Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.645
Filtrar
Más filtros











Intervalo de año de publicación
1.
Braz J Biol ; 84: e283243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39383365

RESUMEN

Gomphrena celosioides, popularly known as perpétua, perpétua brava, bachelor´s button and prostate globe amarahth, is used for the treatment of urinary tract disorders, kidney stones, for skin diseases, infectious diseases, gastrointestinal and respiratory conditions. Rich in phenolic acids and flavonoids, this plant has therefore a potential for use in cancer prevention. Given the above, the present research aimed to evaluate the carcinogenic effect of the ethanolic extract of G. celosioides (EEGc) in an alternative model of Drosophila melanogaster and the genotoxic and antigenotoxic effects in Swiss mice. The larval survival test and the detection of epithelial tumor clones were performed in D. melanogaster. The tested EEGc concentrations were 0.96, 1.92, 3.85 and 7.70 mg/mL. In Swiss mice, the genotoxicity and antigenotoxicity of doses of 100, 1,000 and 2,000 mg/Kg were evaluated. The results showed that EEGc at a concentration of 7.70 mg/mL reduced (p<0.05) larval survival. However, EEGc was not carcinogenic, and the lowest concentration (0.96 mg/mL) prevented (p<0.05) the basal occurrence of epithelial tumors. In mice, EEGc at the highest dose (2,000mg/Kg) increased the frequency of genomic lesions (p<0.05). Yet, none of the doses caused chromosomal lesions (p>0.05). When associated with cyclophosphamide, EEGc was antigenotoxic (p<0.05). The percentages of reduction of genomic damage ranged from 33.39 to 63.23% and of chromosomal damage from 20.00 to 77.19%. In view of the above, it is suggested that EEGc is not carcinogenic, has an antigenotoxic effect and chemopreventive properties.


Asunto(s)
Drosophila melanogaster , Extractos Vegetales , Animales , Extractos Vegetales/farmacología , Ratones , Masculino , Drosophila melanogaster/efectos de los fármacos , Femenino , Carcinógenos/toxicidad , Etanol , Larva/efectos de los fármacos , Anticarcinógenos/farmacología , Pruebas de Mutagenicidad
2.
Open Biol ; 14(10): 240126, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39378986

RESUMEN

Haploid larvae in non-mammalian vertebrates are lethal, with characteristic organ growth retardation collectively called 'haploid syndrome'. In contrast to mammals, whose haploid intolerance is attributed to imprinting misregulation, the cellular principle of haploidy-linked defects in non-mammalian vertebrates remains unknown. Here, we investigated cellular defects that disrupt the ontogeny of gynogenetic haploid zebrafish larvae. Unlike diploid control larvae, haploid larvae manifested unscheduled cell death at the organogenesis stage, attributed to haploidy-linked p53 upregulation. Moreover, we found that haploid larvae specifically suffered the gradual aggravation of mitotic spindle monopolarization during 1-3 days post-fertilization, causing spindle assembly checkpoint-mediated mitotic arrest throughout the entire body. High-resolution imaging revealed that this mitotic defect accompanied the haploidy-linked centrosome loss occurring concomitantly with the gradual decrease in larval cell size. Either resolution of mitotic arrest or depletion of p53 partially improved organ growth in haploid larvae. Based on these results, we propose that haploidy-linked mitotic defects and cell death are parts of critical cellular causes shared among vertebrates that limit the larval growth in the haploid state, contributing to an evolutionary constraint on allowable ploidy status in the vertebrate life cycle.


Asunto(s)
Proliferación Celular , Haploidia , Larva , Proteína p53 Supresora de Tumor , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/genética , Larva/crecimiento & desarrollo , Larva/genética , Larva/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Mitosis , Huso Acromático/metabolismo , Centrosoma/metabolismo
3.
PLoS Biol ; 22(10): e3002823, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39401187

RESUMEN

Epithelial tissues undergo cell turnover both during development and for homeostatic maintenance. Removal of cells is coordinated with the increase in number of newly dividing cells to maintain barrier function of the tissue. In Drosophila metamorphosis, larval epidermal cells (LECs) are replaced by adult precursor cells called histoblasts. Removal of LECs must counterbalance the exponentially increasing adult histoblasts. Previous work showed that the LEC removal accelerates as endocytic activity decreases throughout all LECs. Here, we show that the acceleration is accompanied by a mode switching from isolated single-cell apoptosis to clustered ones induced by the endocytic activity reduction. We identify the epidermal growth factor receptor (EGFR) pathway via extracellular-signal regulated kinase (ERK) activity as the main components downstream of endocytic activity in LECs. The reduced ERK activity, caused by the decrease in endocytic activity, is responsible for the apoptotic mode switching. Initially, ERK is transiently activated in normal LECs surrounding a single apoptotic LEC in a ligand-dependent manner, preventing clustered cell death. Following the reduction of endocytic activity, LEC apoptosis events do not provoke these transient ERK up-regulations, resulting in the acceleration of the cell elimination rate by frequent clustered apoptosis. These findings contrasted with the common perspective that clustered apoptosis is disadvantageous. Instead, switching to clustered apoptosis is required to accommodate the growth of neighboring tissues.


Asunto(s)
Apoptosis , Proteínas de Drosophila , Drosophila melanogaster , Endocitosis , Receptores ErbB , Transducción de Señal , Animales , Endocitosis/fisiología , Receptores ErbB/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Larva/metabolismo , Metamorfosis Biológica/fisiología , Receptores de Péptidos de Invertebrados/metabolismo , Receptores de Péptidos de Invertebrados/genética , Epitelio/metabolismo , Células Epidérmicas/metabolismo , Drosophila/metabolismo
4.
Sci Rep ; 14(1): 23235, 2024 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-39369025

RESUMEN

This study aimed to increase the antifungal and insecticidal activities of NaD1, as an antimicrobial peptides (AMP), by improving its interaction with the fungal cell wall and chitin monomeric units in insect midguts. Hence, the chitin-binding domains (CBDs) of wheat germ agglutinin protein (WGA) were fused to either N- or C-terminus of NaD1 generating transgenic Nicotiana tabacum hairy roots (HRs). Molecular assessments confirmed the integration of NaD1 transgenes, their transcription and production of recombinant peptides in the HR lines. Total protein of (CBD)4-NaD1 and NaD1-(CBD)4 transgenic lines inhibited the growth of Pyricularia oryzae mycelium, suggesting that fusion of CBD to NaD1 can increase NaD1 half-life, leading to higher affinity toward cell wall chitin. Furthermore, feeding the third-instar larvae of Chilo suppressalis with both (CBD)4-NaD1 and NaD1-(CBD)4 extracts exhibited a higher mortality rate. Both NaD1-CBDs caused a significant decrease in trypsin (TRY) and chymotrypsin (CTR) activities in the larvae, while enhancing the activity of antioxidant enzymes CAT, POD, APX, and SOD. Therefore, feeding the larvae by total extract of NaD1-(CBD)4 and (CBD)4-NaD1 HR lines probably increased affinity to midgut chitin in C. suppressalis, enhancing insecticidal activities. Overall, the results indicate that recombinant peptides are effective in enhancing fungal and insect resistance.


Asunto(s)
Antifúngicos , Insecticidas , Nicotiana , Animales , Insecticidas/farmacología , Antifúngicos/farmacología , Nicotiana/genética , Nicotiana/metabolismo , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/metabolismo , Larva/efectos de los fármacos , Plantas Modificadas Genéticamente , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Quitina/metabolismo
5.
Molecules ; 29(19)2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39407544

RESUMEN

Infectious diseases, including vector-borne and antibiotic-resistant infections, present significant global health challenges, necessitating the exploration of natural alternatives for disease control. In this study, we investigated the essential oil (EO) profile as well as larvicidal and antibacterial properties of two wild Apiaceae species used in Algeria: Daucus carota L. (DCEO) and Foeniculum vulgare Mill. (FVEO). EO was extracted from the aerial parts by steam distillation and analyzed using Gas Chromatography Mass Spectrometry (GC/MS). Major constituents identified in DCEO were geranyl acetate (50.07%) and elemicin (10.77%), while FVEO contained estragole (24.93%), fenchone (20.20%), and α-phellandrene (17.96%). Both EOs were highly effective towards Culex pipiens larvae, with low LC50 values of 30.6 ± 1.06 ppm for DCEO and 34.7 ± 1.06 ppm for FVEO, indicating their potential as bioinsecticides due to their bioactivity and bioavailability. Additionally, the two Eos demonstrated moderate antibacterial efficacy against gram-positive bacteria, Staphylococcus aureus ATCC 25923 and Staphylococcus aureus MRSA ATCC 43300, respectively, with DCEO showing MIC values of 10 and 20 mg/mL, respectively, and FVEO exhibiting MIC values > 20 mg/mL. However, both EOs showed limited effectiveness against gram-negative bacteria, Escherichia coli ATCC 25922 and Klebsiella pneumonia ATCC 700603. These results highlight the potential applications of DCEO and FVEO as natural bioinsecticides and antibacterial agents, offering promising avenues for further research and development in pest control and food preservation.


Asunto(s)
Antibacterianos , Foeniculum , Larva , Aceites Volátiles , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antibacterianos/farmacología , Antibacterianos/química , Larva/efectos de los fármacos , Animales , Argelia , Foeniculum/química , Daucus carota/química , Pruebas de Sensibilidad Microbiana , Insecticidas/farmacología , Insecticidas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Cromatografía de Gases y Espectrometría de Masas
6.
Molecules ; 29(18)2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39339403

RESUMEN

There are scientific studies indicating that the attachment of an indole moiety to the triterpene scaffold can lead to increased anticancer potential. Lipophilicity is one of the factors that may influence biological properties and is therefore an important parameter to determine for newly obtained compounds as drug candidates. In the present study, previously synthesized 3 and/or 28-indole-betulin derivatives were evaluated for lipophilicity by reversed-phase thin-layer chromatography. The experimental values of lipophilicity (logPTLC) were then subjected to correlation analysis with theoretical values of logP, as well as for selected physicochemical and pharmacokinetic parameters and anticancer activity. A toxicity test using zebrafish embryos and larvae was also conducted. High correlation was observed between the experimental and theoretical values of lipophilicity. We presented correlation equations and statistical parameters describing the relationships between logPTLC and several physicochemical and ADME parameters. We also revealed the lack of correlation between the experimental values of lipophilicity and anticancer activity. Moreover, experiments on zebrafish have confirmed no toxicity of the tested compounds, which was consistent with the results of the in silico toxicity analysis. The results demonstrated, using the example of indole derivatives of betulin, the utility of lipophilicity values in the context of predicting the biological activity of new compounds.


Asunto(s)
Indoles , Triterpenos , Pez Cebra , Animales , Triterpenos/química , Triterpenos/farmacología , Indoles/química , Indoles/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Larva/efectos de los fármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Embrión no Mamífero/efectos de los fármacos , Estructura Molecular , Ácido Betulínico
7.
PLoS Negl Trop Dis ; 18(9): e0012452, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39226308

RESUMEN

The formamidase (FMD) enzyme plays an important role in fungal thriving by releasing a secondary nitrogen source as a product of its activity. In Paracoccidioides species, previous studies have demonstrated the upregulation of this enzyme in a wide range of starvation and infective-like conditions. However, Paracoccidioides lutzii formamidase has not yet been defined as a virulence factor. Here, by employing in vivo infections using an fmd-silenced strain in Galleria mellonella larvae model, we demonstrate the influence of formamidase in P. lutzii's immune stimulation and pathogenicity. The formamidase silencing resulted in improper arrangement of the nodules, poor melanogenesis and decreased fungal burden. Thus, we suggest that formamidase may be a piece composing the process of molecular recognition by Galleria immune cells. Furthermore, formamidase silencing doubled the observed survival rate of the larvae, demonstrating its importance in fungal virulence in vivo. Therefore, our findings indicate that formamidase contributes to Galleria's immune incitement and establishes the role of this enzyme as a P. lutzii virulence factor.


Asunto(s)
Larva , Mariposas Nocturnas , Paracoccidioides , Factores de Virulencia , Animales , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Larva/microbiología , Mariposas Nocturnas/microbiología , Paracoccidioides/patogenicidad , Paracoccidioides/enzimología , Paracoccidioides/genética , Virulencia , Paracoccidioidomicosis/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Animales de Enfermedad , Silenciador del Gen
8.
Pestic Biochem Physiol ; 204: 106037, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277364

RESUMEN

Plastid-mediated RNA interference has emerged as a promising and effective approach for pest management. By expressing high levels of double-stranded RNAs (dsRNAs) in plastid that target essential pest genes, it has been demonstrated to effectively control certain herbivorous beetles and spider mites. However, as plants are sessile organisms, they frequently experience a combination of biotic and abiotic stresses. It remains unclear whether abiotic stress, such as drought stress, influences the accumulation of dsRNAs produced in plastids and its effectiveness in controlling pests. In this study, we aimed to investigate the effects of drought stress on dsACT expression in transplastomic poplar plants and its control efficiency against the willow leaf beetle (Plagiodera versicolora). Our findings revealed that drought stress did not significantly affect the dsRNA contents in transplastomic poplar plants, but it did lead to higher mortality of insect larvae. This increased mortality may be attributed to increased levels of jasmonic acid and cysteine proteinase inhibitor induced by water deficit. These results contribute to understanding of the mechanisms linking water deficit in plants to insect performance and provide valuable insights for implementing appropriate pest control strategies under drought stress conditions.


Asunto(s)
Escarabajos , Sequías , Interferencia de ARN , Animales , Escarabajos/fisiología , Escarabajos/genética , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Plastidios/genética , Plastidios/metabolismo , Larva/genética , Larva/fisiología , Estrés Fisiológico , Populus/genética , Plantas Modificadas Genéticamente , Oxilipinas/metabolismo
9.
Pestic Biochem Physiol ; 204: 106068, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277415

RESUMEN

The insecticidal crystalline (Cry) and vegetative insecticidal (Vip) proteins derived from Bacillus thuringiensis (Bt) are used globally to manage insect pests, including the cotton bollworm, Helicoverpa armigera, one of the world's most damaging agricultural pests. Cry proteins bind to the ATP-binding cassette transporter C2 (ABCC2) receptor on the membrane surface of larval midgut cells, resulting in Cry toxin pores, and ultimately leading to cell swelling and/or lysis. Insect aquaporin (AQP) proteins within the membranes of larval midgut cells are proposed to allow the rapid influx of water into enterocytes following the osmotic imbalance triggered by the formation of Cry toxin pores. Here, we examined the involvement of H. armigera AQPs in Cry1Ac-induced osmotic cell swelling. We identified and characterized eight H. armigera AQPs and demonstrated that five are functional water channel proteins. Three of these (HaDrip1, HaPrip, and HaEglp1) were found to be expressed in the larval midgut. Xenopus laevis oocytes co-expressing the known Cry1Ac receptor HaABCC2 and each of the three HaAQPs displayed abnormal morphology and were lysed following exposure to Cry1Ac, suggesting a rapid influx of water was induced after Cry1Ac pore formation. In contrast, oocytes producing either HaABCC2 or HaAQP alone failed to swell or lyse after treatment with Cry1Ac, implying that both Cry1Ac pore formation and HaAQP function are needed for osmotic cell swelling. However, CRISPR/Cas9-mediated knockout of any one of the three HaAQP genes failed to cause significant changes in susceptibility to the Bt toxins Cry1Ac, Cry2Ab, or Vip3Aa. Our findings suggest that the multiple HaAQPs produced in larval midgut cells compensate for each other in allowing for the rapid influx of water in H. armigera midgut cells following Cry toxin pore formation, and that mutations affecting a single HaAQP are unlikely to confer resistance to Bt proteins.


Asunto(s)
Acuaporinas , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Larva , Mariposas Nocturnas , Animales , Toxinas de Bacillus thuringiensis/toxicidad , Proteínas Hemolisinas/toxicidad , Proteínas Hemolisinas/farmacología , Proteínas Hemolisinas/metabolismo , Endotoxinas/toxicidad , Endotoxinas/farmacología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/genética , Larva/efectos de los fármacos , Larva/metabolismo , Acuaporinas/metabolismo , Acuaporinas/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/genética , Xenopus laevis , Oocitos/metabolismo , Oocitos/efectos de los fármacos , Insecticidas/toxicidad , Insecticidas/farmacología , Ósmosis , Helicoverpa armigera
10.
Int J Mol Sci ; 25(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39273700

RESUMEN

Swietenia macrophylla fruit is a valuable and historically significant medicinal plant with anti-hypertension and anti-diabetes. We identified a toxic component, Febrifugin, from the edible part of the nut following zebrafish toxicity-guided isolation. Febrifugin is a mexicanolide-type limonoid compound. The toxic factor induced acute toxicity in zebrafish, including yolk sac edema and pericardial edema, reduced body length, decreased melanin deposition, and presented acute skeletal developmental issues. Further exploration of the acute toxicity mechanism through metabolomics revealed that Febrifugin caused significant changes in 13 metabolites in zebrafish larvae, which are involved in the pentose phosphate, tricarboxylic acid (TCA) cycle, and amino acid biosynthesis. The bioassay of oxidative stress capacity and qRT-PCR measurement showed that the compound significantly affected the h6pd gene in the pentose phosphate pathway and the mRNA expression of cs, idh3a, fh, and shda genes in the TCA cycle, leading to reactive oxygen species (ROS) accumulation and a notable decrease in glutathione (GSH) activity in zebrafish. These findings provide a basis for the rational use of S. macrophylla as a medicinal plant and raise awareness of the safety of medicinal plants.


Asunto(s)
Metabolómica , Pez Cebra , Animales , Pez Cebra/metabolismo , Metabolómica/métodos , Estrés Oxidativo/efectos de los fármacos , Meliaceae/química , Limoninas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Nueces/química , Larva/efectos de los fármacos , Larva/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Metaboloma , Plantas Medicinales/química , Ciclo del Ácido Cítrico/efectos de los fármacos , Glutatión/metabolismo
11.
Sci Rep ; 14(1): 20677, 2024 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237741

RESUMEN

Mosquito-borne diseases, such as malaria, dengue, and Zika, pose major public health challenges globally, affecting millions of people. The growing resistance of mosquito populations to synthetic insecticides underscores the critical need for effective and environmentally friendly larvicides. Although chemical pesticides can initially be effective, they often lead to negative environmental consequences and health hazards for non-target species, including humans. This study aimed to evaluate the larvicidal effects of Trachyspermum ammi essential oil and Delphinium speciosum extract on the larvae of three major mosquito species: Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Mosquito larvae of Ae. aegypti, An. stephensi, and Cx. quinquefasciatus were reared under controlled laboratory conditions. The larvicidal activity of T. ammi essential oil and D. speciosum extract was evaluated through standard bioassays, using various concentrations of essential oils (10, 20, 40, 80, and 160 ppm) and extracts (160, 320, 640, 1280, and 2560 ppm) to determine the lethal concentration (LC50) values after 24 h of exposure. Fresh plant materials were collected, with the essential oil extracted via hydro-distillation, and the extract prepared using methanol solvent extraction. The chemical composition of T. ammi essential oil was examined using gas chromatography-mass spectrometry (GC-MS). Additionally, the preliminary analysis of the chemical compounds in D. speciosum extract was carried out using thin layer chromatography (TLC) and nuclear magnetic resonance spectroscopy (NMR) techniques. The results indicated that the essential oil of T. ammi exhibited more effective larvicidal activity compared to the D. speciosum extract. Specifically, the essential oil demonstrated LC50 values of 18 ppm for Cx. quinquefasciatus and 19 ppm for Ae. aegypti. In contrast, the D. speciosum extract showed the strongest larvicidal effect against An. stephensi, with an LC50 of 517 ppm. Concentrations of 40 ppm of the essential oil and 1280 ppm of the extract resulted in 100% mortality across all three species. Both the essential oil of T. ammi and the D. speciosum extract exhibited concentration-dependent larvicidal activity, and these results were statistically significant (p < 0.001) compared to the no-treatment group. GC-MS analysis revealed thymol (88.95%), o-cymen-5-ol (4.11%), and γ-terpinene (2.10%) as the major constituents of the T. ammi essential oil. Additionally, TLC verified the presence of alkaloids in both chloroform and methanolic extracts. Proton NMR identified a diterpene structure for these alkaloids. These findings suggest that T. ammi essential oil is a promising candidate for natural mosquito control strategies. Given its efficacy, further research is warranted to explore its potential in integrated vector management programs.


Asunto(s)
Delphinium , Insecticidas , Larva , Mosquitos Vectores , Aceites Volátiles , Extractos Vegetales , Animales , Aceites Volátiles/farmacología , Aceites Volátiles/química , Larva/efectos de los fármacos , Mosquitos Vectores/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Insecticidas/farmacología , Insecticidas/química , Delphinium/química , Aedes/efectos de los fármacos , Dengue , Malaria/prevención & control , Anopheles/efectos de los fármacos , Filariasis , Culex/efectos de los fármacos , Control de Mosquitos/métodos
12.
BMC Genomics ; 25(1): 840, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242500

RESUMEN

BACKGROUND: Coral reefs experience frequent and severe disturbances that can overwhelm their natural resilience. In such cases, ecological restoration is essential for coral reef recovery. Sexual reproduction has been reported to present the simplest and most cost-effective means for coral reef restoration. However, larval settlement and post-settlement survival represent bottlenecks for coral recruitment in sexual reproduction. While bacteria play a significant role in triggering coral metamorphosis and settlement in many coral species, the underlying molecular mechanisms remain largely unknown. In this study, we employed a transcriptome-level analysis to elucidate the intricate interactions between bacteria and coral larvae that are crucial for the settlement process. RESULTS: High Metabacillus indicus strain cB07 inoculation densities resulted in the successful induction of metamorphosis and settlement of coral Pocillopora damicoris larvae. Compared with controls, inoculated coral larvae exhibited a pronounced increase in the abundance of strain cB07 during metamorphosis and settlement, followed by a significant decrease in total lipid contents during the settled stage. The differentially expressed genes (DEGs) during metamorphosis were significantly enriched in amino acid, protein, fatty acid, and glucose related metabolic pathways. In settled coral larvae induced by strain cB07, there was a significant enrichment of DEGs with essential roles in the establishment of a symbiotic relationship between coral larvae and their symbiotic partners. The photosynthetic efficiency of strain cB07 induced primary polyp holobionts was improved compared to those of the negative controls. In addition, coral primary polyps induced by strain cB07 showed significant improvements in energy storage and survival. CONCLUSIONS: Our findings revealed that strain cB07 can promote coral larval settlement and enhance post-settlement survival and fitness. Manipulating coral sexual reproduction with strain cB07 can overcome the current recruitment bottleneck. This innovative approach holds promise for future coral reef restoration efforts.


Asunto(s)
Antozoos , Perfilación de la Expresión Génica , Larva , Metamorfosis Biológica , Animales , Antozoos/genética , Antozoos/crecimiento & desarrollo , Antozoos/microbiología , Metamorfosis Biológica/genética , Larva/crecimiento & desarrollo , Transcriptoma , Bacillaceae/genética , Bacillaceae/crecimiento & desarrollo , Arrecifes de Coral
13.
Artículo en Inglés | MEDLINE | ID: mdl-39218133

RESUMEN

Various factors may affect the antioxidative system in insects, including xenobiotics. Glycoalkaloids (GAs) are plant secondary metabolites produced mainly by the Solanaceae family (nightshades), such as the food crop tomato Solanum lycopersicum L. These compounds exhibit a wide range of biological activities and have attracted increasing interest in the context of potential insecticide properties. Therefore, the aim of the presented study was to analyze the effects of GAs (solanine, chaconine, tomatine, and extracts of tomato leaves) on lipid peroxidation; the expression levels of genes encoding manganese superoxide dismutase (MnSOD), catalase (CAT), and heat shock protein 70 (HSP70); and the enzymatic activity of SOD and CAT in Tenebrio molitor larvae. This species is amodel organism for toxicological and ecophysiological studies and is also a pest of grain storage. The reported changes depend on the GA concentration, incubation time, and type of insect tissue. We observed that the tested GAs affected MnSOD expression levels, increased SOD activity in the fat body, and reduced enzyme activity in the gut. The results showed that CAT expression was upregulated in the fat body and that the enzymatic activity of CAT in the gut was greater in the treated group than in the control group. Moreover, GAs affected HSP70 expression and malondialdehyde levels in both tested tissues. This research contributes to our knowledge about the effects of GAs on the antioxidative system of T. molitor beetles. As efficient antioxidative system functioning is necessary for survival, the tested components may be targets of potential bioinsecticides.


Asunto(s)
Antioxidantes , Catalasa , Larva , Superóxido Dismutasa , Tenebrio , Animales , Tenebrio/metabolismo , Tenebrio/efectos de los fármacos , Antioxidantes/metabolismo , Larva/efectos de los fármacos , Larva/metabolismo , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo , Catalasa/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Alcaloides , Peroxidación de Lípido/efectos de los fármacos , Extractos Vegetales/farmacología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Insecticidas/toxicidad , Solanum lycopersicum/metabolismo , Estrés Oxidativo/efectos de los fármacos , Tomatina/análogos & derivados , Tomatina/farmacología
14.
Sci Rep ; 14(1): 20655, 2024 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232193

RESUMEN

During their development, amphibians undergo various physiological processes that may affect their susceptibility to environmental pollutants. Naturally occurring fluctuations caused by developmental events are often overlooked in ecotoxicological studies. Our aim is to investigate how biomarkers of oxidative stress are modulated at different stages of larval development in the Amazonian amphibian species, Physalaemus ephippifer. The premetamorphosis, prometamorphosis and metamorphic climax stages were used to analyze total antioxidant capacity (ACAP), glutathione S-transferase (GST) activity, lipid peroxidation (LPO) levels and the expression of genes nrf2, gst, gsr (glutathione reductase) and gclc (glycine-cysteine ligase, catalytic subunit). Although there was no difference in ACAP and the genes expression among the studied stages, individuals from the premetamorphosis and prometamorphosis showed higher GST activity than ones under the climax. LPO levels were highest in individuals from the metamorphic climax. The present study suggests that the oxidative status changes during ontogeny of P. ephippifer tadpoles, especially during the metamorphic climax, the most demanding developmental phase. Variations in the redox balance at different developmental stages may lead to a divergent response to pollution. Therefore, we recommend that studies using anuran larvae as biomonitors consider possible physiological differences during ontogeny in their respective analyses.


Asunto(s)
Anuros , Glutatión Transferasa , Larva , Peroxidación de Lípido , Oxidación-Reducción , Estrés Oxidativo , Animales , Anuros/metabolismo , Anuros/crecimiento & desarrollo , Larva/metabolismo , Larva/crecimiento & desarrollo , Glutatión Transferasa/metabolismo , Antioxidantes/metabolismo , Metamorfosis Biológica , Biomarcadores/metabolismo
15.
Parasitol Res ; 123(9): 315, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227462

RESUMEN

Mosquito-borne diseases, such as malaria, dengue fever, and the Zika virus, pose significant global health challenges, affecting millions annually. Due to increasing insecticide resistance, there is a growing interest in natural alternatives for mosquito control. Lemongrass essential oil, derived from Cymbopogon citratus, has shown promising repellent and larvicidal properties against various mosquito species. In this study, we investigated the larvicidal effect of lemongrass oil and its major compounds on Anopheles sinensis, the primary malaria vector in China. GC-MS analysis identified the major compounds of lemongrass oil as ( +)-citronellal (35.60%), geraniol (21.84%), and citronellol (13.88%). Lemongrass oil showed larvicidal activity against An. sinensis larvae, with an LC50 value of 119.20 ± 3.81 mg/L. Among the major components, citronellol had the lowest LC50 value of 42.76 ± 3.18 mg/L. Moreover, citronellol demonstrated inhibitory effects on acetylcholinesterase (AChE) activity in An. sinensis larvae, assessed by homogenizing larvae at different time points following treatment. Molecular docking studies further elucidated the interaction between citronellol and AChE, revealing the formation of hydrogen bonds and Pi-Sigma bonds. Aromatic amino acid residues such as Tyr71, Trp83, Tyr370, and Tyr374 played a pivotal role in these interactions. These findings may contribute to understanding lemongrass oil's larvicidal activity against An. sinensis and the mechanisms underlying these effects.


Asunto(s)
Monoterpenos Acíclicos , Anopheles , Inhibidores de la Colinesterasa , Insecticidas , Larva , Aceites Volátiles , Aceites de Plantas , Animales , Anopheles/efectos de los fármacos , Anopheles/enzimología , Larva/efectos de los fármacos , Insecticidas/farmacología , Insecticidas/química , Monoterpenos Acíclicos/farmacología , Aceites de Plantas/farmacología , Aceites de Plantas/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Cymbopogon/química , Simulación del Acoplamiento Molecular , Terpenos/farmacología , Terpenos/química , Cromatografía de Gases y Espectrometría de Masas , China , Acetilcolinesterasa/metabolismo , Mosquitos Vectores/efectos de los fármacos , Monoterpenos/farmacología , Monoterpenos/química , Aldehídos/farmacología , Aldehídos/química
16.
Dis Model Mech ; 17(9)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39284707

RESUMEN

The microbiome can influence cancer development and progression. However, less is known about the role of the skin microbiota in melanoma. Here, we took advantage of a zebrafish melanoma model to probe the effects of Staphylococcus aureus on melanoma invasion. We found that S. aureus produces factors that enhance melanoma invasion and dissemination in zebrafish larvae. We used a published in vitro 3D cluster formation assay that correlates increased clustering with tumor invasion. S. aureus supernatant increased clustering of melanoma cells and was abrogated by a Rho-Kinase inhibitor, implicating a role for Rho-GTPases. The melanoma clustering response was specific to S. aureus but not to other staphylococcal species, including S. epidermidis. Our findings suggest that S. aureus promotes melanoma clustering and invasion via lipids generated by the lipase Sal2 (officially known as GehB). Taken together, these findings suggest that specific bacterial products mediate melanoma invasive migration in zebrafish.


Asunto(s)
Melanoma , Invasividad Neoplásica , Staphylococcus aureus , Pez Cebra , Animales , Pez Cebra/microbiología , Melanoma/patología , Melanoma/microbiología , Línea Celular Tumoral , Lípidos/química , Movimiento Celular/efectos de los fármacos , Larva/microbiología , Humanos , Proteínas de Pez Cebra/metabolismo , Agregación Celular/efectos de los fármacos
17.
J Agric Food Chem ; 72(37): 20343-20353, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39226432

RESUMEN

Based on the modified cross-linking of the degradable natural polymers chitosan oligosaccharides (COS) and gelatin (GEL) via introduction of a functional bridge 3,3'-dithiodipropionic acid, this study constructed an environmentally responsive dinotefuran (DNF) delivery system (DNF@COS-SS-GEL). The introduction of the disulfide bond (-S-S-) endowed DNF@COS-SS-GEL with redox-responsive properties, allowing for the rapid release of pesticides when stimulated by glutathione (GSH) in the simulated insect. Compared with commercial DNF suspension concentrate (DNF-SC), DNF@COS-SS-GEL showed superior wet spreading and retention performance on cabbage leaves with a reduced contact angle (57°) at 180 s and 4-fold increased retention capacity after rainfall washout. Nanoencapsulation effectively improved the UV-photostability with only a 31.4% decomposition rate of DNF@COS-SS-GEL at 96 h. The small scale and large specific surface area resulted in excellent uptake and transportation properties in plants as well as higher bioactivity against Plutella xylostella larvae. This study will help promote sustainable agricultural development by reducing environmental pollution through improved pesticide utilization.


Asunto(s)
Brassica , Quitosano , Oxidación-Reducción , Plaguicidas , Hojas de la Planta , Animales , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Brassica/química , Brassica/metabolismo , Quitosano/química , Plaguicidas/química , Plaguicidas/farmacología , Plaguicidas/metabolismo , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/química , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Polímeros/química , Sistemas de Liberación de Medicamentos/instrumentación , Neonicotinoides/química , Neonicotinoides/metabolismo , Neonicotinoides/farmacología , Insecticidas/química , Insecticidas/farmacología , Gelatina/química
18.
Sci Total Environ ; 952: 176005, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39236822

RESUMEN

Plastics are common synthetic materials that have been abundantly present as pollutants in natural ecosystems for the past few decades. Thus scientists have investigated the capability of plastic digestion by insects. Here we compare the effectiveness of biodegradation of the specific polymers: expanded polystyrene (EPS), polyvinyl chloride (PVC), low-density polyethylene (LDPE) and polypropylene (PP) altogether with above variants of plastics with microelements and vitamins by the mealworm - the larval form of the beetle Tenebrio molitor - and larvae of the beetle Zophobas morio, known as superworms. Z. morio beetles on all diets were able to complete their life cycle from larvae through pupae and imago, gaining 19 % and 22 % in mass on LDPE and EPS; 8 % and 7 % on PVC and PP. Mealworms (T. molitor) reared on polymers had minimal weight gain, gaining 2 % on LDPE and EPS, and a slight reduction in mass was observed when reared on PP and PVC. Not all specimens of T. molitor were able to pupate and transform to the adult stage. The results suggest that larvae of Z. morio can eat and degrade some types of plastic compounds more effectively than T. molitor. The changes in microbial gut communities were compared between these two species. The highest mass gain for Z. morio is associated with higher diversity in gut microbia and it was more diverse than that of T. molitor. Citrobacter freundii, a bacterium recognized for its ability to degrade long-chain polymers, linear hydrocarbons and cyclic hydrocarbons, was found in the microflora of Z. morio. The results confirm that superworms can survive on polymer feed. Moreover, this diet supplemented with microelements and vitamins increases the number of bacterial species and the diversity in the microbial gut.


Asunto(s)
Microbioma Gastrointestinal , Larva , Tenebrio , Animales , Polímeros , Escarabajos , Biodegradación Ambiental , Plásticos
19.
J Agric Food Chem ; 72(38): 20862-20871, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39269786

RESUMEN

The role of insect UDP-glycosyltransferases (UGTs) in the detoxification of insecticides has rarely been reported. A UGT gene UGT2B10 was previously found overexpressed in a fenvalerate-resistant strain of Helicoverpa armigera. Herein, UGT2B10 was cloned, and its involvement in insecticide detoxification was investigated. UGT2B10 was highly expressed in the larvae, mainly in the fat body and midgut. Treatment with UGT inhibitors 5-nitrouracil and sulfinpyrazone significantly enhanced the fenvalerate toxicity. Knocking down UGT2B10 by RNAi significantly increased the larvae mortality by 17.89%. UGT2B10 was further knocked out by CRISPR/Cas9, and a homozygous strain (HD-dUGT2B10) with a C-base deletion at exon 2 was obtained. The sensitivity of HD-dUGT2B10 to fenvalerate, deltamethrin, cyantraniliprole, acetamiprid, and lufenuron increased significantly, with sensitivity index increased 2.523-, 2.544-, 2.250-, 2.473-, and 3.556-fold, respectively. These results suggested that UGT2B10 was involved in the detoxification of H. armigera to insecticides mentioned above, shedding light upon further understanding of the detoxification mechanisms of insecticides by insect UGTs.


Asunto(s)
Sistemas CRISPR-Cas , Glicosiltransferasas , Proteínas de Insectos , Insecticidas , Larva , Mariposas Nocturnas , Animales , Insecticidas/metabolismo , Insecticidas/farmacología , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/enzimología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Larva/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Inactivación Metabólica/genética , Técnicas de Inactivación de Genes , Helicoverpa armigera
20.
J Econ Entomol ; 117(5): 2135-2142, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39255407

RESUMEN

Rachiplusia nu Guenée is a polyphagous species able to develop on several cultivated and non-cultivated host plants. However, basic life history information about this pest on hosts is scarce. In this study, R. nu larvae did not survive on leaves of non-Bt corn, wheat, Bt cotton that expresses proteins Cry1Ac+Cry2Ab2 or on Intacta2 Xtend soybean that expresses the Cry1A.105/Cry2Ab2/Cry1Ac proteins. Rachiplusia nu showed a viable egg-to-adult biological cycle (54%-66.3%) on non-Bt soybean, sunflower, canola, vetch, Persian clover, alfalfa, bean, and forage turnip hosts, similar to larvae raised on the artificial diet. In addition, R. nu was unable to complete larval development on non-Bt cotton, and only 45.2% of R. nu larvae reached the pupal stage when fed leaves of intacta RR2 PRO soybean that expresses the Cry1Ac protein. Larval and pupal mass of surviving insects on Cry1Ac soybean leaves were also lower (larval: 0.104 g; pupal: 0.099 g) in relation to other food sources (larval: 0.165-0.189 g; pupal: 0.173-0.192 g). The total fecundity of R. nu on Cry1Ac soybean leaves was ≈65% lower in relation to other food sources. This fact caused ≈60% the net reproductive rate (Ro) and intrinsic rate of increase (rm) when compared to other food sources. Our findings indicate that the Cry1Ac soybean negatively affects the biological parameters of R. nu. Non-Bt soybean, sunflower, canola, vetch, Persian clover, alfalfa, bean, and forage turnip are viable food sources for the survival and development of R. nu.


Asunto(s)
Toxinas de Bacillus thuringiensis , Endotoxinas , Proteínas Hemolisinas , Larva , Mariposas Nocturnas , Animales , Mariposas Nocturnas/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología , Dieta , Femenino , Pupa/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Proteínas Bacterianas , Masculino , Tablas de Vida , Rasgos de la Historia de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA