Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.467
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 14(1): 12917, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839811

RESUMEN

Allii Macrostemonis Bulbus (AMB) is a traditional Chinese medicine with medicinal and food homology. AMB has various biological activities, including anti-coagulation, lipid-lowering, anti-tumor, and antioxidant effects. Saponins from Allium macrostemonis Bulbus (SAMB), the predominant beneficial compounds, also exhibited lipid-lowering and anti-inflammatory properties. However, the effect of SAMB on atherosclerosis and the underlying mechanisms are still unclear. This study aimed to elucidate the pharmacological impact of SAMB on atherosclerosis. In apolipoprotein E deficiency (ApoE-/-) mice with high-fat diet feeding, oral SAMB administration significantly attenuated inflammation and atherosclerosis plaque formation. The in vitro experiments demonstrated that SAMB effectively suppressed oxidized-LDL-induced foam cell formation by down-regulating CD36 expression, thereby inhibiting lipid endocytosis in bone marrow-derived macrophages. Additionally, SAMB effectively blocked LPS-induced inflammatory response in bone marrow-derived macrophages potentially through modulating the NF-κB/NLRP3 pathway. In conclusion, SAMB exhibits a potential anti-atherosclerotic effect by inhibiting macrophage foam cell formation and inflammation. These findings provide novel insights into potential preventive and therapeutic strategies for the clinical management of atherosclerosis.


Asunto(s)
Aterosclerosis , Células Espumosas , Inflamación , Saponinas , Animales , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Saponinas/farmacología , Ratones , Inflamación/tratamiento farmacológico , Inflamación/patología , Allium/química , Masculino , Apolipoproteínas E/deficiencia , Dieta Alta en Grasa/efectos adversos , FN-kappa B/metabolismo , Ratones Endogámicos C57BL , Lipoproteínas LDL/metabolismo
2.
Mol Med ; 30(1): 76, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840067

RESUMEN

BACKGROUND: Advanced glycation end product-modified low-density lipoprotein (AGE-LDL) is related to inflammation and the development of atherosclerosis. Additionally, it has been demonstrated that receptor for advanced glycation end products (RAGE) has a role in the condition known as calcific aortic valve disease (CAVD). Here, we hypothesized that the AGE-LDL/RAGE axis could also be involved in the pathophysiological mechanism of CAVD. METHODS: Human aortic valve interstitial cells (HAVICs) were stimulated with AGE-LDL following pre-treatment with or without interleukin 37 (IL-37). Low-density lipoprotein receptor deletion (Ldlr-/-) hamsters were randomly allocated to chow diet (CD) group and high carbohydrate and high fat diet (HCHFD) group. RESULTS: AGE-LDL levels were significantly elevated in patients with CAVD and in a hamster model of aortic valve calcification. Our in vitro data further demonstrated that AGE-LDL augmented the expression of intercellular cell adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6) and alkaline phosphatase (ALP) in a dose-dependent manner through NF-κB activation, which was attenuated by nuclear factor kappa-B (NF-κB) inhibitor Bay11-7082. The expression of RAGE was augmented in calcified aortic valves, and knockdown of RAGE in HAVICs attenuated the AGE-LDL-induced inflammatory and osteogenic responses as well as NF-κB activation. IL-37 suppressed inflammatory and osteogenic responses and NF-κB activation in HAVICs. The vivo experiment also demonstrate that supplementation with IL-37 inhibited valvular inflammatory response and thereby suppressed valvular osteogenic activities. CONCLUSIONS: AGE-LDL promoted inflammatory responses and osteogenic differentiation through RAGE/NF-κB pathway in vitro and aortic valve lesions in vivo. IL-37 suppressed the AGE-LDL-induced inflammatory and osteogenic responses in vitro and attenuated aortic valve lesions in a hamster model of CAVD.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Calcinosis , Productos Finales de Glicación Avanzada , Lipoproteínas LDL , FN-kappa B , Osteogénesis , Receptor para Productos Finales de Glicación Avanzada , Transducción de Señal , Animales , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Productos Finales de Glicación Avanzada/metabolismo , FN-kappa B/metabolismo , Humanos , Calcinosis/metabolismo , Calcinosis/patología , Calcinosis/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/genética , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/etiología , Estenosis de la Válvula Aórtica/patología , Cricetinae , Osteogénesis/efectos de los fármacos , Masculino , Lipoproteínas LDL/metabolismo , Modelos Animales de Enfermedad , Femenino , Persona de Mediana Edad , Proteinas Glicosiladas
3.
BMC Cardiovasc Disord ; 24(1): 289, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822281

RESUMEN

LY86, also known as MD1, has been implicated in various pathophysiological processes including inflammation, obesity, insulin resistance, and immunoregulation. However, the role of LY86 in cholesterol metabolism remains incompletely understood. Several studies have reported significant up-regulation of LY86 mRNA in atherosclerosis; nevertheless, the regulatory mechanism by which LY86 is involved in this disease remains unclear. In this study, we aimed to investigate whether LY86 affects ox-LDL-induced lipid accumulation in macrophages. Firstly, we confirmed that LY86 is indeed involved in the process of atherosclerosis and found high expression levels of LY86 in human atherosclerotic plaque tissue. Furthermore, our findings suggest that LY86 may mediate intracellular lipid accumulation induced by ox-LDL through the SREBP2/HMGCR pathway. This mechanism could be associated with increased cholesterol synthesis resulting from enhanced endoplasmic reticulum stress response.


Asunto(s)
Aterosclerosis , Estrés del Retículo Endoplásmico , Hidroximetilglutaril-CoA Reductasas , Lipoproteínas LDL , Macrófagos , Transducción de Señal , Proteína 2 de Unión a Elementos Reguladores de Esteroles , Regulación hacia Arriba , Humanos , Lipoproteínas LDL/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Hidroximetilglutaril-CoA Reductasas/genética , Placa Aterosclerótica , Células THP-1 , Masculino , Animales , Metabolismo de los Lípidos/efectos de los fármacos , Colesterol/metabolismo
4.
Sci Rep ; 14(1): 10782, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734775

RESUMEN

The inflammatory corpuscle recombinant absents in melanoma 2 (AIM2) and cholesterol efflux protein ATP binding cassette transporter A1(ABCA1) have been reported to play opposing roles in atherosclerosis (AS) plaques. However, the relationship between AIM2 and ABCA1 remains unclear. In this study, we explored the potential connection between AIM2 and ABCA1 in the modulation of AS by bioinformatic analysis combined with in vitro experiments. The GEO database was used to obtain AS transcriptional profiling data; screen differentially expressed genes (DEGs) and construct a weighted gene co-expression network analysis (WGCNA) to obtain AS-related modules. Phorbol myristate acetate (PMA) was used to induce macrophage modelling in THP-1 cells, and ox-LDL was used to induce macrophage foam cell formation. The experiment was divided into Negative Control (NC) group, Model Control (MC) group, AIM2 overexpression + ox-LDL (OE AIM2 + ox-LDL) group, and AIM2 short hairpin RNA + ox-LDL (sh AIM2 + ox-LDL) group. The intracellular cholesterol efflux rate was detected by scintillation counting; high-performance liquid chromatography (HPLC) was used to detect intracellular cholesterol levels; apoptosis levels were detected by TUNEL kit; levels of inflammatory markers (IL-1ß, IL-18, ROS, and GSH) were detected by ELISA kits; and levels of AIM2 and ABCA1 proteins were detected by Western blot. Bioinformatic analysis revealed that the turquoise module correlated most strongly with AS, and AIM2 and ABCA1 were co-expressed in the turquoise module with a trend towards negative correlation. In vitro experiments demonstrated that AIM2 inhibited macrophage cholesterol efflux, resulting in increased intracellular cholesterol levels and foam cell formation. Moreover, AIM2 had a synergistic effect with ox-LDL, exacerbating macrophage oxidative stress and inflammatory response. Silencing AIM2 ameliorated the above conditions. Furthermore, the protein expression levels of AIM2 and ABCA1 were consistent with the bioinformatic analysis, showing a negative correlation. AIM2 inhibits ABCA1 expression, causing abnormal cholesterol metabolism in macrophages and ultimately leading to foam cell formation. Inhibiting AIM2 may reverse this process. Overall, our study suggests that AIM2 is a reliable anti-inflammatory therapeutic target for AS. Inhibiting AIM2 expression may reduce foam cell formation and, consequently, inhibit the progression of AS plaques.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Colesterol , Proteínas de Unión al ADN , Células Espumosas , Lipoproteínas LDL , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Células Espumosas/metabolismo , Humanos , Colesterol/metabolismo , Lipoproteínas LDL/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Células THP-1 , Macrófagos/metabolismo , Biología Computacional/métodos , Apoptosis , Inflamación/metabolismo , Inflamación/patología
5.
FASEB J ; 38(10): e23678, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38780199

RESUMEN

Melatonin (MLT), a conserved small indole compound, exhibits anti-inflammatory and antioxidant properties, contributing to its cardioprotective effects. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is associated with atherosclerosis disease risk, and is known as an atherosclerosis risk biomarker. This study aimed to investigate the impact of MLT on Lp-PLA2 expression in the atherosclerotic process and explore the underlying mechanisms involved. In vivo, ApoE-/- mice were fed a high-fat diet, with or without MLT administration, after which the plaque area and collagen content were assessed. Macrophages were pretreated with MLT combined with ox-LDL, and the levels of ferroptosis-related proteins, NRF2 activation, mitochondrial function, and oxidative stress were measured. MLT administration significantly attenuated atherosclerotic plaque progression, as evidenced by decreased plaque area and increased collagen. Compared with those in the high-fat diet (HD) group, the levels of glutathione peroxidase 4 (GPX4) and SLC7A11 (xCT, a cystine/glutamate transporter) in atherosclerotic root macrophages were significantly increased in the MLT group. In vitro, MLT activated the nuclear factor-E2-related Factor 2 (NRF2)/SLC7A11/GPX4 signaling pathway, enhancing antioxidant capacity while reducing lipid peroxidation and suppressing Lp-PLA2 expression in macrophages. Moreover, MLT reversed ox-LDL-induced ferroptosis, through the use of ferrostatin-1 (a ferroptosis inhibitor) and/or erastin (a ferroptosis activator). Furthermore, the protective effects of MLT on Lp-PLA2 expression, antioxidant capacity, lipid peroxidation, and ferroptosis were decreased in ML385 (a specific NRF2 inhibitor)-treated macrophages and in AAV-sh-NRF2 treated ApoE-/- mice. MLT suppresses Lp-PLA2 expression and atherosclerosis processes by inhibiting macrophage ferroptosis and partially activating the NRF2 pathway.


Asunto(s)
Aterosclerosis , Ferroptosis , Melatonina , Factor 2 Relacionado con NF-E2 , Animales , Ferroptosis/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Melatonina/farmacología , Ratones , Aterosclerosis/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Aterosclerosis/patología , Masculino , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Dieta Alta en Grasa/efectos adversos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Lipoproteínas LDL/metabolismo , Antioxidantes/farmacología
6.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791535

RESUMEN

Hypercholesterolemia-associated oxidative stress increases the formation of oxidized low-density lipoprotein (oxLDL), which can affect endothelial cell function and potentially contribute to renal dysfunction, as reflected by changes in urinary protein excretion. This study aimed to investigate the impact of exogenous oxLDL on urinary excretion of albumin and nephrin. LDL was isolated from a patient with familial hypercholesterolemia (FH) undergoing lipoprotein apheresis (LA) and was oxidized in vitro with Cu (II) ions. Biochemical markers of LDL oxidation, such as TBARS, conjugated dienes, and free ε-amino groups, were measured. Wistar rats were treated with a single intraperitoneal injection of PBS, LDL, or oxLDL (4 mg of protein/kg b.w.). Urine was collected one day before and two days after the injection. We measured blood lipid profiles, urinary protein excretion (specifically albumin and nephrin), and markers of systemic oxidative stress (8-OHdG and 8-iso-PGF2α). The results showed that injection of oxLDL increased urinary albumin excretion by approximately 28% (310 ± 27 µg/24 h vs. 396 ± 26 µg/24 h, p = 0.0003) but had no effect on nephrin excretion. Neither PBS nor LDL had any effect on urinary albumin or nephrin excretion. Additionally, oxLDL did not affect systemic oxidative stress. In conclusion, hypercholesterolemia may adversely affect renal function through oxidatively modified LDL, which interferes with the renal handling of albumin and leads to the development of albuminuria.


Asunto(s)
Albuminuria , Lipoproteínas LDL , Estrés Oxidativo , Ratas Wistar , Lipoproteínas LDL/sangre , Lipoproteínas LDL/metabolismo , Animales , Humanos , Ratas , Albuminuria/orina , Masculino , Oxidación-Reducción , Proteínas de la Membrana/metabolismo , Hiperlipoproteinemia Tipo II/metabolismo , Hiperlipoproteinemia Tipo II/orina
7.
BMC Cardiovasc Disord ; 24(1): 275, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807081

RESUMEN

BACKGROUND: Autophagy, as a regulator of cell survival, plays an important role in atherosclerosis (AS). Sperm associated antigen 5 (SPAG5) is closely associated with the classical autophagy pathway, PI3K/Akt/mTOR signaling pathway. This work attempted to investigate whether SPAG5 can affect AS development by regulating autophagy. METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with oxidized-low density lipoprotein (ox-LDL) to induce cell damage. ApoE-/- mice were fed a Western diet to establish an AS mouse model. Haematoxylin and eosin (H&E) staining and Oil Red O staining evaluated the pathological changes and in lipid deposition in aortic tissues. CCK-8 and flow cytometry detected cell proliferation and apoptosis. Immunohistochemistry, Enzyme linked immunosorbent assay, qRT-PCR and western blotting assessed the levels of mRNA and proteins. RESULTS: Ox-LDL treatment elevated SPAG5 expression and the expression of autophagy-related proteins, LC3-I, LC3-II, Beclin-1, and p62, in HUVECs. GFP-LC3 dots were increased in ox-LDL-treated HUVECs and LPS-treated HUVECs. SPAG5 knockdown reversed both ox-LDL and LPS treatment-mediated inhibition of cell proliferation and promotion of apoptosis in HUVECs. SPAG5 silencing further elevated autophagy and repressed the expression of PI3K, p-Akt/Akt, and p-mTOR/mTOR in ox-LDL-treated HUVECs. 3-MA (autophagy inhibitor) treatment reversed SPAG5 silencing-mediated increase of cell proliferation and decrease of apoptosis in ox-LDL-treated HUVECs. In vivo, SPAG5 knockdown reduced atherosclerotic plaques in AS mice through activating autophagy and inhibiting PI3K/Akt/mTOR signaling pathway. CONCLUSION: This work demonstrated that SPAG5 knockdown alleviated AS development through activating autophagy. Thus, SPAG5 may be a potential target for AS therapy.


Asunto(s)
Apoptosis , Aterosclerosis , Autofagia , Proliferación Celular , Modelos Animales de Enfermedad , Células Endoteliales de la Vena Umbilical Humana , Ratones Noqueados para ApoE , Placa Aterosclerótica , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Autofagia/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Aterosclerosis/patología , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/prevención & control , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proliferación Celular/efectos de los fármacos , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/prevención & control , Enfermedades de la Aorta/metabolismo , Ratones Endogámicos C57BL , Lipoproteínas LDL/metabolismo , Masculino , Células Cultivadas , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Aorta/patología , Aorta/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ratones , Apolipoproteínas E
8.
Nutrients ; 16(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732567

RESUMEN

Imbalances in lipid uptake and efflux and inflammation are major contributors to foam cell formation, which is considered a therapeutic target to protect against atherosclerosis. Naringin, a citrus flavonoid abundant in citrus fruits, has been reported to exert an antiatherogenic function, but its pharmacological mechanism is unclear. Naringin treatment effectively inhibits foam cell formation in THP-1 and RAW264.7 macrophages. In this study, mechanically, naringin maintained lipid homeostasis within macrophages through downregulation of the key genes for lipid uptake (MSR1 and CD36) and the upregulation of ABCA1, ABCG1 and SR-B1, which are responsible for cholesterol efflux. Meanwhile, naringin significantly decreased the cholesterol synthesis-related genes and increased the genes involved in cholesterol metabolism. Subsequently, the results showed that ox-LDL-induced macrophage inflammatory responses were inhibited by naringin by reducing the proinflammatory cytokines IL-1ß, IL-6 and TNF-α, and increasing the anti- inflammatory cytokine IL-10, which was further verified by the downregulation of pro-inflammatory and chemokine-related genes. Additionally, we found that naringin reprogrammed the metabolic phenotypes of macrophages by suppressing glycolysis and promoting lipid oxidation metabolism to restore macrophage phenotypes and functions. These results suggest that naringin is a potential drug for the treatment of AS as it inhibits macrophage foam cell formation by regulating metabolic phenotypes and inflammation.


Asunto(s)
Flavanonas , Células Espumosas , Homeostasis , Metabolismo de los Lípidos , Fenotipo , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Flavanonas/farmacología , Ratones , Metabolismo de los Lípidos/efectos de los fármacos , Animales , Humanos , Homeostasis/efectos de los fármacos , Células RAW 264.7 , Citocinas/metabolismo , Colesterol/metabolismo , Células THP-1 , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Inflamación/metabolismo , Inflamación/tratamiento farmacológico
9.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731489

RESUMEN

Gallic acid (GA) is a type of polyphenolic compound that can be found in a range of fruits, vegetables, and tea. Although it has been confirmed it improves non-alcoholic fatty liver disease (NAFLD), it is still unknown whether GA can improve the occurrence of NAFLD by increasing the low-density lipoprotein receptor (LDLR) accumulation and alleviating cholesterol metabolism disorders. Therefore, the present study explored the effect of GA on LDLR and its mechanism of action. The findings indicated that the increase in LDLR accumulation in HepG2 cells induced by GA was associated with the stimulation of the epidermal growth factor receptor-extracellular regulated protein kinase (EGFR-ERK1/2) signaling pathway. When the pathway was inhibited by EGFR mab cetuximab, it was observed that the activation of the EGFR-ERK1/2 signaling pathway induced by GA was also blocked. At the same time, the accumulation of LDLR protein and the uptake of LDL were also suppressed. Additionally, GA can also promote the accumulation of forkhead box O3 (FOXO3) and suppress the accumulation of hepatocyte nuclear factor-1α (HNF1α), leading to the inhibition of proprotein convertase subtilisin/kexin 9 (PCSK9) mRNA expression and protein accumulation. This ultimately results in increased LDLR protein accumulation and enhanced uptake of LDL in cells. In summary, the present study revealed the potential mechanism of GA's role in ameliorating NAFLD, with a view of providing a theoretical basis for the dietary supplementation of GA.


Asunto(s)
Ácido Gálico , Lipoproteínas LDL , Receptores de LDL , Humanos , Ácido Gálico/farmacología , Receptores de LDL/metabolismo , Células Hep G2 , Lipoproteínas LDL/metabolismo , Receptores ErbB/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/genética
10.
Scand J Immunol ; 99(5): e13362, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605563

RESUMEN

T cells contribute to the pathogenesis of atherosclerosis. However, the presence and function of granulocyte-macrophage-colony-stimulating factor (GM-CSF)-producing T helper (ThGM) cells in atherosclerosis development is unknown. This study aims to characterize the phenotype and function of ThGM cells in experimental atherosclerosis. Atherosclerosis was induced by feeding apolipoprotein E knockout (ApoE-/-) mice with a high-fat diet. Aortic ThGM cells were detected and sorted by flow cytometry. The effect of oxidized low-density lipoprotein (oxLDL) on ThGM cells and the impact of ThGM cells on macrophages were evaluated by flow cytometry, quantitative RT-PCR, oxLDL binding/uptake assay, immunoblotting and foam cell formation assay. We found that GM-CSF+IFN-γ- ThGM cells existed in atherosclerotic aortas. Live ThGM cells were enriched in aortic CD4+CCR6-CCR8-CXCR3-CCR10+ T cells. Aortic ThGM cells triggered the expression of interleukin-1ß (IL-1ß), tumour necrosis factor (TNF), interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2) in macrophages. Besides, aortic ThGM cells expressed higher CD69 than other T cells and bound to oxLDL. oxLDL suppressed the cytokine expression in ThGM cells probably via inhibiting the signal transducer and activator of transcription 5 (STAT5) signalling. Furthermore, oxLDL alleviated the effect of ThGM cells on inducing macrophages to produce pro-inflammatory cytokines and generate foam cells. The nuclear receptor subfamily 4 group A (NR4A) members NR4A1 and NR4A2 were involved in the suppressive effect of oxLDL on ThGM cells. Collectively, oxLDL suppressed the supportive effect of ThGM cells on pro-atherosclerotic macrophages.


Asunto(s)
Aterosclerosis , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Lipoproteínas LDL , Macrófagos , Linfocitos T Colaboradores-Inductores , Animales , Ratones , Aterosclerosis/genética , Citocinas/metabolismo , Células Espumosas/patología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Interleucina-6/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo
11.
Sci Rep ; 14(1): 9471, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658568

RESUMEN

Most metastases in breast cancer occur via the dissemination of tumor cells through the bloodstream. How tumor cells enter the blood (intravasation) is, however, a poorly understood mechanism at the cellular and molecular levels. Particularly uncharacterized is how intravasation is affected by systemic nutrients. High levels of systemic LDL-cholesterol have been shown to contribute to breast cancer progression and metastasis in various models, but the cellular and molecular mechanisms involved are still undisclosed. Here we show that a high- cholesterol diet promotes intravasation in two mouse models of breast cancer and that this could be reverted by blocking LDL binding to LDLR in tumor cells. Moreover, we show that LDL promotes vascular invasion in vitro and the intercalation of tumor cells with endothelial cells, a phenotypic change resembling vascular mimicry (VM). At the molecular level, LDL increases the expression of SERPINE2, previously shown to be required for both VM and intravasation. Overall, our manuscript unravels novel mechanisms by which systemic hypercholesterolemia may affect the onset of metastatic breast cancer by favouring phenotypic changes in breast cancer cells and increasing intravasation.


Asunto(s)
Neoplasias de la Mama , Receptores de LDL , Animales , Receptores de LDL/metabolismo , Receptores de LDL/genética , Femenino , Ratones , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Invasividad Neoplásica , Colesterol en la Dieta/efectos adversos , LDL-Colesterol/metabolismo , LDL-Colesterol/sangre , Lipoproteínas LDL/metabolismo , Colesterol/metabolismo , Colesterol/sangre
12.
Bioorg Med Chem Lett ; 106: 129762, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38649117

RESUMEN

Lipids play an important role in varying vital cellular processes including cell growth and division. Elevated levels of low-density lipoprotein (LDL) and oxidized-LDL (ox-LDL), and overexpression of the corresponding receptors including LDL receptor (LDLR), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), and cluster of differentiation 36 (CD36), have shown strong correlations with different facets of carcinogenesis including proliferation, invasion, and angiogenesis. Furthermore, a high serum level of LOX-1 is considered as a poor prognostic factor in many types of cancer including colorectal cancer. Ox-LDL could contribute to cancer progression and metastasis through endothelial-to-mesenchymal transition (EMT) and autophagy. Thus, many studies have shed light on the significant role of ox-LDL as a potential therapeutic target for cancer therapy. In various repurposing approaches, anti-dyslipidemia agents, phytochemicals, autophagy modulators as well as recently developed ldl-like nanoparticles have been investigated as potential tumor therapeutic agents by targeting oxidized-LDL/LOX-1 pathways. Herein, we reviewed the role of oxidized-LDL and LOX-1 in cancer progression, invasion, metastasis, and also cancer-associated angiogenesis. Moreover, we addressed therapeutic utility of several compounds that proved to be capable of targeting the metabolic moieties in cancer. This review provides insights on the potential impact of targeting LDL and ox-LDL in cancer therapy and their future biomedical implementations.


Asunto(s)
Lipoproteínas LDL , Neoplasias , Humanos , Lipoproteínas LDL/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Receptores Depuradores de Clase E/metabolismo , Receptores Depuradores de Clase E/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Animales
13.
Mol Immunol ; 170: 119-130, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657333

RESUMEN

BACKGROUND: Endothelial cell injury and dysfunction lead to cholesterol and lipid accumulation and atherosclerotic plaque formation in the arterial wall during atherosclerosis (AS) progression, Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1), a DNA methylation regulator, was strongly upregulated in atherosclerotic plaque lesions in mice. This study aimed to investigate the precise biological functions and regulatory mechanisms of UHRF1 on endothelial dysfunction during AS development. METHODS: UHRF1 levels in the atherosclerotic plaque tissues and normal arterial intima from AS patients were tested with Western blot analysis and immunohistochemistry assays. Human umbilical vein endothelial cells (HUVECs) were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce an injury model and then transfected with short hairpin RNA targeting UHRF1 (sh-UHRF1). Cell proliferation, migration, apoptosis, the levels of inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and the protein levels adhesion molecules including vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were measured. Moreover, co-immunoprecipitation assay was used to determine the interactions between UHRF1 and DNA methyltransferases 1 (DNMT1), As well as mothers against DPP homolog 7 (SMAD7) and yes-associated protein 1 (YAP1). SMAD7 promoter methylation was examined with methylation-specific PCR. In addition, we established an AS mouse model to determine the in vivo effects of UHRF1 on AS progression. RESULTS: UHRF1 was upregulated in atherosclerotic plaque tissues and ox-LDL-treated HUVECs. UHRF1 knockdown mitigated ox-LDL-induced proliferation and migration inhibition, apoptosis and the production of TNF-α, IL-6, VCAM-1, and ICAM-1 in HUVECs. Mechanistically, UHRF1 promoted DNMT1-mediated SMAD7 promoter methylation and inhibited its expression. SMAD7 knockdown abolished the protective effects of UHRF1 knockdown on ox-LDL-induced HUVEC injury. Moreover, SMAD7 interacted with YAP1 and inhibited YAP1 expression by promoting YAP1 protein ubiquitination-independent degradation in HUVECs. YAP1 overexpression abrogated SMAD7 overexpression-mediated protective effects on ox-LDL-induced HUVEC injury. Finally, UHRF1 knockdown alleviated atherosclerotic plaque deposition and arterial lesions in AS mice. CONCLUSION: UHRF1 inhibition mitigates vascular endothelial cell injury and ameliorates AS progression in mice by regulating the SMAD7/YAP1 axis.


Asunto(s)
Aterosclerosis , Células Endoteliales de la Vena Umbilical Humana , Proteína smad7 , Ubiquitina-Proteína Ligasas , Proteínas Señalizadoras YAP , Animales , Aterosclerosis/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ratones , Proteína smad7/metabolismo , Masculino , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Ratones Endogámicos C57BL , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Lipoproteínas LDL/metabolismo , Proliferación Celular , Transducción de Señal , Apoptosis/efectos de los fármacos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología
14.
Am J Physiol Cell Physiol ; 326(6): C1563-C1572, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38586879

RESUMEN

Atherosclerosis is an inflammatory disease of blood vessels involving the immune system. Natural killer T (NKT) cells, as crucial components of the innate and acquired immune systems, play critical roles in the development of atherosclerosis. However, the mechanism and clinical relevance of NKT cells in early atherosclerosis are largely unclear. The study investigated the mechanism influencing NKT cell function in apoE deficiency-induced early atherosclerosis. Our findings demonstrated that there were higher populations of NKT cells and interferon-gamma (IFN-γ)-producing NKT cells in the peripheral blood of patients with hyperlipidemia and in the aorta, blood, spleen, and bone marrow of early atherosclerotic mice compared with the control groups. Moreover, we discovered that the infiltration of CD80+ macrophages and CD1d expression on CD80+ macrophages in atherosclerotic mice climbed remarkably. CD1d expression increased in CD80+ macrophages stimulated by oxidized low-density lipoprotein (ox-LDL) ex vivo and in vitro. Ex vivo coculture of macrophages with NKT cells revealed that ox-LDL-induced CD80+ macrophages presented lipid antigen α-Galcer (alpha-galactosylceramide) to NKT cells via CD1d, enabling NKT cells to express more IFN-γ. Furthermore, a greater proportion of CD1d+ monocytes and CD1d+CD80+ monocytes were found in peripheral blood of hyperlipidemic patients compared with that of healthy donors. Positive correlations were found between CD1d+CD80+ monocytes and NKT cells or IFN-γ+ NKT cells in hyperlipidemic patients. Our findings illustrated that CD80+ macrophages stimulated NKT cells to secrete IFN-γ via CD1d-presenting α-Galcer, which may accelerate the progression of early atherosclerosis. Inhibiting lipid antigen presentation by CD80+ macrophages to NKT cells may be a promising immune target for the treatment of early atherosclerosis.NEW & NOTEWORTHY This work proposed the ox-LDL-CD80+ monocyte/macrophage-CD1d-NKT cell-IFN-γ axis in the progression of atherosclerosis. The proinflammatory IFN-γ+ NKT cells are closely related to CD1d+CD80+ monocytes in hyperlipidemic patients. Inhibiting CD80+ macrophages to present lipid antigens to NKT cells through CD1d blocking may be a new therapeutic target for atherosclerosis.


Asunto(s)
Antígenos CD1d , Aterosclerosis , Antígeno B7-1 , Hiperlipidemias , Lipoproteínas LDL , Macrófagos , Células T Asesinas Naturales , Animales , Humanos , Células T Asesinas Naturales/inmunología , Células T Asesinas Naturales/metabolismo , Antígenos CD1d/metabolismo , Antígenos CD1d/inmunología , Antígenos CD1d/genética , Aterosclerosis/inmunología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Hiperlipidemias/inmunología , Hiperlipidemias/metabolismo , Lipoproteínas LDL/inmunología , Lipoproteínas LDL/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Antígeno B7-1/metabolismo , Antígeno B7-1/inmunología , Interferón gamma/metabolismo , Interferón gamma/inmunología , Ratones Endogámicos C57BL , Femenino , Persona de Mediana Edad
15.
Free Radic Biol Med ; 216: 106-117, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461872

RESUMEN

Oxidized low density lipoprotein (oxLDL)-induced endothelial oxidative damage promotes the development of atherosclerosis. Caveolae play an essential role in maintaining the survival and function of vascular endothelial cell (VEC). It is reported that the long coiled-coil protein NECC2 is localized in caveolae and is associated with neural cell differentiation and adipocyte formation, but its role in VECs needs to be clarified. Our results showed NECC2 expression increased in the endothelium of plaque-loaded aortas and oxLDL-treated HUVECs. Down-regulation of NECC2 by NECC2 siRNA or compound YF-307 significantly inhibited oxLDL-induced VEC apoptosis and the adhesion factors expression. Remarkably, inhibition of NECC2 expression in the endothelium of apoE-/- mice by adeno-associated virus (AAV)-carrying NECC2 shRNA or compound YF-307 alleviated endothelium injury and restricted atherosclerosis development. The immunoprecipitation results confirmed that NECC2 interacted with Tyk2 and caveolin-1(Cav-1) in VECs, and NECC2 further promoted the phosphorylation of Cav-1 at Tyr14 b y activating Tyk2 phosphorylation. On the other hand, inhibiting NECC2 levels suppressed oxLDL-induced phosphorylation of Cav-1, uptake of oxLDL by VECs, accumulation of intracellular reactive oxygen species and activation of NF-κB. Our findings suggest that NECC2 may contribute to oxLDL-induced VEC injury and atherosclerosis via modulating Cav-1 phosphorylation through Tyk2. This work provides a new concept and drug target for treating atherosclerosis.


Asunto(s)
Aterosclerosis , Animales , Ratones , Apolipoproteínas/efectos adversos , Apolipoproteínas/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/metabolismo , Endotelio/metabolismo , Lipoproteínas LDL/metabolismo , Estrés Oxidativo
16.
Arterioscler Thromb Vasc Biol ; 44(4): 946-953, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38450510

RESUMEN

BACKGROUND: Women with a history of preeclampsia have evidence of premature atherosclerosis and increased risk of myocardial infarction and stroke compared with women who had a normotensive pregnancy. Whether this is due to common risk factors or a direct impact of prior preeclampsia exposure has never been tested in a mouse atherosclerosis model. METHODS: Pregnant LDLR-KO (low-density lipoprotein receptor knockout; n=35) female mice were randomized in midgestation to sFlt1 (soluble fms-like tyrosine kinase 1)-expressing adenovirus or identical control adenovirus. Postpartum, mice were fed high-fat diet for 8 weeks to induce atherogenesis. Comparison between the control and preeclampsia models was made for metabolic parameters, atherosclerosis burden and composition by histology, plaque inflammation by flow cytometry, and aortic cytokines and inflammatory markers using a cytokine array. RESULTS: In pregnant LDLR-KO mice, sFlt1 adenovirus significantly induced serum sFlt1, blood pressure, renal endotheliosis, and decreased pup viability. After 8 weeks of postpartum high fat feeding, body weight, fasting glucose, plasma cholesterol, HDL (high-density lipoprotein), and LDL (low-density lipoprotein) were not significantly different between groups with no change in aortic root plaque size, lipid content, or necrotic core area. Flow cytometry demonstrated significantly increased CD45+ aortic arch leukocytes and CD3+T cells and aortic lysate contained more CCL (CC motif chemokine ligand) 22 and fetuin A and decreased expression of IGFBP6 (insulin-like growth factor-binding protein 6) and CCL21 in preeclampsia-exposed mice compared with controls. CONCLUSIONS: In atherogenic LDLR-KO mice, exposure to sFlt1-induced preeclampsia during pregnancy increases future atherosclerotic plaque inflammation, supporting the concept that preeclampsia directly exacerbates atherosclerotic inflammation independent of preexisting risk factors. This mechanism may contribute to ischemic vascular disease in women after preeclampsia pregnancy.


Asunto(s)
Enfermedades de la Aorta , Aterosclerosis , Placa Aterosclerótica , Preeclampsia , Humanos , Femenino , Animales , Ratones , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Enfermedades de la Aorta/genética , Ratones Noqueados , Aterosclerosis/genética , Inflamación/metabolismo , Lipoproteínas LDL/metabolismo , Receptores de LDL/genética , Citocinas , Ratones Endogámicos C57BL
17.
Biol Pharm Bull ; 47(3): 641-651, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38508744

RESUMEN

Recently, mitochondrial dysfunction has gained attention as a causative factor in the pathogenesis and progression of age-related macular degeneration (AMD). Mitochondrial damage plays a key role in metabolism and disrupts the balance of intracellular metabolic pathways, such as oxidative phosphorylation (OXPHOS) and glycolysis. In this study, we focused on oxidized low-density lipoprotein (ox-LDL), a major constituent of drusen that accumulates in the retina of patients with AMD, and investigated whether it could be a causative factor for metabolic alterations in retinal pigment epithelial (RPE) cells. We found that prolonged exposure to ox-LDL induced changes in fatty acid ß-oxidation (FAO), OXPHOS, and glycolytic activity and increased the mitochondrial reactive oxygen species production in RPE cells. Notably, the effects on metabolic alterations varied with the concentration and duration of ox-LDL treatment. In addition, we addressed the limitations of using ARPE-19 cells for retinal disease research by highlighting their lower barrier function and FAO activity compared to those of induced pluripotent stem cell-derived RPE cells. Our findings can aid in the elucidation of mechanisms underlying the metabolic alterations in AMD.


Asunto(s)
Degeneración Macular , Epitelio Pigmentado de la Retina , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Lipoproteínas LDL/metabolismo , Estrés Oxidativo , Células Epiteliales , Pigmentos Retinianos/metabolismo , Pigmentos Retinianos/farmacología
18.
J Ethnopharmacol ; 327: 118006, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442806

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hawthorn leaves are a combination of the dried leaves of the Rosaceae plants, i.e., Crataegus pinnatifida Bge. or Crataegus pinnatifida Bge. var. major N. E. Br., is primarily cultivated in East Asia, North America, and Europe. hawthorn leaf flavonoids (HLF) are the main part of extraction. The HLF have demonstrated potential in preventing hypertension, inflammation, hyperlipidemia, and atherosclerosis. However, the potential pharmacological mechanism behind its anti-atherosclerotic effect has yet to be explored. AIM OF THE STUDY: The in vivo and in vitro effects of HLF on lipid-mediated foam cell formation were investigated, with a specific focus on the levels of secreted phospholipase A2 type IIA (sPLA2-II A) in macrophage cells. MATERIALS AND METHODS: The primary constituents of HLF were analyzed using ultra-high performance liquid chromatography and liquid chromatography-tandem mass spectrometry. In vivo, HLF, at concentrations of 5 mg/kg, 20 mg/kg, and 40 mg/kg, were administered to apolipoprotein E knockout mice (ApoE-/-) fed by high-fat diet (HFD) for 16 weeks. Aorta and serum samples were collected to identify lesion areas and lipids through mass spectrometry analysis to dissect the pathological process. RAW264.7 cells were incubated with oxidized low-density lipoprotein (ox-LDL) alone, or ox-LDL combined with different doses of HLF (100, 50, and 25 µg/ml), or ox-LDL plus 24-h sPLA2-IIA inhibitors, for cell biology analysis. Lipids and inflammatory cytokines were detected using biochemical analyzers and ELISA, while plaque size and collagen content of plaque were assessed by HE and the Masson staining of the aorta. The lipid deposition in macrophages was observed by Oil Red O staining. The expression of sPLA2-IIA and SCAP-SREBP2-LDLR was determined by RT-qPCR and Western blot analysis. RESULTS: The chemical profile of HLF was studied using UPLC-Q-TOF-MS/MS, allowing the tentative identification of 20 compounds, comprising 1 phenolic acid, 9 flavonols and 10 flavones, including isovitexin, vitexin-4″-O-glucoside, quercetin-3-O-robibioside, rutin, vitexin-2″-O-rhamnoside, quercetin, etc. HLF decreased total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and non-high-density lipoprotein cholesterol (non-HDL-C) levels in ApoE-/- mice (P < 0.05), reduced ox-LDL uptake, inhibited level of inflammatory factors, such as IL-6, IL-8, TNF-α, and IL-1ꞵ (P < 0.001), and alleviated aortic plaques with a thicker fibrous cap. HLF effectively attenuated foam cell formation in ox-LDL-treated RAW264.7 macrophages, and reduced levels of intracellular TC, free cholesterol (FC), cholesteryl ester (CE), IL-6, TNF-α, and IL-1ß (P < 0.001). In both in vivo and in vitro experiments, HLF significantly downregulated the expression of sPLA2-IIA, SCAP, SREBP2, LDLR, HMGCR, and LOX-1 (P < 0.05). Furthermore, sPLA2-IIA inhibitor effectively mitigated inflammatory release in RAW264.7 macrophages and regulated SCAP-SREBP2-LDLR signaling pathway by inhibiting sPLA2-IIA secretion (P < 0.05). CONCLUSION: HLF exerted a protective effect against atherosclerosis through inhibiting sPLA2-IIA to diminish SCAP-SREBP2-LDLR signaling pathway, to reduce LDL uptake caused foam cell formation, and to slow down the progression of atherosclerosis in mice.


Asunto(s)
Aterosclerosis , Crataegus , Fosfolipasas A2 Secretoras , Placa Aterosclerótica , Ratones , Animales , Crataegus/química , Quercetina/uso terapéutico , Fosfolipasas A2 Secretoras/metabolismo , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Espectrometría de Masas en Tándem , Aterosclerosis/metabolismo , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Flavonoides/uso terapéutico , Lipoproteínas LDL/metabolismo , Transducción de Señal , Colesterol/metabolismo , Ratones Noqueados , Apolipoproteínas E/genética
19.
Food Chem Toxicol ; 186: 114519, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369053

RESUMEN

N-Nitrosodiethylamine (NDEA), a carcinogen in some foods and medications, is linked to liver damage similar to non-alcoholic fatty liver disease (NAFLD). This study explores how NDEA disrupts liver lipid metabolism. Sprague-Dawley rats were given two doses of NDEA (100 mg/kg) orally, 24 h apart. Liver response was assessed through tissue staining, blood tests, and biochemical markers, including fatty acids, lipid peroxidation, and serum very-low density lipoprotein (VLDL) levels. Additionally, lipidomic analysis of liver tissues and serum was performed. The results indicated significant hepatic steatosis (fat accumulation in the liver) following NDEA exposure. Blood analysis showed signs of inflammation and liver damage. Biochemical tests revealed decreased liver protein synthesis and specific enzyme alterations, suggesting liver cell injury but maintaining mitochondrial function. Increased fatty acid levels without a rise in lipid peroxidation were observed, indicating fat accumulation. Lipidomic analysis showed increased polyunsaturated triglycerides in the liver and decreased serum VLDL, implicating impaired VLDL transport in liver dysfunction. In conclusion, NDEA exposure disrupts liver lipid metabolism, primarily through the accumulation of polyunsaturated triglycerides and impaired fat transport. These findings provide insight into the mechanisms of NDEA-induced liver injury and its progression to hepatic steatosis.


Asunto(s)
Dietilnitrosamina , Enfermedad del Hígado Graso no Alcohólico , Ratas , Animales , Triglicéridos/metabolismo , Dietilnitrosamina/toxicidad , Lipoproteínas VLDL/metabolismo , Ratas Sprague-Dawley , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Metabolismo de los Lípidos , Lipoproteínas LDL/metabolismo , Dieta Alta en Grasa
20.
Circ Res ; 134(7): e34-e51, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38375634

RESUMEN

BACKGROUND: Many cardiovascular pathologies are induced by signaling through G-protein-coupled receptors via Gsα (G protein stimulatory α subunit) proteins. However, the specific cellular mechanisms that are driven by Gsα and contribute to the development of atherosclerosis remain unclear. METHODS: High-throughput screening involving data from single-cell and bulk sequencing were used to explore the expression of Gsα in atherosclerosis. The differentially expression and activity of Gsα were analyzed by immunofluorescence and cAMP measurements. Macrophage-specific Gsα knockout (Mac-GsαKO) mice were generated to study the effect on atherosclerosis. The role of Gsα was determined by transplanting bone marrow and performing assays for foam cell formation, Dil-ox-LDL (oxidized low-density lipoprotein) uptake, chromatin immunoprecipitation, and luciferase reporter assays. RESULTS: ScRNA-seq showed elevated Gnas in atherosclerotic mouse aorta's cholesterol metabolism macrophage cluster, while bulk sequencing confirmed increased GNAS expression in human plaque macrophage content. A significant upregulation of Gsα and active Gsα occurred in macrophages from human and mouse plaques. Ox-LDL could translocate Gsα from macrophage lipid rafts in short-term and promote Gnas transcription through ERK1/2 activation and C/EBPß phosphorylation via oxidative stress in long-term. Atherosclerotic lesions from Mac-GsαKO mice displayed decreased lipid deposition compared with those from control mice. Additionally, Gsα deficiency alleviated lipid uptake and foam cell formation. Mechanistically, Gsα increased the levels of cAMP and transcriptional activity of the cAMP response element binding protein, which resulted in increased expression of CD36 and SR-A1. In the translational experiments, inhibiting Gsα activation with suramin or cpGN13 reduced lipid uptake, foam cell formation, and the progression of atherosclerotic plaques in mice in vivo. CONCLUSIONS: Gsα activation is enhanced during atherosclerotic progression and increases lipid uptake and foam cell formation. The genetic or chemical inactivation of Gsα inhibit the development of atherosclerosis in mice, suggesting that drugs targeting Gsα may be useful in the treatment of atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Humanos , Ratones , Aterosclerosis/metabolismo , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica/patología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA