humanos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/análisis , Estructura Molecular
3.
Sci Rep ; 14(1): 14229, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902325

RESUMEN

Natural products are an unsurpassed source of leading structures in drug discovery. The biosynthetic machinery of the producing organism offers an important source for modifying complex natural products, leading to analogs that are unattainable by chemical semisynthesis or total synthesis. In this report, through the combination of natural products chemistry and diversity-oriented synthesis, a diversity-enhanced extracts approach is proposed using chemical reactions that remodel molecular scaffolds directly on extracts of natural resources. This method was applied to subextract enriched in sesquiterpene lactones from Ambrosia tenuifolia (Fam. Asteraceae) using acid media conditions (p-toluenesulfonic acid) to change molecular skeletons. The chemically modified extract was then fractionated by a bioguided approach to obtain the pure compounds responsible for the anti-glioblastoma (GBM) activity in T98G cell cultures. Indeed, with the best candidate, chronobiological experiments were performed to evaluate temporal susceptibility to the treatment on GBM cell cultures to define the best time to apply the therapy. Finally, bioinformatics tools were used to supply qualitative and quantitative information on the physicochemical properties, chemical space, and structural similarity of the compound library obtained. As a result, natural products derivatives containing new molecular skeletons were obtained, with possible applications as chemotherapeutic agents against human GBM T98G cell cultures.


Asunto(s)
Glioblastoma , Extractos Vegetales , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Línea Celular Tumoral , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Productos Biológicos/química , Productos Biológicos/farmacología , Asteraceae/química , Sesquiterpenos/química , Sesquiterpenos/farmacología , Lactonas/química , Lactonas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química
4.
J Agric Food Chem ; 72(25): 14165-14176, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38872428

RESUMEN

Atractylodes macrocephala Koidz, a traditional Chinese medicine, contains atractylenolide I (ATR-I), which has potential anticancer, anti-inflammatory, and immune-modulating properties. This study evaluated the therapeutic potential of ATR-I for indomethacin (IND)-induced gastric mucosal lesions and its underlying mechanisms. Noticeable improvements were observed in the histological morphology and ultrastructures of the rat gastric mucosa after ATR-I treatment. There was improved blood flow, a significant decrease in the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1ß, and IL-18, and a marked increase in prostaglandin E2 (PGE2) expression in ATR-I-treated rats. Furthermore, there was a significant decrease in the mRNA and protein expression levels of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), cysteinyl aspartate specific proteinase-1 (caspase-1), and nuclear factor-κB (NF-κB) in rats treated with ATR-I. The results show that ATR-I inhibits the NLRP3 inflammasome signaling pathway and effectively alleviates local inflammation, thereby improving the therapeutic outcomes against IND-induced gastric ulcers in rats.


Asunto(s)
Atractylodes , Mucosa Gástrica , Indometacina , Inflamasomas , Lactonas , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas Sprague-Dawley , Sesquiterpenos , Úlcera Gástrica , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Indometacina/efectos adversos , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/metabolismo , Ratas , Sesquiterpenos/farmacología , Sesquiterpenos/química , Lactonas/farmacología , Lactonas/química , Inflamasomas/metabolismo , Inflamasomas/genética , Inflamasomas/efectos de los fármacos , Masculino , Atractylodes/química , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/metabolismo , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , FN-kappa B/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/inmunología , Caspasa 1/genética , Caspasa 1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/inmunología , Interleucina-18/genética , Interleucina-18/metabolismo
5.
BMC Complement Med Ther ; 24(1): 214, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840248

RESUMEN

BACKGROUND: Traditional Chinese medicine (TCM) has been found widespread application in neoplasm treatment, yielding promising therapeutic candidates. Previous studies have revealed the anti-cancer properties of Brevilin A, a naturally occurring sesquiterpene lactone derived from Centipeda minima (L.) A.Br. (C. minima), a TCM herb, specifically against lung cancer. However, the underlying mechanisms of its effects remain elusive. This study employs network pharmacology and experimental analyses to unravel the molecular mechanisms of Brevilin A in lung cancer. METHODS: The Batman-TCM, Swiss Target Prediction, Pharmmapper, SuperPred, and BindingDB databases were screened to identify Brevilin A targets. Lung cancer-related targets were sourced from GEO, Genecards, OMIM, TTD, and Drugbank databases. Utilizing Cytoscape software, a protein-protein interaction (PPI) network was established. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene set enrichment analysis (GSEA), and gene-pathway correlation analysis were conducted using R software. To validate network pharmacology results, molecular docking, molecular dynamics simulations, and in vitro experiments were performed. RESULTS: We identified 599 Brevilin A-associated targets and 3864 lung cancer-related targets, with 155 overlapping genes considered as candidate targets for Brevilin A against lung cancer. The PPI network highlighted STAT3, TNF, HIF1A, PTEN, ESR1, and MTOR as potential therapeutic targets. GO and KEGG analyses revealed 2893 enriched GO terms and 157 enriched KEGG pathways, including the PI3K-Akt signaling pathway, FoxO signaling pathway, and HIF-1 signaling pathway. GSEA demonstrated a close association between hub genes and lung cancer. Gene-pathway correlation analysis indicated significant associations between hub genes and the cellular response to hypoxia pathway. Molecular docking and dynamics simulations confirmed Brevilin A's interaction with PTEN and HIF1A, respectively. In vitro experiments demonstrated Brevilin A-induced dose- and time-dependent cell death in A549 cells. Notably, Brevilin A treatment significantly reduced HIF-1α mRNA expression while increasing PTEN mRNA levels. CONCLUSIONS: This study demonstrates that Brevilin A exerts anti-cancer effects in treating lung cancer through a multi-target and multi-pathway manner, with the HIF pathway potentially being involved. These results lay a theoretical foundation for the prospective clinical application of Brevilin A.


Asunto(s)
Neoplasias Pulmonares , Simulación del Acoplamiento Molecular , Sesquiterpenos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Sesquiterpenos/farmacología , Sesquiterpenos/química , Lactonas/farmacología , Lactonas/química , Células A549 , Mapas de Interacción de Proteínas , Farmacología en Red , Crotonatos
6.
Org Lett ; 26(26): 5436-5440, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38900935

RESUMEN

Native chemical ligation (NCL) represents a cornerstone strategy in accessing synthetic peptides and proteins, remaining one of the most efficacious methodologies in this domain. The fundamental requisites for achieving a proficient NCL reaction involve chemoselective coupling between a C-terminal thioester peptide and a thiol-bearing N-terminal peptide. However, achieving coupling at sterically congested residues remains challenging. In addition, while most NCLs proceed without epimerization, ß-branched (e.g., Ile, Thr, Val) and Pro-derived C-terminal thioesters react slowly and can be susceptible to significant epimerization and hydrolysis. Herein, we report an epimerization-free NCL reaction via ß-lactone-mediated native chemical ligation which constructs sterically congested Thr residues. The constrained ring from the ß-lactone allows rapid peptide ligation without detectable epimerization. The method has a broad side-chain tolerance and was applied to the preparation of cyclic peptides and polypeptidyl thioester, which could be difficult to obtained otherwise.


Asunto(s)
Lactonas , Péptidos , Lactonas/química , Lactonas/síntesis química , Estructura Molecular , Péptidos/química , Péptidos/síntesis química , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química
7.
Biochem Pharmacol ; 226: 116360, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38871334

RESUMEN

NLRP3 inflammasome plays an important role in autoimmunity and the dysregulation of NLRP3 inflammasome can lead to various human diseases. Natural products are an important source for the discovery of safe and effective inflammatory inhibitors. Chloranthalactone B (CTB), a lindenane sesquiterpenoid (LS) from a common traditional Chinese medicine (TCM) (Sarcandra glabra), could significantly inhibit the level of IL-1ß. This study aims to investigate the anti-inflammatory mechanism and target of CTB and its therapeutic effects on inflammatory diseases. CTB significantly inhibited IL-1ß secretion induced by different agonists. Co-IP and flow cytometry results showed that CTB inhibited NLRP3-NEK7 interactions, but had no significant effect on upstream events. Pull-down, DARTS, CETSA, biolayer interferometry assay (BLI), and LC/MS/MS results showed that CTB could covalently bind to cysteine 279 (Cys279) in the NACHT domain of NLRP3. The result of the chemical modification indicated that the epoxide motif was the key group of CTB for its anti-inflammatory effect of CTB. Further animal studies showed that CTB significantly reduced the symptoms and inflammation levels of gout, peritonitis, and acute lung injury. However, the protective effect of CTB against peritonitis and gout was abolished in NLRP3-knocked out (NLRP3 KO) mice. Overall, our research revealed that CTB was a specific NLRP3 covalent inhibitor, and epoxide motif was an active pharmacophore that covalently binds to NLRP3, which provided new insights in designing new NLRP3 inhibitors for treating NLRP3-driven diseases.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Humanos , Masculino , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Células HEK293 , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lactonas/farmacología , Lactonas/química , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Sesquiterpenos/farmacología , Sesquiterpenos/química
8.
Molecules ; 29(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38930831

RESUMEN

In recent years, researchers have often encountered the significance of the aberrant metabolism of tumor cells in the pathogenesis of malignant neoplasms. This phenomenon, known as the Warburg effect, provides a number of advantages in the survival of neoplastic cells, and its application is considered a potential strategy in the search for antitumor agents. With the aim of developing a promising platform for designing antitumor therapeutics, we synthesized a library of conjugates of 3,5-bis(arylidene)-4-piperidone and sesquiterpene lactones. To gain insight into the determinants of the biological activity of the prepared compounds, we showed that the conjugates of 3,5-bis(arylidene)-4-piperidone and sesquiterpene lactones, which are cytotoxic agents, demonstrate selective activity toward a number of tumor cell lines with glycolysis-inhibiting ability. Moreover, the results of molecular and in silico screening allowed us to identify these compounds as potential inhibitors of the pyruvate kinase M2 oncoprotein, which is the rate-determining enzyme of glycolysis. Thus, the results of our work indicate that the synthesized conjugates of 3,5-bis(arylidene)-4-piperidone and sesquiterpene lactones can be considered a promising platform for designing selective cytotoxic agents against the glycolysis process, which opens new possibilities for researchers involved in the search for antitumor therapeutics among compounds containing piperidone platforms.


Asunto(s)
Antineoplásicos , Lactonas , Piperidonas , Sesquiterpenos , Humanos , Sesquiterpenos/farmacología , Sesquiterpenos/química , Lactonas/química , Lactonas/farmacología , Lactonas/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Línea Celular Tumoral , Piperidonas/farmacología , Piperidonas/química , Glucólisis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Ensayos de Selección de Medicamentos Antitumorales
9.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791538

RESUMEN

Various studies have shown that Hypogymnia physodes are a source of many biologically active compounds, including lichen acids. These lichen-specific compounds are characterized by antioxidant, antiproliferative, and antimicrobial properties, and they can be used in the cosmetic and pharmaceutical industries. The main aim of this study was to optimize the composition of natural deep eutectic solvents based on proline or betaine and lactic acid for the extraction of metabolites from H. physodes. The design of the experimental method and the response surface approach allowed the optimization of the extraction process of specific lichen metabolites. Based on preliminary research, a multivariate model of the experiment was developed. For optimization, the following parameters were employed in the experiment to confirm the model: a proline/lactic acid/water molar ratio of 1:2:2. Such a mixture allowed the efficient extraction of three depsidones (i.e., physodic acid, physodalic acid, 3-hydroyphysodic acid) and one depside (i.e., atranorin). The developed composition of the solvent mixtures ensured good efficiency when extracting the metabolites from the thallus of H. physodes with high antioxidant properties.


Asunto(s)
Depsidos , Lactonas , Depsidos/química , Depsidos/aislamiento & purificación , Depsidos/farmacología , Lactonas/química , Lactonas/aislamiento & purificación , Lactonas/farmacología , Disolventes Eutécticos Profundos/química , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Prolina/química , Líquenes/química , Ácido Láctico/química , Tecnología Química Verde/métodos , Betaína/química , Betaína/análogos & derivados , Betaína/farmacología , Solventes/química , Dibenzoxepinas , Hidroxibenzoatos
10.
J Nat Prod ; 87(6): 1652-1659, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38787359

RESUMEN

Phytochemical investigation of the fruit and flowers of Passiflora foetida led to the isolation of 14 compounds, of which five are previously undescribed fatty acid lactones. Four 2-pyrones, passifetilactones A-D (1-4), and one furanone, passifetilactone E (5), were identified by analysis of spectroscopic and spectrometric data. The previously undescribed lactones were tested for cytotoxic activities against the cancer cell lines HeLa, A549, PC-3, KKU-055, and KKU-213A and two normal cell lines, Vero and MMNK-1. Passifetilactones B (2) and C (3) displayed good to mild cytotoxic activity, at IC50 3.7-25.9 µM and 12.2-19.8 µM, respectively, against six cell lines, but were weakly active against the MMNK-1 cell line. Passifetilactones B and C (2 and 3) showed cell apoptosis induction on the KKU-055 cell line in a flow cytometry experiment. Passifetilactone D (4) is an isolation artifact produced by purification over silica gel, but we demonstrated that it can also be slowly formed within the crude EtOAc extract. This is the first investigation of the flowers and the fruit of this plant.


Asunto(s)
Antineoplásicos Fitogénicos , Flores , Frutas , Lactonas , Passiflora , Flores/química , Humanos , Frutas/química , Lactonas/química , Lactonas/farmacología , Lactonas/aislamiento & purificación , Passiflora/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Estructura Molecular , Animales , Ácidos Grasos/química , Ácidos Grasos/farmacología , Ácidos Grasos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Células HeLa , Chlorocebus aethiops , Células Vero
11.
Int J Pharm ; 657: 124175, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38685442

RESUMEN

Molecular interactions are crucial to stabilize amorphous drugs in amorphous solid dispersions (ASDs). Most polymers, however, have only a limited ability to form strong molecular interactions with drugs. Polymers tailored to fit the physicochemical properties of the drug molecule to be incorporated, for instance by allowing the incorporation of specific functional groups, would be highly sought-for in this regard. For this purpose, the novel allyl-terminated polymer methoxy(polyethylene glycol)-block-poly(jasmine lactone) (mPEG-b-PJL) has been synthesized and functionalized to potentially enhance specific drug-polymer interactions. This study investigated the use of mPEG-b-PJL in ASDs, using carvedilol (CAR), a weakly basic model drug. The findings revealed that the acidic functionalized form of the polymer (mPEG-b-PJL-COOH) indeed established stronger molecular interactions with CAR compared to its non-functionalized counterpart mPEG-b-PJL. Evaluations on polymer effectiveness in forming ASDs demonstrated that mPEG-b-PJL-COOH outperformed its non-functionalized counterpart in miscibility, drug loading ability, and stability, inferred from reduced molecular mobility. However, dissolution tests indicated that ASDs with mPEG-b-PJL-COOH did not significantly improve the dissolution behaviour compared to amorphous CAR alone, despite potential solubility enhancement through micelle formation. Overall, this study confirms the potential of functionalized polymers in ASD formulations, while the challenge of improving dissolution performance in these ASDs remains an area of further development.


Asunto(s)
Polietilenglicoles , Polietilenglicoles/química , Solubilidad , Carvedilol/química , Estabilidad de Medicamentos , Polímeros/química , Lactonas/química , Química Farmacéutica/métodos , Composición de Medicamentos/métodos
12.
J Asian Nat Prod Res ; 26(8): 993-1000, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38629616

RESUMEN

A new 14-membered resorcylic acid lactone (RAL14), chaetolactone A (1), along with three known ones (2-4), was obtained from the fermentation of the soil-derived fungus Chaetosphaeronema sp. SSJZ001. Their structures were established based on extensive spectroscopic data analyses (UV, IR, HRESIMS, 1D, and 2D NMR),13C NMR chemical shifts calculations coupled with the DP4+ probability method, theoretical calculations of ECD spectra, as well as X-ray diffraction analysis. All compounds were evaluated for their cytotoxic effects against A549, HO-8910, and MCF-7 cell lines.


Asunto(s)
Ascomicetos , Lactonas , Lactonas/química , Lactonas/farmacología , Lactonas/aislamiento & purificación , Ascomicetos/química , Estructura Molecular , Humanos , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Células MCF-7 , Cristalografía por Rayos X , Resonancia Magnética Nuclear Biomolecular
13.
J Nat Prod ; 87(7): 1673-1681, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38597733

RESUMEN

Enhanced glucose uptake in insulin-sensitive tissues is one of the therapeutic strategies to ameliorate hyperglycemia and maintain glucose homeostasis in type 2 diabetes. This study disclosed the role of fungal depsidones in glucose uptake and the underlying mechanism in 3T3-L1 adipocytes. Depsidones, including nidulin, nornidulin, and unguinol, isolated from Aspergillus unguis, stimulate glucose uptake in adipocytes. Compared to the others, nidulin exhibited an upward trend in glucose uptake. The effect of nidulin was found to be dose- and time-dependent. Nidulin also enhanced insulin- and metformin-stimulated glucose uptake. Upregulation of GLUT4 expression and AKT and AMPK phosphorylation were observed with nidulin treatment. Blockage of AKT, but not AMPK, phosphorylation was largely accompanied by diminished glucose uptake. In agreement, nidulin triggered the translocation of GLUT4 to the plasma membrane. Importantly, nidulin elevated glucose uptake associated with increased AKT phosphorylation in insulin-resistant adipocytes. Taken together, nidulin could stimulate glucose uptake mainly through AKT-dependent GLUT4 translocation, serving as a seed compound in drug discovery for type 2 diabetes.


Asunto(s)
Células 3T3-L1 , Adipocitos , Transportador de Glucosa de Tipo 4 , Glucosa , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Glucosa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Fosforilación , Lactonas/farmacología , Lactonas/química , Estructura Molecular , Insulina/metabolismo , Depsidos/farmacología , Metformina/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico
14.
ChemMedChem ; 19(12): e202400045, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38516805

RESUMEN

A general method for chemo- and diastereoselective modification of anticancer natural product arglabin with nitrogen- and carbon-centered pronucleophiles under the influence of nucleophilic phosphine catalysts was developed. The locked s-cis-geometry of α-methylene-γ-butyrolactone moiety of arglabin favors for the additional stabilization of the zwitterionic intermediate by electrostatic interaction between phosphonium and enolate oxygen centers, leading to the unprecedentedly high efficiency of the phosphine-catalyzed Michael additions to this sesquiterpene lactone. Using n-Bu3P as the catalyst, pyrazole, phthalimide, 2-oxazolidinone, 4-quinazolinone, uracil, thymine, cytosine, and adenine adducts of arglabin were obtained. The n-Bu3P-catalyzed reaction of arglabin with active methylene compounds resulted in the predominant formation of bisadducts bearing a new quaternary carbon center. All synthesized Michael adducts and previously obtained phosphorylated arglabin derivatives were evaluated in vitro against eleven cancer and two normal cell lines, and the results were compared to those of natural arglabin and its dimethylamino hydrochloride salt currently used as anticancer drugs. 2-Oxazolidinone, uracil, diethyl malonate, dibenzyl phosphonate, and diethyl cyanomethylphosphonate derivatives of arglabin exhibited more potent antiproliferative activity towards several cancer cell lines and lower cytotoxicity towards normal cell lines in comparison to the reference compounds, indicating the feasibility of the developed methodology for the design of novel anticancer drugs with better therapeutic potential.


Asunto(s)
Antineoplásicos , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Lactonas , Fosfinas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Fosfinas/química , Fosfinas/farmacología , Fosfinas/síntesis química , Catálisis , Lactonas/química , Lactonas/farmacología , Lactonas/síntesis química , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular , Línea Celular Tumoral , Sesquiterpenos/química , Sesquiterpenos/farmacología , Sesquiterpenos/síntesis química , Sesquiterpenos de Guayano/química , Sesquiterpenos de Guayano/farmacología , Sesquiterpenos de Guayano/síntesis química , Relación Dosis-Respuesta a Droga
15.
Adv Sci (Weinh) ; 11(18): e2309515, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430530

RESUMEN

The salinilactones, volatile marine natural products secreted from Salinispora arenicola, feature a unique [3.1.0]-lactone ring system and cytotoxic activities through a hitherto unknown mechanism. To find their molecular target, an activity-based protein profiling with a salinilactone-derived probe is applied that disclosed the protein disulfide-isomerases (PDIs) as the dominant mammalian targets of salinilactones, and thioredoxin (TRX1) as secondary target. The inhibition of protein disulfide-isomerase A1 (PDIA1) and TRX1 is confirmed by biochemical assays with recombinant proteins, showing that (1S,5R)-salinilactone B is more potent than its (1R,5S)-configured enantiomer. The salinilactones bound covalently to C53 and C397, the catalytically active cysteines of the isoform PDIA1 according to tandem mass spectrometry. Reactions with a model substrate demonstrated that the cyclopropyl group is opened by an attack of the thiol at C6. Fluorophore labeling experiments showed the cell permeability of a salinilactone-BODIPY (dipyrrometheneboron difluoride) conjugate and its co-localization with PDIs in the endoplasmic reticulum. The study is one of the first to pinpoint a molecular target for a volatile microbial natural product, and it demonstrates that salinilactones can achieve high selectivity despite their small size and intrinsic reactivity.


Asunto(s)
Proteína Disulfuro Isomerasas , Proteína Disulfuro Isomerasas/metabolismo , Proteína Disulfuro Isomerasas/química , Humanos , Lactonas/metabolismo , Lactonas/química
16.
Eur J Med Chem ; 269: 116340, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38527380

RESUMEN

Ten new thiophene derivatives related to goniofufurone have been obtained by multistep synthesis starting from d-glucose. The critical step of the synthesis was the Grignard reaction of 2-thienyl magnesium bromide with a protected dialdose, yielding the C-5 epimeric thiophene derivatives 9 and 10. The mixture was oxidized to the 5-keto derivative 11, which after deprotection was converted to the corresponding keto-lactone 14. Stereoselective reduction of 14 afforded the thiophene mimic of goniofufurone 3. Esterification of 3 with cinnamic or 4-fluorocinnamic acid gave hybrids 5-7. Synthesized analogues were evaluated for their in vitro cytotoxicity against several tumour cell lines. The vast majority of them showed better activity than lead 1. In the culture of K562 cells, compound 3 was more active than the commercial antitumour drug doxorubicin. Structural features of analogues important for their antiproliferative activities were identified by SAR analysis. Pro-apoptotic potential examination of compound 3 on the K562 cell line was performed using flow cytometry, double fluorescence staining and apoptotic morphology screening. Results show that this derivative induces cell membrane disruptions attributable to apoptosis and induces the apoptotic morphology, but decreasing simultaneously the population of cells in the subG1 phase of the cell cycle. The results further suggest that analogue 3 achieves strong cytotoxicity without causing DNA fragmentation. This is clearly indicated by the relatively low incidence of micronuclei, as well as the SAR analysis of all biological effects.


Asunto(s)
Antineoplásicos , Tiofenos , Humanos , Relación Estructura-Actividad , Tiofenos/farmacología , Proliferación Celular , Antineoplásicos/química , Línea Celular Tumoral , Lactonas/química , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Apoptosis
17.
Chin J Nat Med ; 22(3): 265-272, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38553193

RESUMEN

Four new sesquiterpene lactones (SLs) (1-4), along with a biosynthetically related SL (5), have been isolated from the leaves of Magnolia grandiflora. Magrandate A (1) is notable as the first C18 homogemarane type SL, featuring a unique 1,7-dioxaspiro[4.4]nonan-6-one core. Compounds 2 and 3, representing the first instances of chlorine-substituted gemarane-type SL analogs in natural products, were also identified. The structures of these isolates were elucidated through a combination of spectroscopic data analysis, electronic circular dichroism calculations, and X-ray single-crystal diffraction analysis. All isolates demonstrated anti-inflammatory activity in lipopolysaccharide-stimulated RAW264.7 cells. Notably, 3-5 showed a significant inhibitory effect on nitric oxide production, with IC50 values ranging from 0.79 to 4.73 µmol·L-1. Additionally, 4 and 5 exhibited moderate cytotoxic activities against three cancer cell lines, with IC50 values between 3.09 and 11.23 µmol·L-1.


Asunto(s)
Magnolia , Sesquiterpenos , Estructura Molecular , Magnolia/química , Antiinflamatorios/farmacología , Sesquiterpenos/farmacología , Sesquiterpenos/química , Lactonas/farmacología , Lactonas/química
18.
Chemistry ; 30(25): e202400559, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38411573

RESUMEN

Dimeric naphthopyranones are known to be biologically active, however, for the corresponding monomeric naphthopyranones this information is still elusive. Here the first enantioselective total synthesis of semi-viriditoxic acid as well as the synthesis of semi-viriditoxin and derivatives is reported. The key intermediate in the synthesis of naphthopyranones is an α,ß-unsaturated δ-lactone, which we synthesized in two different ways (Ghosez-cyclization and Grubbs ring-closing metathesis), while the domino-Michael-Dieckmann reaction of the α,ß-unsaturated δ-lactone with an orsellinic acid derivative is the key reaction. A structure-activity relationship study was performed measuring the cytotoxicity in Burkitt B lymphoma cells (Ramos). The dimeric structure was found to be crucial for biological activity: Only the dimeric naphthopyranones showed cytotoxic and apoptotic activity, whereas the monomers did not display any activity at all.


Asunto(s)
Antineoplásicos , Linfoma de Burkitt , Relación Estructura-Actividad , Línea Celular Tumoral , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Linfoma de Burkitt/tratamiento farmacológico , Linfoma de Burkitt/patología , Estereoisomerismo , Apoptosis/efectos de los fármacos , Lactonas/química , Lactonas/farmacología , Lactonas/síntesis química , Ciclización
19.
Chem Biodivers ; 21(3): e202302023, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38314937

RESUMEN

Sesquiterpene lactones are an important class of secondary metabolites frequently isolated from Lessingianthus genus that present a variety of biological properties, such as antimalarial, anti-inflammatory, antileishmanial, antitrypanosomal and anticancer. The limited phytochemical studies and the importance of this class of compounds isolated from Lessingianthus led us to study this genus. In this work, we focused on the phytochemical investigation and dereplication based on UHPLC-HRMS/MS and molecular networking of L. rubricaulis. Chemical investigation resulted in the isolation of several hirsutinolide-type sesquiterpene lactones including a new hirsutinolide derivative, 8,10α-hydroxy-1,13-bis-O-methylhirsutinolide, besides a cadinanolide and flavonoids. The dereplication study resulted in the identification of three known flavonoids, six known hirsutinolides and two known cadinanolides. Moreover, a fragmentation pathway for cadinanolide-type sesquiterpene lactones was proposed. These results contribute to chemotaxonomic studies and demonstrates the potential of Lessingianthus genus.


Asunto(s)
Asteraceae , Sesquiterpenos , Asteraceae/química , Flavonoides/farmacología , Fitoquímicos , Sesquiterpenos/química , Lactonas/química
20.
Phytochemistry ; 220: 114019, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38346546

RESUMEN

Seven undescribed sesquiterpenes, including three dimeric guaianolide sesquiterpenes artemongolides G-I (1-3) and four sesquiterpene lactones artemanomalide D-G (16-19), along with seventeen known compounds isoabsinthin (4), absinthin (5), 11-eptabsinthin (6), 11, 11'-bis-epiabsinthin (7), 10', 11'- epiabsinthin (8), anabsinthin (9), isoanabsinthin (10), absinthin D (11), anabsin (12), caruifolin D (13), gnapholide (14), caruifolin C (15), 1ß(R),10ß(S)-dihydroxy-3-oxo-11ß (S)H-4,11(13)-guaien-6α(S),12-olide (20), 1α,6α,8α-trihydroxy-5α,7ßH-guaia-3,10(14),11(13)-trien-12-oic acid (21), 1α,6α,8α-trihydroxy-5α,7ßH-guaia-3,9,11(13)-trien-12-oic acid (22), argyinolide J (23), artabsinolide A (24) were isolated from the plant Artemisia mongolica. The structures were determined by interpreting NMR, HRESIMS and ECD data. The X-ray crystal structure of 4, 7 and 8 were reported for the first time. In the anti-vitiligo activity test, compounds 2, 7, 12, 23 and 24 demonstrated activity in promoting melanogenesis at a concentration of 50 µM in B16 cells, with 8-methoxypsoralan (8-MOP) as a positive control. Further research on the mechanism revealed that artemongolides H (2) enhance the expression of MITF and TRPs by upregulating p-Akt and p-GSK-3ß, leading to an increase in ß-catenin content in the cell cytoplasm. Subsequently, ß-catenin translocates into the nucleus, resulting in melanogenesis. The results supported the regulation of melanogenesis by artemongolide H (2) through the Akt/GSK3ß/ß-catenin signaling pathway. The anti-inflammatory results demonstrated that compounds 4, 5, 6, 9 and 14 can inhibit the upregulation of IL-6 mRNA and CCL2 mRNA expression. Compound 12 specifically inhibited the upregulation of IL-6 mRNA expression. These compounds exhibited significant anti-inflammatory activities. The activity results revealed that these sesquiterpene compounds have the potential to become lead compounds for the treatment of vitiligo and inflammatory diseases.


Asunto(s)
Artemisia , Asteraceae , Sesquiterpenos , Artemisia/química , beta Catenina , Glucógeno Sintasa Quinasa 3 beta , Interleucina-6 , Proteínas Proto-Oncogénicas c-akt , Trientina , Sesquiterpenos/farmacología , Sesquiterpenos/química , Sesquiterpenos de Guayano/farmacología , Sesquiterpenos de Guayano/química , Antiinflamatorios , ARN Mensajero , Lactonas/farmacología , Lactonas/química , Asteraceae/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA