Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Biol Macromol ; 267(Pt 2): 131510, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608989

RESUMEN

Bacterial diseases caused substantial yield losses worldwide, with the rise of antibiotic resistance, there is a critical need for alternative antibacterial compounds. Natural products (NPs) from microorganisms have emerged as promising candidates due to their potential as cost-effective and environmentally friendly bactericides. However, the precise mechanisms underlying the antibacterial activity of many NPs, including Guvermectin (GV), remain poorly understood. Here, we sought to explore how GV interacts with Guanosine 5'-monophosphate synthetase (GMPs), an enzyme crucial in bacterial guanine synthesis. We employed a combination of biochemical and genetic approaches, enzyme activity assays, site-directed mutagenesis, bio-layer interferometry, and molecular docking assays to assess GV's antibacterial activity and its mechanism targeting GMPs. The results showed that GV effectively inhibits GMPs, disrupting bacterial guanine synthesis. This was confirmed through drug-resistant assays and direct enzyme inhibition studies. Bio-layer interferometry assays demonstrated specific binding of GV to GMPs, with dependency on Xanthosine 5'-monophosphate. Site-directed mutagenesis identified key residues crucial for the GV-GMP interaction. This study elucidates the antibacterial mechanism of GV, highlighting its potential as a biocontrol agent in agriculture. These findings contribute to the development of novel antibacterial agents and underscore the importance of exploring natural products for agricultural disease management.


Asunto(s)
Adenosina/análogos & derivados , Antibacterianos , Ivermectina , Antibacterianos/farmacología , Antibacterianos/química , Ivermectina/farmacología , Ivermectina/análogos & derivados , Ivermectina/química , Simulación del Acoplamiento Molecular , Productos Biológicos/farmacología , Productos Biológicos/química , Pruebas de Sensibilidad Microbiana , Ligasas de Carbono-Nitrógeno/metabolismo , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Mutagénesis Sitio-Dirigida
2.
Biochem Biophys Res Commun ; 593: 108-115, 2022 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-35063765

RESUMEN

Holocarboxylase synthetase (HLCS) catalyzes the covalent attachment of biotin onto the biotin-dependent carboxylases. Recent studies have shown that HLCS is over-expressed in breast cancer patients. Here we investigated the functional roles of free biotin and HLCS in supporting growth and migration of breast cancer cell lines. Depletion of biotin from culture medium markedly reduced biotinylation of the two most abundant biotin-carboxylases, acetyl-CoA carboxylase and pyruvate carboxylase. This was accompanied by a marked decrease in cell growth. Suppression of HLCS expression in the low invasive breast cancer cell line MCF-7 resulted in an 80% reduction of biotinylated ACC, but not PC. HLCS knockdown MCF-7 cell lines showed 40-50% reduction of proliferation and 35% reduction of migration, accompanied by G1 cell cycle-arrest-induced apoptosis. In contrast, knockdown of HLCS expression in the highly invasive cell line MDA-MB-231 resulted in only marginal reduction of biotinylation of both ACC and PC, accompanied by 30% reduction of proliferation and 30% reduction of migration. Our studies provide new insights to use HLCS as a novel anti-cancer drug target.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Puntos de Control del Ciclo Celular , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , ARN Interferente Pequeño/genética , Acetil-CoA Carboxilasa , Apoptosis , Biomarcadores de Tumor/genética , Biotina/deficiencia , Biotinilación , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Proliferación Celular , Femenino , Humanos , Piruvato Carboxilasa , Células Tumorales Cultivadas
3.
J Pathol ; 254(2): 135-146, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33768538

RESUMEN

Glutamine is a critical nutrient in cancer; however, its contribution to purine metabolism in prostate cancer has not previously been determined. Guanosine monophosphate synthetase (GMPS) acts in the de novo purine biosynthesis pathway, utilizing a glutamine amide to synthesize the guanine nucleotide. This study demonstrates that GMPS mRNA expression correlates with Gleason score in prostate cancer samples, while high GMPS expression was associated with decreased rates of overall and disease/progression-free survival. Pharmacological inhibition or knockdown of GMPS significantly decreased cell growth in both LNCaP and PC-3 prostate cancer cells. We utilized [15 N-(amide)]glutamine and [U-13 C5 ]glutamine metabolomics to dissect the pathways involved and despite similar growth inhibition by GMPS knockdown, we show unique metabolic effects across each cell line. Using a PC-3 xenograft mouse model, tumor growth was also significantly decreased after GMPS knockdown, highlighting the importance of glutamine metabolism and providing support for GMPS as a therapeutic target in prostate cancer. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Glutamina/metabolismo , Neoplasias de la Próstata/enzimología , Animales , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Línea Celular Tumoral , Proliferación Celular , Estudios de Cohortes , Biología Computacional , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Redes y Vías Metabólicas , Metabolómica , Ratones , Prostatectomía , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Purinas/metabolismo , Análisis de Matrices Tisulares , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Biotechnol ; 298: 1-4, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-30974118

RESUMEN

Adenosine, which is produced mainly by microbial fermentation, plays an important role in the therapy of cardiovascular disease and has been widely used as an antiarrhythmic agent. In this study, guanosine 5'-monophosphate (GMP) synthetase gene (guaA) was inactivated by gene-target manipulation to increase the metabolic flux from inosine 5'-monophosphate (IMP) to adenosine in B. subtilis A509. The resulted mutant M3-3 showed an increased adenosine production from 7.40 to 10.45 g/L, which was further enhanced to a maximum of 14.39 g/L by central composite design. As the synthesis of succinyladenosine monophosphate (sAMP) from IMP catalysed by adenylosuccinate synthetase (encoded by purA gene) is the rate-limiting step in adenosine synthesis, the up-regulated transcription level of purA was the potential underlying mechanism for the increased adenosine production. This work demonstrated a practical strategy for breeding B. subtilis strains for industrial nucleoside production.


Asunto(s)
Adenosina/genética , Adenilosuccinato Sintasa/genética , Bacillus subtilis/genética , Ligasas de Carbono-Nitrógeno/genética , Adenosina/biosíntesis , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/genética , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Fermentación , Marcación de Gen , Inosina/genética , Inosina/metabolismo , Inosina Monofosfato/genética , Mutagénesis Sitio-Dirigida , Mutación/genética
5.
Acta Crystallogr D Struct Biol ; 74(Pt 10): 965-972, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30289406

RESUMEN

Dethiobiotin synthetase from Mycobacterium tuberculosis (MtDTBS) is a promising antituberculosis drug target. Small-molecule inhibitors that target MtDTBS provide a route towards new therapeutics for the treatment of antibiotic-resistant tuberculosis. Adenosine diphosphate (ADP) is an inhibitor of MtDTBS; however, structural studies into its mechanism of inhibition have been unsuccessful owing to competitive binding to the enzyme by crystallographic precipitants such as citrate and sulfate. Here, a crystallographic technique termed precipitant-ligand exchange has been developed to exchange protein-bound precipitants with ligands of interest. Proof of concept for the exchange method was demonstrated using cytidine triphosphate (CTP), which adopted the same binding mechanism as that obtained with traditional crystal-soaking techniques. Precipitant-ligand exchange also yielded the previously intractable structure of MtDTBS in complex with ADP solved to 2.4 Šresolution. This result demonstrates the utility of precipitant-ligand exchange, which may be widely applicable to protein crystallography.


Asunto(s)
Adenosina Difosfato/metabolismo , Unión Competitiva , Ligasas de Carbono-Nitrógeno/química , Mycobacterium tuberculosis/enzimología , Adenosina Difosfato/farmacología , Sitios de Unión , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Cristalografía por Rayos X , Citidina Trifosfato/metabolismo , Ligandos , Unión Proteica , Conformación Proteica
6.
Peptides ; 94: 56-63, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28676225

RESUMEN

Cytidine triphosphate synthase 1 (CTPS1) is an enzyme expressed in activated lymphocytes that catalyzes the conversion of uridine triphosphate (UTP) to cytidine triphosphate (CTP) with ATP-dependent amination, using either L-glutamine or ammonia as the nitrogen source. Since CTP plays an important role in DNA/RNA synthesis, phospholipid synthesis, and protein sialyation, CTPS1-inhibition is expected to control lymphocyte proliferation and size expansion in inflammatory diseases. In contrast, CTPS2, an isozyme of CTPS1 possessing 74% amino acid sequence homology, is expressed in normal lymphocytes. Thus, CTPS1-selective inhibition is important to avoid undesirable side effects. Here, we report the discovery of CTpep-3: Ac-FRLGLLKAFRRLF-OH from random peptide libraries displayed on T7 phage, which exhibited CTPS1-selective binding with a KD value of 210nM in SPR analysis and CTPS1-selective inhibition with an IC50 value of 110nM in the enzyme assay. Furthermore, two fundamentally different approaches, enzyme inhibition assay and HDX-MS, provided the same conclusion that CTpep-3 acts by binding to the amidoligase (ALase) domain on CTPS1. To our knowledge, CTpep-3 is the first CTPS1-selective inhibitor.


Asunto(s)
Bacteriófago T7/metabolismo , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Linfocitos/enzimología , Péptidos/farmacología , Humanos , Linfocitos/efectos de los fármacos , Biblioteca de Péptidos
7.
ACS Infect Dis ; 3(6): 428-437, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28475832

RESUMEN

Despite its great potential, the target-based approach has been mostly unsuccessful in tuberculosis drug discovery, while whole cell phenotypic screening has delivered several active compounds. However, for many of these hits, the cellular target has not yet been identified, thus preventing further target-based optimization of the compounds. In this context, the newly validated drug target CTP synthetase PyrG was exploited to assess a target-based approach of already known, but untargeted, antimycobacterial compounds. To this purpose the publically available GlaxoSmithKline antimycobacterial compound set was assayed, uncovering a series of 4-(pyridin-2-yl)thiazole derivatives which efficiently inhibit the Mycobacterium tuberculosis PyrG enzyme activity, one of them showing low activity against the human CTP synthetase. The three best compounds were ATP binding site competitive inhibitors, with Ki values ranging from 3 to 20 µM, but did not show any activity against a small panel of different prokaryotic and eukaryotic kinases, thus demonstrating specificity for the CTP synthetases. Metabolic labeling experiments demonstrated that the compounds directly interfere not only with CTP biosynthesis, but also with other CTP dependent biochemical pathways, such as lipid biosynthesis. Moreover, using a M. tuberculosis pyrG conditional knock-down strain, it was shown that the activity of two compounds is dependent on the intracellular concentration of the CTP synthetase. All these results strongly suggest a role of PyrG as a target of these compounds, thus strengthening the value of this kind of approach for the identification of new scaffolds for drug development.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Mycobacterium tuberculosis/efectos de los fármacos , Piridinas/farmacología , Tiazoles/farmacología , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Antituberculosos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Unión Competitiva , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Cinética , Lípidos/antagonistas & inhibidores , Lípidos/biosíntesis , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Unión Proteica , Piridinas/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Tiazoles/química
8.
Chembiochem ; 17(23): 2240-2249, 2016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27643605

RESUMEN

CTP synthase (CTPS) catalyzes the conversion of UTP to CTP and is a target for the development of antiviral, anticancer, antiprotozoal, and immunosuppressive agents. Exposure of cell lines to the antineoplastic cytidine analogue gemcitabine causes depletion of intracellular CTP levels, but the direct inhibition of CTPS by its metabolite gemcitabine-5'-triphosphate (dF-dCTP) has not been demonstrated. We show that dF-dCTP is a potent competitive inhibitor of Escherichia coli CTPS with respect to UTP [Ki =(3.0±0.1) µm], and that its binding affinity exceeds that of CTP ≈75-fold. Site-directed mutagenesis studies indicated that Glu149 is an important binding determinant for both CTP and dF-dCTP. Comparison of the binding affinities of the 5'-triphosphates of 2'-fluoro-2'-deoxycytidine and 2'-fluoro-2'-deoxyarabinocytidine revealed that the 2'-F-arabino group contributes markedly to the strong binding of dF-dCTP. Geminal 2'-F substitution on UTP (dF-dUTP) did not result in an increase in binding affinity with CTPS. Remarkably, CTPS catalyzed the conversion of dF-dUTP into dF-dCTP, thus suggesting that dF-dCTP might be regenerated in vivo from its catabolite dF-dUTP.


Asunto(s)
Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Citidina Trifosfato/análogos & derivados , Inhibidores Enzimáticos/farmacología , Ligasas de Carbono-Nitrógeno/metabolismo , Citidina Difosfato/análogos & derivados , Citidina Trifosfato/química , Citidina Trifosfato/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Escherichia coli/enzimología , Estructura Molecular , Relación Estructura-Actividad
9.
J Biomol Struct Dyn ; 34(10): 2199-213, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26524231

RESUMEN

In cancer, de novo pathway plays an important role in cell proliferation by supplying huge demand of purine nucleotides. Aminoimidazole ribonucleotide synthetase (AIRS) catalyzes the fifth step of de novo purine biosynthesis facilitating in the conversion of formylglycinamidine ribonucleotide to aminoimidazole ribonucleotide. Hence, inhibiting AIRS is crucial due to its involvement in the regulation of uncontrollable cancer cell proliferation. In this study, the three-dimensional structure of AIRS from P. horikoshii OT3 was constructed based on the crystal structure from E. coli and the modeled protein is verified for stability using molecular dynamics for a time frame of 100 ns. Virtual screening and induced fit docking were performed to identify the best antagonists based on their binding mode and affinity. Through mutational studies, the residues necessary for catalytic activity of AIRS were identified and among which the following residues Lys35, Asp103, Glu137, and Thr138 are important in determination of AIRS function. The mutational studies help to understand the structural and energetic characteristics of the specified residues. In addition to Molecular Dynamics, ADME properties, binding free-energy, and density functional theory calculations of the compounds were carried out to find the best lead molecule. Based on these analyses, the compound from the NCI database, NCI_121957 was adjudged as the best molecule and could be suggested as the suitable inhibitor of AIRS. In future studies, experimental validation of these ligands as AIRS inhibitors will be carried out.


Asunto(s)
Ligasas de Carbono-Nitrógeno/química , Diseño de Fármacos , Inhibidores Enzimáticos/química , Modelos Moleculares , Secuencia de Aminoácidos , Sitios de Unión , Vías Biosintéticas/efectos de los fármacos , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Dominio Catalítico , Inhibidores Enzimáticos/farmacología , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Purinas/biosíntesis
10.
ChemMedChem ; 11(1): 10-4, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26607551

RESUMEN

Over the past few decades, there has been an increasing interest in the development of covalent enzyme inhibitors. As it was recently re-emphasized, the selective, covalent binding of a drug to the desired target can increase efficiency and lower the inhibitor concentration required to achieve a therapeutic effect. In this context, the naturally occurring antibiotic acivicin, and in particular its 3-chloro-4,5-dihydroisoxazole scaffold, has provided a wealth of inspiration to medicinal chemists and chemical biologists alike. In this Concept, to underline the great potentiality that the 3-halo-4,5-dihydroisoxazole warhead has in drug discovery, we present a number of examples, grouped by their potential biological activity and targets, in which this scaffold has been fruitfully used to develop novel biologically active compounds. Through these examples, we show that the 3-halo-4,5-dihydroisoxazole moiety represents an outstanding warhead with high potential for the design of novel covalent enzyme inhibitors.


Asunto(s)
Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Proteasas de Cisteína/metabolismo , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Isoxazoles/farmacología , Ligasas de Carbono-Nitrógeno/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Humanos , Isoxazoles/síntesis química , Isoxazoles/química , Conformación Molecular
11.
Chem Biol ; 22(7): 917-27, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26097035

RESUMEN

To combat the emergence of drug-resistant strains of Mycobacterium tuberculosis, new antitubercular agents and novel drug targets are needed. Phenotypic screening of a library of 594 hit compounds uncovered two leads that were active against M. tuberculosis in its replicating, non-replicating, and intracellular states: compounds 7947882 (5-methyl-N-(4-nitrophenyl)thiophene-2-carboxamide) and 7904688 (3-phenyl-N-[(4-piperidin-1-ylphenyl)carbamothioyl]propanamide). Mutants resistant to both compounds harbored mutations in ethA (rv3854c), the gene encoding the monooxygenase EthA, and/or in pyrG (rv1699) coding for the CTP synthetase, PyrG. Biochemical investigations demonstrated that EthA is responsible for the activation of the compounds, and by mass spectrometry we identified the active metabolite of 7947882, which directly inhibits PyrG activity. Metabolomic studies revealed that pharmacological inhibition of PyrG strongly perturbs DNA and RNA biosynthesis, and other metabolic processes requiring nucleotides. Finally, the crystal structure of PyrG was solved, paving the way for rational drug design with this newly validated drug target.


Asunto(s)
Antituberculosos/farmacología , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Mycobacterium tuberculosis/efectos de los fármacos , Oxidorreductasas/metabolismo , Tiofenos/farmacología , Activación Metabólica , Animales , Antituberculosos/química , Proteínas Bacterianas/metabolismo , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/metabolismo , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Células Hep G2 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/metabolismo , Oxidorreductasas/química , Conformación Proteica , Tiofenos/química
12.
Bioorg Med Chem Lett ; 24(24): 5568-5571, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25466176

RESUMEN

Holocarboxylase synthetase (HLCS) catalyzes the covalent attachment of biotin to cytoplasmic and mitochondrial carboxylases, nuclear histones, and over a hundred human proteins. Nonhydrolyzable ketophosphonate (ß-ketoP) and hydroxyphosphonate (ß-hydroxyP) analogs of biotin-5'-AMP inhibit holocarboxylase synthetase (HLCS) with IC50 values of 39.7 µM and 203.7 µM. By comparison, an IC50 value of 7 µM was observed with the previously reported biotinol-5'-AMP. The Ki values, 3.4 µM and 17.3 µM, respectively, are consistent with the IC50 results, and close to the Ki obtained for biotinol-5'-AMP (7 µM). The ß-ketoP and ß-hydroxyP molecules are competitive inhibitors of HLCS while biotinol-5'-AMP inhibited HLCS by a mixed mechanism.


Asunto(s)
Adenosina Monofosfato/química , Biotina/química , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Organofosfonatos/química , Ligasas de Carbono-Nitrógeno/metabolismo , Humanos , Cetonas/química , Cinética , Organofosfonatos/síntesis química , Organofosfonatos/metabolismo , Unión Proteica
13.
Curr Top Med Chem ; 14(1): 4-20, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24236729

RESUMEN

Biotin protein ligase (BPL) represents a promising target for the discovery of new antibacterial chemotherapeutics. Here we review the central role of BPL for the survival and virulence of clinically important Staphylococcus aureus in support of this claim. X-ray crystallography structures of BPLs in complex with ligands and small molecule inhibitors provide new insights into the mechanism of protein biotinylation, and a template for structure guided approaches to the design of inhibitors for antibacterial discovery. Most BPLs employ an ordered ligand binding mechanism for the synthesis of the reaction intermediate biotinyl-5´-AMP from substrates biotin and ATP. Recent studies reporting chemical analogs of biotin and biotinyl-5´-AMP as BPL inhibitors that represent new classes of anti-S. aureus agents are reviewed. We highlight strategies to selectively inhibit bacterial BPL over the mammalian equivalent using a 1,2,3-triazole isostere to replace the labile phosphoanhydride naturally present in biotinyl-5´-AMP. A novel in situ approach to improve the detection of triazole-based inhibitors is also presented that could potentially be widely applied to other protein targets.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Biotina/metabolismo , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Ligasas de Carbono-Nitrógeno/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Acetil-CoA Carboxilasa/metabolismo , Adenosina Trifosfato/metabolismo , Biotina/análogos & derivados , Dominio Catalítico , Cristalografía por Rayos X , Diseño de Fármacos , Descubrimiento de Drogas , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Terapia Molecular Dirigida , Conformación Proteica , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/química , Staphylococcus aureus/efectos de los fármacos
14.
Arterioscler Thromb Vasc Biol ; 33(10): 2336-44, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24008161

RESUMEN

OBJECTIVE: Vascular remodeling as a result of smooth muscle cell (SMC) proliferation and neointima formation is a major medical challenge in cardiovascular intervention. However, antineointima drugs often indistinguishably block re-endothelialization, an essential step toward successful vascular repair, because of their nonspecific effect on endothelial cells (ECs). The objective of this study is to identify a therapeutic target that differentially regulates SMC and EC proliferation. APPROACH AND RESULTS: Using both rat balloon injury and mouse wire injury models, we identified CTP synthase 1 (CTPS1) as one of the potential targets that may be used for developing therapeutics for treating neointima-related disorders. CTPS1 was induced in proliferative SMCs in vitro and neointima SMCs in vivo. Blockade of CTPS1 expression by small hairpin RNA or activity by cyclopentenyl cytosine suppressed SMC proliferation and neointima formation. Surprisingly, cyclopentenyl cytosine had much less effect on EC proliferation. Of importance, blockade of CTPS1 in vivo sustained the re-endothelialization as a result of induction of CTP synthesis salvage pathway enzymes nucleoside-diphosphate kinase A and B in ECs. Diphosphate kinase B seemed to preserve EC proliferation via use of extracellular cytidine to synthesize CTP. Indeed, blockade of both CTPS1 and diphosphate kinase B suppressed EC proliferation in vitro and the re-endothelialization in vivo. CONCLUSIONS: Our study uncovered a fundamental difference in CTP biosynthesis between SMCs and ECs during vascular remodeling, which provided a novel strategy by using cyclopentenyl cytosine or other CTPS1 inhibitors to selectively block SMC proliferation without disturbing or even promoting re-endothelialization for effective vascular repair after injury.


Asunto(s)
Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Traumatismos de las Arterias Carótidas/prevención & control , Citidina/análogos & derivados , Inhibidores Enzimáticos/farmacología , Terapia Genética , Terapia Molecular Dirigida , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Lesiones del Sistema Vascular/prevención & control , Angioplastia de Balón/efectos adversos , Animales , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Traumatismos de las Arterias Carótidas/enzimología , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/patología , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Citidina/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Células Endoteliales/patología , Terapia Genética/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/lesiones , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/enzimología , Miocitos del Músculo Liso/patología , Nucleósido Difosfato Quinasas NM23/metabolismo , Neointima , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Lesiones del Sistema Vascular/enzimología , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/patología
15.
Biochemistry ; 52(30): 5133-44, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23869564

RESUMEN

Glycinamide ribonucleotide transformylase (GAR Tfase) is a folate-dependent enzyme in the de novo purine biosynthesis pathway, which has long been considered a potential target for development of anti-neoplastic therapeutics. Here we report the biological and X-ray crystallographic evaluations of both independent C10 diastereomers, 10S- and 10R-methylthio-DDACTHF, bound to human GAR Tfase, including the highest-resolution apo GAR Tfase structure to date (1.52 Å). Both diastereomers are potent inhibitors (Ki = 210 nM for 10R, and Ki = 180 nM for 10S) of GAR Tfase and exhibit effective inhibition of human leukemia cell growth (IC50 = 80 and 50 nM, respectively). Their inhibitory activity was surprisingly high, and these lipophilic C10-substituted analogues show distinct advantages over their hydrophilic counterparts, most strikingly in retaining potency in mutant human leukemia cell lines that lack reduced folate carrier protein activity (IC50 = 70 and 60 nM, respectively). Structural characterization reveals a new binding mode for these diastereoisomers, in which the lipophilic thiomethyl groups penetrate deeper into a hydrophobic pocket within the folate-binding site. In silico docking simulations of three other sulfur-containing folate analogues also indicate that this hydrophobic cleft represents a favorable region for binding lipophilic substituents. Overall, these results suggest sulfur and its substitutions play an important role in not only the binding of anti-folates to GAR Tfase but also the selectivity and cellular activity (growth inhibition), thereby presenting new possibilities for the future design of potent and selective anti-folate drugs that target GAR Tfase.


Asunto(s)
Antimetabolitos Antineoplásicos/química , Ligasas de Carbono-Nitrógeno/química , Inhibidores Enzimáticos/química , Modelos Moleculares , Fosforribosilglicinamida-Formiltransferasa/química , Tetrahidrofolatos/química , Antimetabolitos Antineoplásicos/metabolismo , Antimetabolitos Antineoplásicos/farmacología , Apoproteínas/antagonistas & inhibidores , Apoproteínas/química , Apoproteínas/metabolismo , Sitios de Unión , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora , Leucemia/tratamiento farmacológico , Leucemia/enzimología , Conformación Molecular , Simulación del Acoplamiento Molecular , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fosforribosilaminoimidazolcarboxamida-Formiltransferasa/antagonistas & inhibidores , Fosforribosilaminoimidazolcarboxamida-Formiltransferasa/química , Fosforribosilaminoimidazolcarboxamida-Formiltransferasa/genética , Fosforribosilaminoimidazolcarboxamida-Formiltransferasa/metabolismo , Fosforribosilglicinamida-Formiltransferasa/antagonistas & inhibidores , Fosforribosilglicinamida-Formiltransferasa/genética , Fosforribosilglicinamida-Formiltransferasa/metabolismo , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Relación Estructura-Actividad , Tetrahidrofolatos/metabolismo , Tetrahidrofolatos/farmacología
16.
J Med Microbiol ; 61(Pt 9): 1280-1285, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22700553

RESUMEN

PyrG (CTP synthase) catalyses the conversion of UTP to CTP, an essential step in the pyrimidine metabolic pathway in a variety of bacteria, including those causing community-acquired respiratory tract infections (RTIs). In this study, a luminescence-based ATPase assay of PyrG was developed and used to evaluate the inhibitory activity of 2-(3-[3-oxo-1,2-benzisothiazol-2(3H)-yl]phenylsulfonylamino) benzoic acid (compound G1). Compound G1 inhibited PyrG derived from Streptococcus pneumoniae with a 50 % inhibitory concentration value of 0.091 µM, and the inhibitory activity of compound G1 was 13 times higher than that of acivicin (1.2 µM), an established PyrG inhibitor. The results of saturation transfer difference analysis using nuclear magnetic resonance spectroscopy suggested that these compounds compete with ATP and/or UTP for binding to Strep. pneumoniae PyrG. Finally, compound G1 was shown to have antimicrobial activity against several different bacteria causing RTIs, such as Staphylococcus aureus and Haemophilus influenzae, suggesting that it is a prototype chemical compound that could be harnessed as an antimicrobial drug with a novel structure to target bacterial PyrG.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Infecciones del Sistema Respiratorio/microbiología , Adenosina Trifosfatasas/metabolismo , Antibacterianos/química , Bacterias/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Ácido Benzoico/química , Ácido Benzoico/farmacología , Citidina Trifosfato/metabolismo , Inhibidores Enzimáticos/química , Haemophilus influenzae/efectos de los fármacos , Haemophilus influenzae/enzimología , Humanos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana/métodos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/enzimología , Uridina Trifosfato/metabolismo
17.
Bioorg Med Chem Lett ; 20(1): 141-4, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20004571

RESUMEN

CTP synthase (CTPS) catalyzes the conversion of UTP to CTP and is a recognized target for the development of anticancer, antiviral, and antiprotozoal agents. Xanthine and related compounds inhibit CTPS activity (IC(50)=0.16-0.58mM). The presence of an 8-oxo function (i.e., uric acids) enhances inhibition (IC(50)=0.060-0.121mM). An intact purine ring with anionic character favors inhibition. In general, methylation of the purine does not significantly affect inhibition.


Asunto(s)
Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Escherichia coli/enzimología , Ácido Úrico/química , Xantinas/química , Ligasas de Carbono-Nitrógeno/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Cinética , Metilación , Relación Estructura-Actividad , Ácido Úrico/síntesis química , Ácido Úrico/farmacología , Xantinas/síntesis química , Xantinas/farmacología
18.
Cancer Res ; 69(18): 7294-301, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19738041

RESUMEN

5,10-Methenyltetrahydrofolate synthetase (MTHFS) regulates the flow of carbon through the one-carbon metabolic network, which supplies essential components for the growth and proliferation of cells. Inhibition of MTHFS in human MCF-7 breast cancer cells has been shown to arrest the growth of cells. Absence of the three-dimensional structure of human MTHFS (hMTHFS) has hampered the rational design and optimization of drug candidates. Here, we report the structures of native hMTHFS, a binary complex of hMTHFS with ADP, hMTHFS bound with the N5-iminium phosphate reaction intermediate, and an enzyme-product complex of hMTHFS. The N5-iminium phosphate captured for the first time in our crystal structure unravels a unique strategy used by hMTHFS for recognition of the substrate and provides structural basis for the regulation of enzyme activity. Binding of N10-substituted folate analogues places Y152 in the middle of the channel connecting ATP binding site with the substrate binding pocket, precluding the positioning of gamma-phosphate for a nucleophilic attack. Using the structures of hMTHFS as a guide, we have probed the role of residues surrounding the active site in catalysis by mutagenesis. The ensemble of hMTHFS structures and the mutagenesis data yield a coherent picture of the MTHFS active site, determinants of substrate specificity, and new insights into the mechanism of inhibition of hMTHFS.


Asunto(s)
Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ácido Fólico/análogos & derivados , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/metabolismo , Dominio Catalítico , Inhibidores Enzimáticos/metabolismo , Ácido Fólico/química , Ácido Fólico/metabolismo , Ácido Fólico/farmacología , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Relación Estructura-Actividad , Especificidad por Sustrato
19.
J Nutr ; 138(12): 2316-22, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19022951

RESUMEN

Transposable elements such as long terminal repeats (LTR) constitute approximately 45% of the human genome; transposition events impair genome stability. Fifty-four promoter-active retrotransposons have been identified in humans. Epigenetic mechanisms are important for transcriptional repression of retrotransposons, preventing transposition events, and abnormal regulation of genes. Here, we demonstrate that the covalent binding of the vitamin biotin to lysine-12 in histone H4 (H4K12bio) and lysine-9 in histone H2A (H2AK9bio), mediated by holocarboxylase synthetase (HCS), is an epigenetic mechanism to repress retrotransposon transcription in human and mouse cell lines and in primary cells from a human supplementation study. Abundance of H4K12bio and H2AK9bio at intact retrotransposons and a solitary LTR depended on biotin supply and HCS activity and was inversely linked with the abundance of LTR transcripts. Knockdown of HCS in Drosophila melanogaster enhances retrotransposition in the germline. Importantly, we demonstrated that depletion of H4K12bio and H2AK9bio in biotin-deficient cells correlates with increased production of viral particles and transposition events and ultimately decreases chromosomal stability. Collectively, this study reveals a novel diet-dependent epigenetic mechanism that could affect cancer risk.


Asunto(s)
Elementos Transponibles de ADN , Histonas/química , Histonas/metabolismo , Adulto , Animales , Biotina/administración & dosificación , Biotinilación , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Línea Celular , Aberraciones Cromosómicas , Citosina/metabolismo , Metilación de ADN , Suplementos Dietéticos , Drosophila melanogaster , Epigénesis Genética , Femenino , Humanos , Células Jurkat , Masculino , Virus del Tumor Mamario del Ratón/efectos de los fármacos , Virus del Tumor Mamario del Ratón/fisiología , Ratones , Persona de Mediana Edad , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Secuencias Repetidas Terminales , Transcripción Genética/efectos de los fármacos , Ensamble de Virus/efectos de los fármacos , Adulto Joven
20.
Protein Sci ; 17(10): 1706-18, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18725455

RESUMEN

Bacterial acetyl-CoA carboxylase is a multifunctional biotin-dependent enzyme that consists of three separate proteins: biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyltransferase (CT). Acetyl-CoA carboxylase is a potentially attractive target for novel antibiotics because it catalyzes the first committed step in fatty acid biosynthesis. In the first half-reaction, BC catalyzes the ATP-dependent carboxylation of BCCP. In the second half-reaction, the carboxyl group is transferred from carboxybiotinylated BCCP to acetyl-CoA to produce malonyl-CoA. A series of structures of BC from several bacteria crystallized in the presence of various ATP analogs is described that addresses three major questions concerning the catalytic mechanism. The structure of BC bound to AMPPNP and the two catalytically essential magnesium ions resolves inconsistencies between the kinetics of active-site BC mutants and previously reported BC structures. Another structure of AMPPNP bound to BC shows the polyphosphate chain folded back on itself, and not in the correct (i.e., extended) conformation for catalysis. This provides the first structural evidence for the hypothesis of substrate-induced synergism, which posits that ATP binds nonproductively to BC in the absence of biotin. The BC homodimer has been proposed to exhibit half-sites reactivity where the active sites alternate or "flip-flop" their catalytic cycles. A crystal structure of BC showed the ATP analog AMPPCF(2)P bound to one subunit while the other subunit was unliganded. The liganded subunit was in the closed or catalytic conformation while the unliganded subunit was in the open conformation. This provides the first structural evidence for half-sites reactivity in BC.


Asunto(s)
Biotina/química , Ligasas de Carbono-Nitrógeno/química , Sitios de Unión , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Catálisis , Cristalización , Cristalografía por Rayos X , Escherichia coli/enzimología , Magnesio/química , Nucleótidos/química , Pseudomonas aeruginosa/enzimología , Staphylococcus aureus/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA