Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.498
Filtrar
1.
Sci Adv ; 10(23): eadk9996, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38838152

RESUMEN

Immunotoxicity remains a major hindrance to chemotherapy in cancer therapy. Nanocarriers may alleviate the immunotoxicity, but the optimal design remains unclear. Here, we created two variants of maytansine (DM1)-loaded synthetic high-density lipoproteins (D-sHDL) with either physically entrapped (ED-sHDL) or chemically conjugated (CD-sHDL) DM1. We found that CD-sHDL showed less accumulation in the tumor draining lymph nodes (DLNs) and femur, resulting in a lower toxicity against myeloid cells than ED-sHDL via avoiding scavenger receptor class B type 1 (SR-B1)-mediated DM1 transportation into the granulocyte-monocyte progenitors and dendritic cells. Therefore, higher densities of lymphocytes in the tumors, DLNs, and blood were recorded in mice receiving CD-sHDL, leading to a better efficacy and immune memory of CD-sHDL against colon cancer. Furthermore, liposomes with conjugated DM1 (CD-Lipo) showed lower immunotoxicity than those with entrapped drug (ED-Lipo) through the same mechanism after apolipoprotein opsonization. Our findings highlight the critical role of drug loading patterns in dictating the biological fate and activity of nanomedicine.


Asunto(s)
Nanopartículas , Animales , Nanopartículas/química , Ratones , Línea Celular Tumoral , Humanos , Receptores Depuradores de Clase B/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Lipoproteínas HDL/metabolismo , Portadores de Fármacos/química , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/inmunología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Liposomas/química , Lípidos/química
2.
J Nanobiotechnology ; 22(1): 263, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760755

RESUMEN

The prevalence of cardiovascular diseases continues to be a challenge for global health, necessitating innovative solutions. The potential of high-density lipoprotein (HDL) mimetic nanotherapeutics in the context of cardiovascular disease and the intricate mechanisms underlying the interactions between monocyte-derived cells and HDL mimetic showing their impact on inflammation, cellular lipid metabolism, and the progression of atherosclerotic plaque. Preclinical studies have demonstrated that HDL mimetic nanotherapeutics can regulate monocyte recruitment and macrophage polarization towards an anti-inflammatory phenotype, suggesting their potential to impede the progression of atherosclerosis. The challenges and opportunities associated with the clinical application of HDL mimetic nanotherapeutics, emphasize the need for additional research to gain a better understanding of the precise molecular pathways and long-term effects of these nanotherapeutics on monocytes and macrophages to maximize their therapeutic efficacy. Furthermore, the use of nanotechnology in the treatment of cardiovascular diseases highlights the potential of nanoparticles for targeted treatments. Moreover, the concept of theranostics combines therapy and diagnosis to create a selective platform for the conversion of traditional therapeutic medications into specialized and customized treatments. The multifaceted contributions of HDL to cardiovascular and metabolic health via highlight its potential to improve plaque stability and avert atherosclerosis-related problems. There is a need for further research to maximize the therapeutic efficacy of HDL mimetic nanotherapeutics and to develop targeted treatment approaches to prevent atherosclerosis. This review provides a comprehensive overview of the potential of nanotherapeutics in the treatment of cardiovascular diseases, emphasizing the need for innovative solutions to address the challenges posed by cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Lipoproteínas HDL , Macrófagos , Monocitos , Humanos , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Monocitos/efectos de los fármacos , Nanopartículas/química , Aterosclerosis/tratamiento farmacológico , Placa Aterosclerótica/tratamiento farmacológico , Nanomedicina/métodos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología
3.
Math Biosci ; 373: 109208, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38759951

RESUMEN

Atherosclerosis is a chronic disease of the arteries characterised by the accumulation of lipids and lipid-engorged cells in the artery wall. Early plaque growth is aggravated by the deposition of low density lipoproteins (LDL) in the wall and the subsequent immune response. High density lipoproteins (HDL) counterbalance the effects of LDL by accepting cholesterol from macrophages and removing it from the plaque. In this paper, we develop a free boundary multiphase model to investigate the effects of LDL and HDL on early plaque development. We examine how the rates of LDL and HDL deposition affect cholesterol accumulation in macrophages, and how this impacts cell death rates and emigration. We identify a region of LDL-HDL parameter space where plaque growth stabilises for low LDL and high HDL influxes, due to macrophage emigration and HDL clearance that counterbalances the influx of new cells and cholesterol. We explore how the efferocytic uptake of dead cells and the recruitment of new macrophages affect plaque development for a range of LDL and HDL influxes. Finally, we consider how changes in the LDL-HDL profile can change the course of plaque development. We show that changes towards lower LDL and higher HDL can slow plaque growth and even induce regression. We find that these changes have less effect on larger, more established plaques, and that temporary changes will only slow plaque growth in the short term.


Asunto(s)
Aterosclerosis , Lipoproteínas HDL , Placa Aterosclerótica , Humanos , Aterosclerosis/metabolismo , Aterosclerosis/sangre , Aterosclerosis/patología , Lipoproteínas HDL/sangre , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Modelos Cardiovasculares , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/sangre
4.
Sci Rep ; 14(1): 12359, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811670

RESUMEN

Atherosclerosis is the build-up of fatty plaques within blood vessel walls, which can occlude the vessels and cause strokes or heart attacks. It gives rise to both structural and biomolecular changes in the vessel walls. Current single-modality imaging techniques each measure one of these two aspects but fail to provide insight into the combined changes. To address this, our team has developed a dual-modality imaging system which combines optical coherence tomography (OCT) and fluorescence imaging that is optimized for a porphyrin lipid nanoparticle that emits fluorescence and targets atherosclerotic plaques. Atherosclerosis-prone apolipoprotein (Apo)e-/- mice were fed a high cholesterol diet to promote plaque development in descending thoracic aortas. Following infusion of porphyrin lipid nanoparticles in atherosclerotic mice, the fiber-optic probe was inserted into the aorta for imaging, and we were able to robustly detect a porphyrin lipid-specific fluorescence signal that was not present in saline-infused control mice. We observed that the nanoparticle fluorescence colocalized in areas of CD68+ macrophages. These results demonstrate that our system can detect the fluorescence from nanoparticles, providing complementary biological information to the structural information obtained from simultaneously acquired OCT.


Asunto(s)
Nanopartículas , Placa Aterosclerótica , Porfirinas , Tomografía de Coherencia Óptica , Tomografía de Coherencia Óptica/métodos , Animales , Placa Aterosclerótica/diagnóstico por imagen , Nanopartículas/química , Ratones , Porfirinas/química , Imagen Óptica/métodos , Modelos Animales de Enfermedad , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/metabolismo , Aterosclerosis/patología , Macrófagos/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/química
5.
J Lipid Res ; 65(5): 100541, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583587

RESUMEN

HDLs carry sphingosine-1-phosphate (S1P) and stimulate signaling pathways in different cells including macrophages and endothelial cells, involved in atherosclerotic plaque development. HDL signaling via S1P relies on the HDL receptor scavenger receptor class B, type I (SR-B1) and the sphingosine-1-phosphate receptor 1 (S1PR1), which interact when both are heterologously overexpressed in the HEK293 cell line. In this study, we set out to test if SR-B1 and S1PR1 interacted in primary murine macrophages in culture and atherosclerotic plaques. We used knock-in mice that endogenously expressed S1PR1 tagged with eGFP-(S1pr1eGFP/eGFP mice), combined with proximity ligation analysis to demonstrate that HDL stimulates the physical interaction between SR-B1 and S1PR1 in primary macrophages, that this is dependent on HDL-associated S1P and can be blocked by an inhibitor of SR-B1's lipid transfer activity or an antagonist of S1PR1. We also demonstrate that a synthetic S1PR1-selective agonist, SEW2871, stimulates the interaction between SR-B1 and S1PR1 and that this was also blocked by an inhibitor of SR-B1's lipid transport activity. Furthermore, we detected abundant SR-B1/S1PR1 complexes in atherosclerotic plaques of S1pr1eGFP/eGFP mice that also lacked apolipoprotein E. Treatment of mice with the S1PR1 antagonist, Ex26, for 12 h disrupted the SR-B1-S1PR1 interaction in atherosclerotic plaques. These findings demonstrate that SR-B1 and S1PR1 form ligand-dependent complexes both in cultured primary macrophages and within atherosclerotic plaques in mice and provide mechanistic insight into how SR-B1 and S1PR1 participate in mediating HDL signaling to activate atheroprotective responses in macrophages.


Asunto(s)
Macrófagos , Placa Aterosclerótica , Receptores Depuradores de Clase B , Receptores de Esfingosina-1-Fosfato , Animales , Receptores de Esfingosina-1-Fosfato/metabolismo , Macrófagos/metabolismo , Ratones , Receptores Depuradores de Clase B/metabolismo , Receptores Depuradores de Clase B/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Ligandos , Humanos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Lisofosfolípidos/metabolismo , Lipoproteínas HDL/metabolismo , Ratones Endogámicos C57BL , Tiofenos/farmacología , Oxadiazoles
6.
Prostaglandins Other Lipid Mediat ; 172: 106817, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38331090

RESUMEN

Cardiovascular disease (CVD) has been the leading cause of death worldwide. As a chronic inflammatory disease, atherosclerosis (AS) acts as the initiating factor for CVD and reactive oxygen species (ROS) play a vital role in its development. Superoxide dismutases (SOD) can alleviate the detrimental effects of ROS and serve as the first line of defense through detoxifying the products derived from oxidative stress in vivo. Considering the potential preventive effects of high-density lipoprotein (HDL) on AS and the close relationship between CuZn superoxide dismutase (CuZnSOD) and HDL, the present work investigated whether CuZnSOD overexpression in swine could improve the function of HDL. Seven CuZnSOD transgenic swine, constructed by sperm and magnetic nanoparticles, demonstrated overexpressed CuZnSOD in the liver (P < 0.01) but comparable level to control in plasma (P > 0.05). CuZnSOD overexpression significantly down-regulated the levels of triglyceride (TG), apolipoprotein A-I (apoA-I) (P < 0.05), and high-density lipoprotein cholesterol (HDL-C) (P < 0.01) in plasma. In the presence of CuZnSOD overexpression, HDL3 significantly inhibited levels of IL-6 and TNF-α induced by oxidized low-density lipoprotein (oxLDL) (P < 0.05), indicating enhanced anti-inflammatory activity of HDL. At the same time, HDL-mediated cholesterol efflux did not decrease (P > 0.05). CuZnSOD overexpression improves the anti-inflammatory function of HDL despite decreased levels of HDL-C. In Conclusion, CuZnSOD overexpression improves HDL function in swine.


Asunto(s)
Lipoproteínas HDL , Superóxido Dismutasa , Animales , Porcinos , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , Lipoproteínas HDL/metabolismo , Animales Modificados Genéticamente , Interleucina-6/metabolismo , Interleucina-6/genética , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/genética , Masculino , Hígado/metabolismo , Triglicéridos/metabolismo , Triglicéridos/sangre
7.
J Virol ; 98(1): e0084923, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38174935

RESUMEN

Hepatitis C virus (HCV) is a member of the Flaviviridae family; however, unlike other family members, the HCV virion has an unusually high lipid content. HCV has two envelope glycoproteins, E1 and E2. E2 contributes to receptor binding, cell membrane attachment, and immune evasion. In contrast, the functions of E1 are poorly characterized due, in part, to challenges in producing the protein. This manuscript describes the expression and purification of a soluble E1 ectodomain (eE1) that is recognized by conformational, human monoclonal antibodies. eE1 forms a complex with apolipoproteins AI and AII, cholesterol, and phospholipids by recruiting high-density lipoprotein (HDL) from the extracellular media. We show that HDL binding is a function specific to eE1 and HDL hinders recognition of E1 by a neutralizing monoclonal antibody. Either low-density lipoprotein or HDL increases the production and infectivity of cell culture-produced HCV, but E1 preferentially selects HDL, influencing both viral life cycle and antibody evasion.IMPORTANCEHepatitis C virus (HCV) infection is a significant burden on human health, but vaccine candidates have yet to provide broad protection against this infection. We have developed a method to produce high quantities of soluble E1 or E2, the viral proteins located on the surface of HCV. HCV has an unusually high lipid content due to the recruitment of apolipoproteins. We found that E1 (and not E2) preferentially recruits host high-density lipoprotein (HDL) extracellularly. This recruitment of HDL by E1 prevents binding of E1 by a neutralizing antibody and furthermore prevents antibody-mediated neutralization of the virus. By comparison, low-density lipoprotein does not protect the virus from antibody-mediated neutralization. Our findings provide mechanistic insight into apolipoprotein recruitment, which may be critical for vaccine development.


Asunto(s)
Hepacivirus , Hepatitis C , Evasión Inmune , Lipoproteínas HDL , Proteínas del Envoltorio Viral , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Apolipoproteínas/metabolismo , Hepacivirus/patogenicidad , Hepatitis C/inmunología , Hepatitis C/virología , Anticuerpos contra la Hepatitis C/inmunología , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Células HEK293
8.
J Control Release ; 367: 637-648, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295994

RESUMEN

Adenosine (ADO) is a common chemotherapy-associated immune checkpoint that hinders anti-tumor immunity-mediated efficacy of chemotherapy. Herein, we created a synthetic high-density lipoprotein (sHDL) by co-assembly of a doxorubicin (DOX)-apolipoprotein A1 mimetic peptide conjugate, PSB-603 (an A2BR inhibitor), phospholipid, and cholesterol oleate with a microfluidic-based method. The obtained DP-sHDL showed a self-promoted drug delivery to cancer cells via remodeling tumor microenvironment. DP-sHDL could trigger the release of ATP from cancer cells and inhibit its conversion into ADO. Consequently, DP-sHDL, while increasing immunogenic cell death, reduced intratumoral ADO levels by 58%. This treatment improved both the density and activity of CD8+ T cells as well as NK cells and relieved the immunosuppressive microenvironment, and led to a substantial inhibition of 4T1 tumor growth, thereby extending the survival of mice. The efficacy of DP-sHDL could be further improved when used in combination with immune checkpoint blockade therapy. We envision that this platform provides a simple yet promising strategy to enhance anti-tumor response of chemotherapy by relieving treatment-associated immunosuppression.


Asunto(s)
Lipoproteínas HDL , Piperazinas , Compuestos de Azufre , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Lipoproteínas HDL/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Linfocitos T CD8-positivos/metabolismo , Sistemas de Liberación de Medicamentos , Microambiente Tumoral , Línea Celular Tumoral
9.
J Allergy Clin Immunol ; 153(4): 1010-1024.e14, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38092139

RESUMEN

RATIONALE: Serum amyloid A (SAA) is bound to high-density lipoproteins (HDL) in blood. Although SAA is increased in the blood of patients with asthma, it is not known whether this modifies asthma severity. OBJECTIVE: We sought to define the clinical characteristics of patients with asthma who have high SAA levels and assess whether HDL from SAA-high patients with asthma is proinflammatory. METHODS: SAA levels in serum from subjects with and without asthma were quantified by ELISA. HDLs isolated from subjects with asthma and high SAA levels were used to stimulate human monocytes and were intravenously administered to BALB/c mice. RESULTS: An SAA level greater than or equal to 108.8 µg/mL was defined as the threshold to identify 11% of an asthmatic cohort (n = 146) as being SAA-high. SAA-high patients with asthma were characterized by increased serum C-reactive protein, IL-6, and TNF-α; older age; and an increased prevalence of obesity and severe asthma. HDL isolated from SAA-high patients with asthma (SAA-high HDL) had an increased content of SAA as compared with HDL from SAA-low patients with asthma and induced the secretion of IL-6, IL-1ß, and TNF-α from human monocytes via a formyl peptide receptor 2/ATP/P2X purinoceptor 7 axis. Intravenous administration to mice of SAA-high HDL, but not normal HDL, induced systemic inflammation and amplified allergen-induced neutrophilic airway inflammation and goblet cell metaplasia. CONCLUSIONS: SAA-high patients with asthma are characterized by systemic inflammation, older age, and an increased prevalence of obesity and severe asthma. HDL from SAA-high patients with asthma is proinflammatory and, when intravenously administered to mice, induces systemic inflammation, and amplifies allergen-induced neutrophilic airway inflammation. This suggests that systemic inflammation induced by SAA-high HDL may augment disease severity in asthma.


Asunto(s)
Asma , Lipoproteínas HDL , Humanos , Animales , Ratones , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/farmacología , Proteína Amiloide A Sérica/análisis , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6 , Inflamación/metabolismo , Obesidad , Alérgenos
10.
Circulation ; 149(10): 774-787, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38018436

RESUMEN

BACKGROUND: Cholesterol efflux capacity (CEC) predicts cardiovascular disease independently of high-density lipoprotein (HDL) cholesterol levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 (ATP-binding cassette transporter A1) pathway, but the underlying mechanisms are unclear. METHODS: We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 (apolipoprotein A1) in the different particles, and the CECs of plasma and isolated HDLs. RESULTS: We quantified macrophage and ABCA1 CEC of 4 distinct sizes of reconstituted HDL. CEC increased as particle size decreased. Tandem mass spectrometric analysis of chemically cross-linked peptides and molecular dynamics simulations of APOA1, the major protein of HDL, indicated that the mobility of C-terminus of that protein was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs (like reconstituted HDLs) are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3- to 5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. CONCLUSIONS: We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the 2 antiparallel molecules of APOA1 are "flipped" off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased cardiovascular disease risk. Thus, extra-small and small HDLs may be key mediators and indicators of the cardioprotective effects of HDL.


Asunto(s)
Apolipoproteína A-I , Enfermedades Cardiovasculares , Humanos , Apolipoproteína A-I/metabolismo , Enfermedades Cardiovasculares/metabolismo , Lipoproteínas HDL/metabolismo , Colesterol , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Macrófagos/metabolismo , HDL-Colesterol
11.
Biofactors ; 50(3): 608-618, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38135490

RESUMEN

The high-density lipoprotein (HDL)-associated enzyme paraoxonase 1 (PON1) is expressed almost exclusively in the liver and is then transported by HDL to the peripheral tissues. The lipophilic nature of PON1 enables its easy exchange between the lipoprotein and cell membranes in a process that is dependent on the HDL receptor scavenger receptor class B, type 1 (SR-B1). In endothelial cells, PON1 binding to the cell membrane leads to its internalization by endocytosis and subsequent lysosomal degradation. PON1 is a "promiscuous" enzyme with unusually broad substrate specificity in vitro, but its actual function and substrate are still unknown. The enzyme requires a lipid environment and becomes completely inactive upon delipidation. However, when PON1 binds HDL, its active site faces the lipoprotein's core and is inaccessible to external substrates. Hence, the HDL-bound PON1 is inactive toward substrates outside the particle's lipid core and is rapidly degraded and becomes inactive upon internalization. Consequently, the enzyme is only active in the cell membrane during its transit from HDL to the cytoplasm. To assign a function to PON1, we investigated whether it is a palmitoyl-protein thioesterase (PPT) that can hydrolyze the palmitoyl moieties of membrane proteins involved in HDL and cholesterol transport, such as SR-B1, ABCA1, or their neighboring caveola proteins to facilitate the release of HDL or trigger its endocytosis. This study shows that PON1 can hydrolyze palmitoyl-cysteine thioester bonds in vitro, has direct or indirect PPT activity in vivo, and can significantly decrease the presence of SR-B1 in the endothelial membrane.


Asunto(s)
Arildialquilfosfatasa , Membrana Celular , Lipoproteínas HDL , Receptores Depuradores de Clase B , Tioléster Hidrolasas , Arildialquilfosfatasa/metabolismo , Arildialquilfosfatasa/genética , Tioléster Hidrolasas/metabolismo , Tioléster Hidrolasas/genética , Humanos , Membrana Celular/metabolismo , Receptores Depuradores de Clase B/metabolismo , Receptores Depuradores de Clase B/genética , Lipoproteínas HDL/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/enzimología , Células Endoteliales de la Vena Umbilical Humana , Animales , Endocitosis/fisiología
12.
Arthritis Rheumatol ; 76(5): 684-695, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38111131

RESUMEN

OBJECTIVE: High-density lipoprotein (HDL) has well-characterized anti-atherogenic cholesterol efflux and antioxidant functions. Another function of HDL uncharacterized in rheumatoid arthritis (RA) is its ability to transport microRNAs (miRNAs) between cells and thus alter cellular function. The study's purpose was to determine if HDL-miRNA cargo is altered and affects inflammation in RA. METHODS: HDL-microRNAs were characterized in 30 RA and 30 control participants by next generation sequencing and quantitative polymerase chain reaction. The most abundant differentially expressed miRNA was evaluated further. The function of miR-1246 was assessed by miRNA mimics, antagomiRs, small interfering RNA knockdown, and luciferase assays. Monocyte-derived macrophages were treated with miR-1246-loaded HDL and unmodified HDL from RA and control participants to measure delivery of miR-1246 and its effect on interleukin-6 (IL-6). RESULTS: The most abundant miRNA on HDL was miR-1246; it was significantly enriched two-fold on HDL from RA versus control participants. HDL-mediated miR-1246 delivery to macrophages significantly increased IL6 expression 43-fold. miR-1246 delivery significantly decreased DUSP3 1.5-fold and DUSP3 small interfering RNA knockdown increased macrophage IL6 expression. Luciferase assay indicated DUSP3 is a direct target of miR-1246. Unmodified HDL from RA delivered 1.6-fold more miR-1246 versus control participant HDL. Unmodified HDL from both RA and control participants attenuated activated macrophage IL6 expression, but this effect was significantly blunted in RA so that IL6 expression was 3.4-fold higher after RA versus control HDL treatment. CONCLUSION: HDL-miR-1246 was increased in RA versus control participants and delivery of miR-1246 to macrophages increased IL-6 expression by targeting DUSP3. The altered HDL-miRNA cargo in RA blunted HDL's anti-inflammatory effect.


Asunto(s)
Artritis Reumatoide , Interleucina-6 , Lipoproteínas HDL , Macrófagos , MicroARNs , Humanos , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , MicroARNs/metabolismo , Lipoproteínas HDL/farmacología , Lipoproteínas HDL/metabolismo , Persona de Mediana Edad , Masculino , Femenino , Interleucina-6/metabolismo , Macrófagos/metabolismo , Estudios de Casos y Controles , Inflamación/metabolismo , Adulto , Anciano
13.
Dev Cell ; 58(21): 2326-2337.e5, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37863040

RESUMEN

High-density lipoprotein (HDL) metabolism is regulated by complex interplay between the scavenger receptor group B type 1 (SR-BI) and multiple signaling molecules in the liver. Here, we show that lipocalin-2 (Lcn2) is a key regulator of hepatic SR-BI, HDL metabolism, and atherosclerosis. Overexpression of human Lcn2 in hepatocytes attenuates the development of atherosclerosis via SR-BI in western-diet-fed Ldlr-/- mice, whereas hepatocyte-specific ablation of Lcn2 has the opposite effect. Mechanistically, hepatocyte Lcn2 improves HDL metabolism and alleviates atherogenesis by blocking Nedd4-1-mediated SR-BI ubiquitination at K500 and K508. The Lcn2-improved HDL metabolism is abolished in mice with hepatocyte-specific Nedd4-1 or SR-BI deletion and in SR-BI (K500A/K508A) mutation mice. This study identifies a regulatory axis from Lcn2 to HDL via blocking Nedd4-1-mediated SR-BI ubiquitination and demonstrates that hepatocyte Lcn2 may be a promising target to improve HDL metabolism to treat atherosclerotic cardiovascular diseases.


Asunto(s)
Aterosclerosis , Lipoproteínas HDL , Ratones , Humanos , Animales , Lipoproteínas HDL/metabolismo , Lipocalina 2/genética , Lipocalina 2/metabolismo , Hepatocitos/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo , Hígado/metabolismo , Antígenos CD36/metabolismo
14.
Obesity (Silver Spring) ; 31(12): 2986-2997, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37746932

RESUMEN

OBJECTIVE: In obesity, adipocyte hypertrophy is detrimental to health, but its' interrelation with fibrosis in the visceral adipose tissue (VAT) depot remains unclear. Because VAT is less accessible via biopsy, biomarkers for VAT quality are needed. The authors hypothesized that VAT adipocyte size and fibrosis are interrelated and can be estimated by circulating microRNAs (circ-miRNAs), contributing to subphenotyping obesity. METHODS: Adipocyte size and AT fibrosis were estimated in n = 43 participants (BMI ≥ 30 kg/m2 ). Circ-miRNAs were sequenced (Next Generation Sequencing). RESULTS: Participants with above- versus below-median VAT adipocyte area exhibited metabolic dysfunction but lower total and pericellular fibrosis. VAT adipocyte size remained associated with metabolic dysfunction even when controlling for BMI or VAT fibrosis in the entire cohort, as in matched-pairs subanalyses. Next Generation Sequencing uncovered 22 and 6 circ-miRNAs associated with VAT adipocyte size and fibrosis, respectively, with miRNA-130b-3p common to both analyses. The combination of miRNA-130b-3p + miR-150-5p + high-density lipoprotein cholesterol discriminated among those with large versus small VAT adipocytes (receiver operating characteristic-area under the curve: 0.872 [95% CI: 0.747-0.996]), whereas miRNA-130b-3p + miRNA-15a-5p + high-density lipoprotein cholesterol discriminated among those with low and high fibrosis (receiver operating characteristic-area under the curve: 0.823 [95% CI: 0.676-0.97]). CONCLUSIONS: These findings suggest that VAT adipocyte size and fibrosis are inversely correlated in obesity and can be estimated by distinct circ-miRNAs, providing a potential tool to subphenotype obesity via a liquid biopsy-like approach to assess VAT health in nonsurgical patients.


Asunto(s)
MicroARNs , Obesidad , Humanos , Obesidad/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Adipocitos/metabolismo , Fibrosis , Lipoproteínas HDL/metabolismo , Colesterol
15.
Chem Biol Interact ; 380: 110553, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37201624

RESUMEN

Both infectious and non-infectious diseases can share common molecular mechanisms, including oxidative stress and inflammation. External factors, such as bacterial or viral infections, excessive calorie intake, inadequate nutrients, or environmental factors, can cause metabolic disorders, resulting in an imbalance between free radical production and natural antioxidant systems. These factors may lead to the production of free radicals that can oxidize lipids, proteins, and nucleic acids, causing metabolic alterations that influence the pathogenesis of the disease. The relationship between oxidation and inflammation is crucial, as they both contribute to the development of cellular pathology. Paraoxonase 1 (PON1) is a vital enzyme in regulating these processes. PON1 is an enzyme that is bound to high-density lipoproteins and protects the organism against oxidative stress and toxic substances. It breaks down lipid peroxides in lipoproteins and cells, enhances the protection of high-density lipoproteins against different infectious agents, and is a critical component of the innate immune system. Impaired PON1 function can affect cellular homeostasis pathways and cause metabolically driven chronic inflammatory states. Therefore, understanding these relationships can help to improve treatments and identify new therapeutic targets. This review also examines the advantages and disadvantages of measuring serum PON1 levels in clinical settings, providing insight into the potential clinical use of this enzyme.


Asunto(s)
Arildialquilfosfatasa , Neoplasias , Humanos , Arildialquilfosfatasa/metabolismo , Xenobióticos , Estrés Oxidativo , Lipoproteínas HDL/metabolismo , Inflamación
16.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37108210

RESUMEN

Inflammation and atherosclerosis are intimately associated via the production of dysfunctional high-density lipoproteins (HDL) and modification of apolipoprotein (apo) A-I. A putative interaction between CIGB-258 and apoA-I was investigated to provide mechanistic insight into the protection of HDL. The protective activity of CIGB-258 was tested in the CML-mediated glycation of apoA-I. The in vivo anti-inflammatory efficacy was compared in paralyzed hyperlipidemic zebrafish and its embryo in the presence of CML. Treatment of CML induced greater glycation extent of HDL/apoA-I and proteolytic degradation of apoA-I. In the presence of CML, however, co-treatment of CIGB-258 inhibited the glycation of apoA-I and protected the degradation of apoA-I, exerting enhanced ferric ion reduction ability. Microinjection of CML (500 ng) into zebrafish embryos resulted in acute death with the lowest survivability with severe developmental defects with interleukin (IL)-6 production. Conversely, a co-injection of CIGB-258 or Tocilizumab produced the highest survivability with a normal development speed and morphology. In hyperlipidemic zebrafish, intraperitoneal injection of CML (500 µg) caused the complete loss of swimming ability and severe acute death with only 13% survivability 3 h post-injection. A co-injection of the CIGB-258 resulted in a 2.2-fold faster recovery of swimming ability than CML alone, with higher survivability of approximately 57%. These results suggest that CIGB-258 protected hyperlipidemic zebrafish from the acute neurotoxicity of CML. Histological analysis showed that the CIGB-258 group had 37% lower infiltration of neutrophils in hepatic tissue and 70% lower fatty liver changes than those of the CML-alone group. The CIGB-258 group exhibited the smallest IL-6 expression in the liver and the lowest blood triglyceride level. CIGB-258 displayed potent anti-inflammatory activity in hyperlipidemic zebrafish by inhibiting apoA-I glycation, promoting rapid recovery from the paralysis of CML toxicity and suppression of IL-6, and lowering fatty liver changes.


Asunto(s)
Hígado Graso , Pez Cebra , Animales , Pez Cebra/metabolismo , Apolipoproteína A-I/metabolismo , Interleucina-6 , Lipoproteínas HDL/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
17.
J Biomol Struct Dyn ; 41(24): 15661-15681, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36943736

RESUMEN

Apolipoprotein A1 (ApoA1), is the important component of high-density lipoproteins (HDL), that has key role in HDL biogenesis, cholesterol trafficking, and reverse cholesterol transport (RCT). Non-synonymous Single Nucleotide Polymorphisms (nsSNPs) in ApoA1 have been linked to cardiovascular diseases and amyloidosis as they alter the protein's native structure and function. Therefore in this study, we attempted to understand the molecular pathogenicity profile of nsSNPs of ApoA1 using various computational approaches. We used state-of-the-art computational methods to thoroughly investigate the 295 ApoA1 nsSNPs at sequence and structural levels. Seven nsSNPs (L13R, L84R, L84P, L99P, R173P, L187P, and L238P) out of 295 were classified as the most deleterious and destabilizing. In order to estimate the effect of such destabilizing mutations on the protein conformation, all-atom molecular dynamics simulations (MDS) of ApoA1 wild-type (WT), L99P and R173P for 100 ns, was carried out using GROMACS 5.0.1 package. The MD simulation investigation revealed significant structural alterations in L99P and R173P. In addition, they had changed principal component analysis and electrostatic surface potential, decreased structural compactness, and intramolecular hydrogen bonds, which supported the rationale underpinning ApoA1 dysfunction with such mutations. This work sheds light on ApoA1 dysfunction due to single amino acid alterations, and offers new insight into the molecular basis of ApoA1-related diseases progression.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Apolipoproteína A-I , Simulación de Dinámica Molecular , Apolipoproteína A-I/genética , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Colesterol , Mutación
18.
J Extracell Vesicles ; 12(2): e12308, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36739598

RESUMEN

Decreased systemic oestrogen levels (i.e., menopause) affect metabolic health. However, the detailed mechanisms underlying this process remain unclear. Both oestrogens and exercise have been shown to improve metabolic health, which may be partly mediated by circulating microRNA (c-miR) signalling. In recent years, extracellular vesicles (EV) have increased interest in the field of tissue crosstalk. However, in many studies on EV-carried miRs, the co-isolation of high-density lipoprotein (HDL) particles with EVs has not been considered, potentially affecting the results. Here, we demonstrate that EV and HDL particles have distinct small RNA (sRNA) content, including both host and nonhost sRNAs. Exercise caused an acute increase in relative miR abundancy in EVs, whereas in HDL particles, it caused an increase in transfer RNA-derived sRNA. Furthermore, we demonstrate that oestrogen-based hormonal therapy (HT) allows the acute exercise-induced miR-response to occur in both EV and HDL particles in postmenopausal women, while the response was absent in nonusers.


Asunto(s)
MicroARN Circulante , Vesículas Extracelulares , Humanos , Femenino , Lipoproteínas HDL/metabolismo , ARN/metabolismo , Vesículas Extracelulares/metabolismo , Estrógenos/metabolismo , MicroARN Circulante/metabolismo , Ejercicio Físico
19.
Glycobiology ; 33(6): 442-453, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-36762911

RESUMEN

Hyperglycemia is a poorly controlled diabetic condition, affects about 70% of people all round the world. In the year 2015, about 41.5 crore people were diabetic and is expected to reach around 64.3 crore by the year 2040. Cardiovascular diseases (CVDs) are considered as one of the major risk factors that cause more than half of the death of diabetic patients and promote related comorbidities. Atherosclerosis and amyloidosis are the prime factors linked with CVDs. Apolipoprotein A-I (ApoA-I) of HDL has protective action against CVDs, participates in reverse cholesterol transport mechanism and lipid metabolism, but gets easily glycated under prolonged hyperglycemic aura, i.e. glycation. ApoA-I has a potent role in maintenance of glucose level, providing a compelling link between diabetes and CVDs. Increased protein glycation in people with diabetes promotes atherosclerosis, which might play possible role in promotion of protein aggregation by altering the protein structure and its conformation. Here, we intend to investigate the mechanistic behavior of ApoA-I under the menace of glycation and its impact on ApoA-I structure and function that possibly link with aggregation or amyloidosis.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Hiperglucemia , Humanos , Lipoproteínas HDL/metabolismo , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Reacción de Maillard , Aterosclerosis/metabolismo
20.
Thromb Res ; 223: 7-23, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36689805

RESUMEN

BACKGROUND: Oxidative stress derived from severe systemic inflammation promotes conversion from high-density lipoprotein HDL to oxidized HDL (oxHDL), which interacts with vascular endothelial cells (ECs). OxHDL acquires procoagulant features playing a role in modulating coagulation, which has been linked with organ failure in ICU patients. However, whether oxHDL elicits a ECs-mediated procoagulant phenotype generating organ failure and death, and the underlying molecular mechanism is not known. Therefore, we studied whether oxHDL-treated rats and high-oxHDL ICU patients exhibit a procoagulant phenotype and its association with kidney injury and mortality and the endothelial underlying molecular mechanism. METHODS: Human ECs, oxHDL-treated rats and ICU patients were subjected to several cellular and molecular studies, coagulation analyses, kidney injury assessment and mortality determination. RESULTS: OxHDL-treated ECs showed a procoagulant protein expression reprograming characterized by increased E-/P-selectin and vWF mRNA expression through specific signaling pathways. OxHDL-treated rats exhibited a procoagulant phenotype and modified E-/P-selectin, vWF, TF and t-PA mRNA expression correlating with plasma TF, t-PA and D-dimer. Also, showed increased death events and the relative risk of death, and increased creatinine, urea, BUN/creatinine ratio, KIM-1, NGAL, ß2M, and decreased eGFR, all concordant with kidney injury, correlated with plasma TF, t-PA and D-dimer. ICU patients showed correlation between plasma oxHDL and increased creatinine, cystatin, BUN, BUN/creatinine ratio, KIM-1, NGAL, ß2M, and decreased GFR. Notably, ICU high-oxHDL patients showed decreased survival. Interestingly, altered coagulation factors TF, t-PA and D-dimer correlated with both increased oxHDL levels and kidney injury markers, indicating a connection between these factors. CONCLUSION: Increased circulating oxHDL generates an endothelial-dependent procoagulant phenotype that associates with acute kidney injury and increased risk of death.


Asunto(s)
Lesión Renal Aguda , Lipoproteínas HDL , Humanos , Ratas , Animales , Lipoproteínas HDL/metabolismo , Selectina-P/metabolismo , Células Endoteliales/metabolismo , Creatinina , Lipocalina 2 , Factor de von Willebrand/metabolismo , Fenotipo , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA