Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Biol Chem ; 298(9): 102310, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35921893

RESUMEN

Disruption of fetal growth results in severe consequences to human health, including increased fetal and neonatal morbidity and mortality, as well as potential lifelong health problems. Molecular mechanisms promoting fetal growth represent potential therapeutic strategies to treat and/or prevent fetal growth restriction (FGR). Here, we identify a previously unknown role for the mitogen-activated protein kinase kinase kinase 4 (MAP3K4) in promoting fetal and placental growth. We demonstrate that inactivation of MAP3K4 kinase activity causes FGR due in part to placental insufficiency. Significantly, MAP3K4 kinase-inactive mice display highly penetrant lethality prior to weaning and persistent growth reduction of surviving adults. Additionally, we elucidate molecular mechanisms by which MAP3K4 promotes growth through control of the insulin-like growth factor 1 receptor (IGF1R), insulin receptor (IR), and Akt signaling pathway. Specifically, MAP3K4 kinase inactivation in trophoblast stem (TS) cells results in reduced IGF1R and IR expression and decreased Akt activation. We observe these changes in TS cells also occur in differentiated trophoblasts created through in vitro differentiation of cultured TS cells and in vivo in placental tissues formed by TS cells. Furthermore, we show that MAP3K4 controls this pathway by promoting Igf1r transcript expression in TS cells through activation of CREB-binding protein (CBP). In the MAP3K4 kinase-inactive TS cells, Igf1r transcripts are repressed because of reduced CBP activity and increased histone deacetylase 6 expression and activity. Together, these data demonstrate a critical role for MAP3K4 in promoting fetal and placental growth by controlling the activity of the IGF1R/IR and Akt signaling pathway.


Asunto(s)
Desarrollo Fetal , MAP Quinasa Quinasa Quinasa 4 , Placenta , Placentación , Receptor IGF Tipo 1 , Receptor de Insulina , Adulto , Animales , Proteína de Unión a CREB/metabolismo , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Histona Desacetilasa 6/metabolismo , Humanos , MAP Quinasa Quinasa Quinasa 4/genética , MAP Quinasa Quinasa Quinasa 4/metabolismo , Ratones , Placenta/enzimología , Embarazo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transducción de Señal
2.
Oncol Rep ; 45(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33649790

RESUMEN

Chondroitin sulfate proteoglycan 4 (CSPG4) is a multifunctional transmembrane proteoglycan involved in spreading, migration and invasion of melanoma. In addition to the activating BRAF V600E mutation, CSPG4 was shown to promote MAPK signaling by mediating the growth­factor induced activation of receptor tyrosine kinases. However, it remains elusive which factors regulate CSPG4 expression. Therefore, the aim of the present study was to examine whether BRAF and MEK inhibitors have an effect on the expression of CSPG4. We exposed a panel of BRAF­mutant CSPG4­positive or ­negative melanoma cell lines to BRAF and MEK inhibitors. Protein levels of CSPG4 were analyzed by flow cytometry (FACS), immunofluorescence microscopy (IF), and western blotting. CSPG4 mRNA levels were determined by quantitative PCR (qPCR). The prolonged exposure of cells to BRAF and MEK inhibitors resulted in markedly reduced levels of the CSPG4 protein in permanent resistant melanoma cells as well as decreased levels of its mRNA. We did not observe increasing levels of CSPG4 shedding into the culture supernatants. In addition, patient­derived matched tumor samples following therapy with kinase inhibitors showed decreased numbers of CSPG4­positive cells as compared to pre­therapy tumor samples. Our results indicate that BRAF and MEK inhibition downregulates CSPG4 expression until the cells have developed permanent resistance. Our findings provide the basis for further investigation of the role of CSPG4 in the development of drug­resistance in melanoma cells.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Melanoma/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Línea Celular Tumoral , Proteoglicanos Tipo Condroitín Sulfato/genética , Progresión de la Enfermedad , Regulación hacia Abajo , Resistencia a Antineoplásicos , Humanos , MAP Quinasa Quinasa Quinasa 4/antagonistas & inhibidores , MAP Quinasa Quinasa Quinasa 4/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/genética , Proteínas de la Membrana/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Nat Commun ; 11(1): 5573, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33149122

RESUMEN

Non-coding mutations can create splice sites, however the true extent of how such somatic non-coding mutations affect RNA splicing are largely unexplored. Here we use the MiSplice pipeline to analyze 783 cancer cases with WGS data and 9494 cases with WES data, discovering 562 non-coding mutations that lead to splicing alterations. Notably, most of these mutations create new exons. Introns associated with new exon creation are significantly larger than the genome-wide average intron size. We find that some mutation-induced splicing alterations are located in genes important in tumorigenesis (ATRX, BCOR, CDKN2B, MAP3K1, MAP3K4, MDM2, SMAD4, STK11, TP53 etc.), often leading to truncated proteins and affecting gene expression. The pattern emerging from these exon-creating mutations suggests that splice sites created by non-coding mutations interact with pre-existing potential splice sites that originally lacked a suitable splicing pair to induce new exon formation. Our study suggests the importance of investigating biological and clinical consequences of noncoding splice-inducing mutations that were previously neglected by conventional annotation pipelines. MiSplice will be useful for automatically annotating the splicing impact of coding and non-coding mutations in future large-scale analyses.


Asunto(s)
Neoplasias/genética , Precursores del ARN/genética , Sitios de Empalme de ARN , Empalme del ARN , Quinasas de la Proteína-Quinasa Activada por el AMP , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Bases de Datos Genéticas , Exones , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Intrones , Quinasa 1 de Quinasa de Quinasa MAP/genética , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , MAP Quinasa Quinasa Quinasa 4/genética , MAP Quinasa Quinasa Quinasa 4/metabolismo , Mutación , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , ARN no Traducido , RNA-Seq , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Secuenciación del Exoma , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/metabolismo
4.
Commun Biol ; 3(1): 475, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859943

RESUMEN

Coordinated gene expression is required for phenotypic switching between epithelial and mesenchymal phenotypes during normal development and in disease states. Trophoblast stem (TS) cells undergo epithelial-mesenchymal transition (EMT) during implantation and placentation. Mechanisms coordinating gene expression during these processes are poorly understood. We have previously demonstrated that MAP3K4-regulated chromatin modifiers CBP and HDAC6 each regulate thousands of genes during EMT in TS cells. Here we show that CBP and HDAC6 coordinate expression of only 183 genes predicted to be critical regulators of phenotypic switching. The highest-ranking co-regulated gene is the NF-κB family member Rel. Although NF-κB is primarily regulated post-transcriptionally, CBP and HDAC6 control Rel transcript levels by binding Rel regulatory regions and controlling histone acetylation. REL re-expression in mesenchymal-like TS cells induces a mesenchymal-epithelial transition. Importantly, REL forms a feedback loop, blocking HDAC6 expression and nuclear localization. Together, our work defines a developmental program coordinating phenotypic switching.


Asunto(s)
Regulación de la Expresión Génica , Histona Desacetilasa 6/metabolismo , MAP Quinasa Quinasa Quinasa 4/metabolismo , Proteínas Oncogénicas v-rel/genética , Fragmentos de Péptidos/metabolismo , Fenotipo , Sialoglicoproteínas/metabolismo , Animales , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Masculino , Ratones , Modelos Biológicos , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-met/metabolismo , Células Madre/metabolismo , Factores de Transcripción
5.
Cell Death Dis ; 11(8): 684, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32826872

RESUMEN

Autophagy and apoptosis, which are important processes for host immunity, are commonly exploited by viruses to facilitate their survival. However, to the best of our knowledge, very few studies have researched the mechanisms of action of the autophagic and apoptotic signaling pathways following viral infection. Thus, the present study aimed to investigate the mechanisms of action of growth arrest and DNA-damage-inducible ß (GADD45ß), an important resistance gene involved in the host resistance to ALV-J. Both ALV-J infection and the overexpression of GADD45ß inhibited autophagy during the early stages, which prevented the autophagosomes from binding to the lysosomes and resulted in an incomplete autophagic flux. Notably, GADD45ß was discovered to interact with MEKK4 in DF-1 cells. The genetic knockdown of GADD45ß and MEKK4 using small interfering RNA-affected ALV-J infection, which suggested that ALV-J may promote the binding of GADD45ß to MEKK4 to activate the p38MAPK signaling pathway, which subsequently inhibits autophagy. Furthermore, ALV-J was revealed to affect the autophagic pathway prior to affecting the apoptotic pathway. In conclusion, to the best of our knowledge, the present study was the first to investigate the combined effects of ALV-J infection on autophagy and apoptosis, and to suggest that ALV-J inhibits autophagy via the GADD45ß/MEKK4/p38MAPK signaling pathway.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Autofagia/fisiología , Virus de la Leucosis Aviar/metabolismo , Animales , Apoptosis/fisiología , Virus de la Leucosis Aviar/genética , Virus de la Leucosis Aviar/patogenicidad , Línea Celular , Embrión de Pollo , Pollos/genética , Interacciones Huésped-Patógeno/fisiología , MAP Quinasa Quinasa Quinasa 4/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , ARN Interferente Pequeño/metabolismo , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
Mol Med Rep ; 22(2): 1195-1204, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32468015

RESUMEN

Interleukin (IL)­1ß is a key promotor in the pathogenesis of temporomandibular joint osteoarthritis. Differentiation of stem cells to cartilage is a crucial repair mechanism of articular cartilage damage, and IL­1ß has been reported to impede the differentiation by upregulating the secretion of IL­6, an important inflammatory factor. Long non­coding RNAs (lncRNAs) regulate a number of physiological and pathological processes, but whether lncRNA AK094629 contributes to the IL­1ß mediated induction of inflammation remains unclear. Therefore, the aim of the present study was to investigate the effect of AK094629 on IL­1ß­induced IL­6 expression in synovial­derived mesenchymal stem cells (SMSCs) of the temporomandibular joints. The results of the present study demonstrated that the expression of AK094629 in the synovial tissue of patients with osteoarthritis was positively correlated with IL­1ß. In addition, IL­1ß upregulated the expression of AK094629 in the SMSCs in vitro, and AK094629 knockdown inhibited the IL­1ß mediated upregulation of IL­6. The present study also demonstrated that AK094629 knockdown downregulated the expression of the mitogen­activated protein kinase kinase kinase 4 (MAP3K4), which is upregulated by IL­1ß, whereas knockdown of MAP3K4 did not affect the expression of AK094629, but reversed the upregulation of IL­6 in SMSCs. In conclusion, AK094629 knockdown attenuated the expression of IL­1ß­regulated IL­6 in the SMSCs of the temporomandibular joint by inhibiting MAP3K4. Therefore, AK094629 may be a potential novel therapeutic target for the treatment of temporomandibular joint osteoarthritis.


Asunto(s)
Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Células Madre Mesenquimatosas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Membrana Sinovial/metabolismo , Articulación Temporomandibular/metabolismo , Células Cultivadas , Técnicas de Silenciamiento del Gen , Humanos , Interleucina-6/genética , MAP Quinasa Quinasa Quinasa 4/genética , MAP Quinasa Quinasa Quinasa 4/metabolismo , Células Madre Mesenquimatosas/patología , Osteoartritis/etiología , Osteoartritis/metabolismo , Osteoartritis/patología , Membrana Sinovial/citología , Articulación Temporomandibular/patología , Trastornos de la Articulación Temporomandibular/etiología , Trastornos de la Articulación Temporomandibular/metabolismo , Trastornos de la Articulación Temporomandibular/patología , Activación Transcripcional/genética , Regulación hacia Arriba , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Sci Rep ; 9(1): 10823, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31346208

RESUMEN

One of the major features of cancer is Otto Warburg's observation that many tumors have increased extracellular acidification compared to healthy tissues. Since Warburg's observation, the importance of extracellular acidification in cancer is now considered a hallmark of cancer. Human MAP3K4 functions upstream of the p38 and JNK mitogen activated protein kinases (MAPKs). Additionally, MAP3K4 is required for cell migration and extracellular acidification of breast cancer cells in response to HER2/HER3 signaling. Here, we demonstrate that GIT1 interacts with MAP3K4 by immunoprecipitation, while cellular lactate production and the capacity of MCF-7 cells for anchorage independent growth in soft agar were dependent on GIT1. Additionally, we show that activation of HER2/HER3 signaling leads to reduced expression of lactate receptor (GPR81) mRNA and that both, GIT1 and MAP3K4, are necessary for constitutive expression of GPR81 mRNA. Our study suggests that targeting downstream proteins in the HER2/HER3-induced extracellular lactate signaling pathway may be a way to inhibit the Warburg Effect to disrupt tumor growth.


Asunto(s)
Ácido Láctico/metabolismo , MAP Quinasa Quinasa Quinasa 4/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Transducción de Señal/fisiología , Microambiente Tumoral/fisiología , Animales , Movimiento Celular/fisiología , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Ratones , Músculo Esquelético/metabolismo , Fosforilación , ARN Mensajero
8.
Sex Dev ; 13(4): 195-204, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32008010

RESUMEN

MAPKs affect gonadal differentiation in mice and humans, but whether this applies to all mammals is as yet unknown. Thus, we investigated MAPK expression during gonadal differentiation and after treatment with oestrogen in a distantly related mammal, the marsupial tammar wallaby, using our model of oestrogen-induced gonadal sex reversal. High-throughput RNA-sequencing was carried out on gonads collected from developing tammar 2 days before birth to 8 days after birth to characterise MAPK and key sexual differentiation markers. Day 25 foetal testes were cultured for 120 h in control medium or medium supplemented with exogenous oestrogen and processed for RNA-seq to identify changes in gene expression in response to oestrogen. MAPK pathway genes in the tammar were highly conserved at the sequence and amino acid level with those of mice and humans. Marsupial MAP3K1 and MAP3K4 clustered together in a separate branch from eutherian mammals. There was a marked decrease in the expression of male-determining genes SOX9 and AMH and increase in the female marker FOXL2 in oestrogen-treated male gonads. Only MAP3K1 expression increased in male gonads in response to oestrogen while other MAPK genes remained unaffected. This study suggests that MAP3K1 can be influenced by exogenous oestrogens during gonadal differentiation in this marsupial.


Asunto(s)
Perfilación de la Expresión Génica , Gónadas/embriología , Gónadas/enzimología , Quinasa 1 de Quinasa de Quinasa MAP/genética , MAP Quinasa Quinasa Quinasa 4/genética , Macropodidae/embriología , Macropodidae/genética , Animales , Estrógenos/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Marcadores Genéticos , Gónadas/efectos de los fármacos , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , MAP Quinasa Quinasa Quinasa 4/metabolismo , Masculino , Filogenia , Diferenciación Sexual/efectos de los fármacos , Diferenciación Sexual/genética , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
9.
Fish Shellfish Immunol ; 66: 372-381, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28476674

RESUMEN

The mitogen-activated protein kinase (MAPK) cascades stand for one of the most important signaling mechanisms in response to environmental stimuli. In the present study, we cloned and identified for the first time the full-length cDNA of MAPK kinase kinase 4 (TgMEKK4) from Blood clam Tegillarca granosa using rapid amplification of cDNA ends method. The full-length cDNA of TgMEKK4 was of 1605 bp in length, encoding a polypeptide of 364 amino acids with a predicted molecular mass of 41.22 kDa and theoretical isoelectric point of 6.29. The conserved MEKK4-domain was identified in TgMEKK4 by SMART program analysis. Homology analysis of the deduced amino acid sequence of TgMEKK4 with other known sequences revealed that TgMEKK4 shared 58%-80% identity to MEKK4s from other species. TgMEKK4 mRNA transcripts could be detected in all tissues examined with the highest expression level in the gill by qRT-PCR. The mRNA expression of TgMEKK4 was up-regulated significantly in hemocytes after Vibrio parahaemolyticus, Vibrio alginolyticus and Lipopolysaccharide (LPS) challenges. Overexpression of TgMEKK4 in HEK 293T cells resulted in the activation of JNK and ERK, but not p38. Consistently, In vivo study indicated that LPS stimulation enhanced JNK, ERK and p38 phosphorylation in blood clams. These results suggest that TgMEKK4 is a powerful factor in the regulation of genes that may be involved in innate immune response of blood clam.


Asunto(s)
Arcidae/genética , Arcidae/inmunología , Inmunidad Innata , MAP Quinasa Quinasa Quinasa 4/genética , Secuencia de Aminoácidos , Animales , Arcidae/microbiología , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , ADN Complementario/metabolismo , Lipopolisacáridos/farmacología , MAP Quinasa Quinasa Quinasa 4/química , MAP Quinasa Quinasa Quinasa 4/metabolismo , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Vibrio alginolyticus/fisiología , Vibrio parahaemolyticus/fisiología
11.
Biochem Biophys Res Commun ; 467(4): 792-7, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26498521

RESUMEN

MAPKKK is the largest family of MAPK cascade, which is known to play important roles in plant growth, development and immune responses. So far, only a few have been functionally characterized even in the model plant, Arabidopsis due to the potential functional redundancy of MAPKKK. We previously identified and cloned a few MAPKKK family genes from rapeseed. In this study, BnaMAPKKK4 was characterized as a member in eliciting accumulation of reactive oxygen species (ROS) and hypersensitive response (HR)-like cell death. This is accompanied with accumulation of malondialdehyde (MDA), anthocyanin as well as nuclear DNA fragmentation. The transcript abundance of a series of ROS accumulation, cell death, and defense response related genes were up-regulated by the expression of MAPKKK4. Further investigation identified BnaMAPKKK4 elicited ROS through the downstream MPK3. These results indicate that BnaMAPKKK4 and its downstream components function in the ROS-induced cell death.


Asunto(s)
Brassica napus/metabolismo , MAP Quinasa Quinasa Quinasa 4/metabolismo , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Brassica napus/citología , Brassica napus/genética , Muerte Celular , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , MAP Quinasa Quinasa Quinasa 4/genética , Filogenia , Células Vegetales/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Nicotiana/genética
12.
Stem Cell Reports ; 3(1): 34-43, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-25068120

RESUMEN

The balance of self-renewal and differentiation in long-term repopulating hematopoietic stem cells (LT-HSC) must be strictly controlled to maintain blood homeostasis and to prevent leukemogenesis. Hematopoietic cytokines can induce differentiation in LT-HSCs; however, the molecular mechanism orchestrating this delicate balance requires further elucidation. We identified the tumor suppressor GADD45G as an instructor of LT-HSC differentiation under the control of differentiation-promoting cytokine receptor signaling. GADD45G immediately induces and accelerates differentiation in LT-HSCs and overrides the self-renewal program by specifically activating MAP3K4-mediated MAPK p38. Conversely, the absence of GADD45G enhances the self-renewal potential of LT-HSCs. Videomicroscopy-based tracking of single LT-HSCs revealed that, once GADD45G is expressed, the development of LT-HSCs into lineage-committed progeny occurred within 36 hr and uncovered a selective lineage choice with a severe reduction in megakaryocytic-erythroid cells. Here, we report an unrecognized role of GADD45G as a central molecular linker of extrinsic cytokine differentiation and lineage choice control in hematopoiesis.


Asunto(s)
Citocinas/farmacología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Animales , Diferenciación Celular/fisiología , Citometría de Flujo , Péptidos y Proteínas de Señalización Intracelular/genética , MAP Quinasa Quinasa Quinasa 4/genética , MAP Quinasa Quinasa Quinasa 4/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía por Video , Proteinas GADD45
13.
Cell Signal ; 26(1): 70-82, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24036211

RESUMEN

Human MAP3K4 (MTK1) functions upstream of mitogen activated protein kinases (MAPKs). In this study we show MTK1 is required for human epidermal growth factor receptor 2/3 (HER2/HER3)-heregulin beta1 (HRG) induced cell migration in MCF-7 breast cancer cells. We demonstrate that HRG stimulation leads to association of MTK1 with activated HER3 in MCF-7 and T-47D breast cancer cells. Activated HER3 association with MTK1 is dependent on HER2 activation and is decreased by pre-treatment with the HER2 inhibitor, lapatinib. Moreover, we also identify the actin interacting region (AIR) on MTK1. Disruption of actin cytoskeletal polymerization with cytochalasin D inhibited HRG induced MTK1/HER3 association. Additionally, HRG stimulation leads to extracellular acidification that is independent of cellular proliferation. HRG induced extracellular acidification is significantly inhibited when MTK1 is knocked down in MCF-7 cells. Similarly, pre-treatment with lapatinib significantly decreased HRG induced extracellular acidification. Extracellular acidification is linked with cancer cell migration. We performed scratch assays that show HRG induced cell migration in MCF-7 cells. Knockdown of MTK1 significantly inhibited HRG induced cell migration. Furthermore, pre-treatment with lapatinib also significantly decreased cell migration. Cell migration is required for cancer cell metastasis, which is the major cause of cancer patient mortality. We identify MTK1 in the HER2/HER3-HRG mediated extracellular acidification and cell migration pathway in breast cancer cells.


Asunto(s)
Ácidos/metabolismo , Movimiento Celular , Espacio Extracelular/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Movimiento Celular/efectos de los fármacos , Espacio Extracelular/efectos de los fármacos , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Inmunoprecipitación , MAP Quinasa Quinasa Quinasa 4/química , MAP Quinasa Quinasa Quinasa 4/metabolismo , Células MCF-7 , Datos de Secuencia Molecular , Peso Molecular , Neurregulina-1/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína
14.
Cell Death Differ ; 20(2): 321-32, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23059785

RESUMEN

Autophagy is a lysosomal degradation pathway important for cellular homeostasis, mammalian development, cancer and immunity. Many molecular components of autophagy have been identified, but little is known about regulatory mechanisms controlling their effector functions. Here, we show that, in contrast to other p38 MAP kinase activators, the growth arrest and DNA damage 45 beta (Gadd45ß)-MAPK/ERK kinase kinase 4 (MEKK4) pathway specifically directs p38 to autophagosomes. This process results in an accumulation of autophagosomes through p38-mediated inhibition of lysosome fusion. Conversely, autophagic flux is increased in p38-deficient fibroblasts and Gadd45ß-deficient cells. We further identified the underlying mechanism and demonstrate that phosphorylation of the autophagy regulator autophagy-related (Atg)5 at threonine 75 through p38 is responsible for inhibition of starvation-induced autophagy. Thus, we show for the first time that Atg5 activity is controlled by phosphorylation and, moreover, that the spatial regulation of p38 by Gadd45ß/MEKK4 negatively regulates the autophagic process.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Autofagia , MAP Quinasa Quinasa Quinasa 4/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Antígenos de Diferenciación/genética , Autofagia/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia , Línea Celular , Lipopolisacáridos/toxicidad , Ratones , Proteínas Asociadas a Microtúbulos/genética , Mutagénesis Sitio-Dirigida , Células 3T3 NIH , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética
15.
Cell Signal ; 25(1): 372-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23085457

RESUMEN

Previously, we showed that mitogen-activated protein kinase/extracellular signal-related kinase 4 (MEKK4) is responsible for p38 activation and that its activation during tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment also increases the catalytic activity of Akt. Here, we further investigated how the TRAIL-induced MEKK4/p38/heat shock protein (HSP27)/Akt survival network is modulated by the Src/c-Cbl interacting protein of 85kDa (CIN85)/c-Cbl complex. TRAIL-induced activation of Akt catalytic activity and phosphorylation were highly correlated with p38/HSP27 phosphorylation, whereas the phosphorylation of p38/HSP27 increased further during incubation with curcumin and TRAIL, which caused significant apoptotic cell death. CIN85, a c-Cbl-binding protein, plays an essential role in connecting cell survival to cell death. The interaction of CIN85 with MEKK4 was increased during the late phase of TRAIL incubation, suggesting that sustained p38 and HSP27 phosphorylation protects cells by preventing further cell death. However, further increases in p38/HSP27 phosphorylation induced by cotreatment with curcumin and TRAIL converted cell fate to death. Taken together, these data demonstrate that phosphorylated p38/HSP27 as biphasic modulators act in conjunction with CIN85 to determine whether cells survive or die in response to apoptotic stress.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/efectos de los fármacos , Proteínas de Choque Térmico HSP27/metabolismo , MAP Quinasa Quinasa Quinasa 4/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Familia-src Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Antineoplásicos/farmacología , Línea Celular Tumoral , Curcumina/farmacología , Humanos , Fosforilación , Proteínas Proto-Oncogénicas c-cbl/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-cbl/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos
16.
J Biol Chem ; 287(30): 25565-76, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22665475

RESUMEN

Autophagy is triggered by the intracellular bacterial sensor NOD2 (nucleotide-binding, oligomerization domain 2) as an anti-bacterial response. Defects in autophagy have been implicated in Crohn's disease susceptibility. The molecular mechanisms of activation and regulation of this process by NOD2 are not well understood, with recent studies reporting conflicting requirements for RIP2 (receptor-interacting protein kinase 2) in autophagy induction. We examined the requirement of NOD2 signaling mediated by RIP2 for anti-bacterial autophagy induction and clearance of Salmonella typhimurium in the intestinal epithelial cell line HCT116. Our data demonstrate that NOD2 stimulates autophagy in a process dependent on RIP2 tyrosine kinase activity. Autophagy induction requires the activity of the mitogen-activated protein kinases MEKK4 and p38 but is independent of NFκB signaling. Activation of autophagy was inhibited by a PP2A phosphatase complex, which interacts with both NOD2 and RIP2. PP2A phosphatase activity inhibited NOD2-dependent autophagy but not activation of NFκB or p38. Upon stimulation of NOD2, the phosphatase activity of the PP2A complex is inhibited through tyrosine phosphorylation of the catalytic subunit in a process dependent on RIP2 activity. These findings demonstrate that RIP2 tyrosine kinase activity is not only required for NOD2-dependent autophagy but plays a dual role in this process. RIP2 both sends a positive autophagy signal through activation of p38 MAPK and relieves repression of autophagy mediated by the phosphatase PP2A.


Asunto(s)
Autofagia , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Activación Enzimática/genética , Células Epiteliales/microbiología , Células HEK293 , Humanos , Mucosa Intestinal/microbiología , MAP Quinasa Quinasa Quinasa 4/genética , MAP Quinasa Quinasa Quinasa 4/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Proteína Adaptadora de Señalización NOD2/genética , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/genética , Infecciones por Salmonella/genética , Infecciones por Salmonella/metabolismo , Salmonella typhimurium , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Hum Immunol ; 73(9): 912-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22732089

RESUMEN

Crohn's disease (CD) is characterized by an aberrant immune response to bacterial products stimulating TLR, in genetically susceptible hosts. Next to mutations in the TLR signaling molecule NOD2, several other immune response- and autophagy-genes contribute to CD. Since only 10-20% of cases can be explained by a NOD2 defect, we searched for additional TLR-related disease-causing factors. We analyzed the LPS response of peripheral blood mononuclear cells from 23 CD patients in remission, compared to 16 controls in a time course experiment. Individuals with any of the three major contributing NOD2 mutations were excluded. Overall, the LPS-responsive gene transcript levels, determined by low density arrays, were significantly lower in CD patients. In particular IL-1A expression was severely reduced in CD patients (ninefold reduction, p=0.001). Quantification of several important TLR4 signal transducers and cytokines identified MAP3K4 as a candidate signaling molecule with reduced expression in CD patients, which might explain the low IL-1A expression. Silencing of MAP3K4 by lentiviral shRNA transduction indeed showed that the expression of IL-1A was specifically dependent on this kinase. Furthermore, the expression of GSK3ß, an inhibitor of MAP3K4, was increased in CD patients. In conclusion, we identified a novel TLR signaling defect in CD patients involving MAP3K4 and IL-1A. This confirms the hypothesis that CD patients, despite their massive intestinal inflammation, suffer from a relative immune deficiency in TLR-mediated cytokine production.


Asunto(s)
Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Regulación de la Expresión Génica , Interleucina-1alfa/genética , MAP Quinasa Quinasa Quinasa 4/metabolismo , Transducción de Señal , Adulto , Enfermedad de Crohn/inmunología , Citocinas/genética , Citocinas/inmunología , Femenino , Perfilación de la Expresión Génica , Humanos , Interleucina-1alfa/metabolismo , Cinética , Lipopolisacáridos/inmunología , MAP Quinasa Quinasa Quinasa 4/genética , Masculino , Interferencia de ARN , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo
18.
Cell Cycle ; 10(17): 2865-73, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21862874

RESUMEN

Epithelial-mesenchymal transition (EMT) is an essential developmental program that becomes reactivated in adult tissues to promote the progression of cancer. EMT has been largely studied by examining the beginning epithelial state or the ending mesenchymal state without studying the intermediate stages. Recent studies using trophoblast stem (TS) cells paused in EMT have defined the molecular and epigenetic mechanisms responsible for modulating the intermediate "metastable" stages of EMT. Targeted inactivation of MAP3K4, knockdown of CBP, or overexpression of SNAI1 in TS cells induced similar metastable phenotypes. These TS cells exhibited epigenetic changes in the histone acetylation landscape that cause loss of epithelial maintenance while preserving self-renewal and multipotency. A similar phenotype was found in claudin-low breast cancer cells with properties of EMT and stemness. This intersection between EMT and stemness in TS cells and claudin-low metastatic breast cancer demonstrates the usefulness of developmental EMT systems to understand EMT in cancer.


Asunto(s)
Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal , Células Madre/citología , Trofoblastos/citología , Acetilación , Animales , Cadherinas/metabolismo , Diferenciación Celular , Línea Celular , Polaridad Celular , Implantación del Embrión , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Epigénesis Genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , MAP Quinasa Quinasa Quinasa 4/metabolismo , Ratones , Invasividad Neoplásica , Placenta/patología , Embarazo , Transducción de Señal , Factores de Transcripción de la Familia Snail , Células Madre/metabolismo , Células Madre/patología , Factores de Transcripción/metabolismo , Trofoblastos/metabolismo , Trofoblastos/patología
19.
Int J Mol Sci ; 12(6): 3871-87, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21747713

RESUMEN

Recently, we demonstrated that butin (7,3',4'-trihydroxydihydroflavone) protected cells against hydrogen peroxide (H(2)O(2))-induced apoptosis by: (1) scavenging reactive oxygen species (ROS), activating antioxidant enzymes such superoxide dismutase and catalase; (2) decreasing oxidative stress-induced 8-hydroxy-2'-deoxyguanosine levels via activation of oxoguanine glycosylase 1, and (3), reducing oxidative stress-induced mitochondrial dysfunction. The objective of this study was to determine the cytoprotective effects of butin on oxidative stress-induced mitochondria-dependent apoptosis, and possible mechanisms involved. Butin significantly reduced H(2)O(2)-induced loss of mitochondrial membrane potential as determined by confocal image analysis and flow cytometry, alterations in Bcl-2 family proteins such as decrease in Bcl-2 expression and increase in Bax and phospho Bcl-2 expression, release of cytochrome c from mitochondria into the cytosol and activation of caspases 9 and 3. Furthermore, the anti-apoptotic effect of butin was exerted via inhibition of mitogen-activated protein kinase kinase-4, c-Jun NH(2)-terminal kinase (JNK) and activator protein-1 cascades induced by H(2)O(2) treatment. Finally, butin exhibited protective effects against H(2)O(2)-induced apoptosis, as demonstrated by decreased apoptotic bodies, sub-G(1) hypodiploid cells and DNA fragmentation. Taken together, the protective effects of butin against H(2)O(2)-induced apoptosis were exerted via blockade of membrane potential depolarization, inhibition of the JNK pathway and mitochondria-involved caspase-dependent apoptotic pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Benzopiranos/farmacología , Peróxido de Hidrógeno/toxicidad , Mitocondrias/efectos de los fármacos , 8-Hidroxi-2'-Desoxicoguanosina , Animales , Antioxidantes/farmacología , Benzopiranos/química , Línea Celular , Cricetinae , Cricetulus , Citocromos c/metabolismo , Daño del ADN/efectos de los fármacos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , MAP Quinasa Quinasa Quinasa 4/antagonistas & inhibidores , MAP Quinasa Quinasa Quinasa 4/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Factor de Transcripción AP-1/antagonistas & inhibidores , Factor de Transcripción AP-1/metabolismo
20.
Cell Stem Cell ; 8(5): 525-37, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21549327

RESUMEN

Epithelial stem cells self-renew while maintaining multipotency, but the dependence of stem cell properties on maintenance of the epithelial phenotype is unclear. We previously showed that trophoblast stem (TS) cells lacking the protein kinase MAP3K4 maintain properties of both stemness and epithelial-mesenchymal transition (EMT). Here, we show that MAP3K4 controls the activity of the histone acetyltransferase CBP, and that acetylation of histones H2A and H2B by CBP is required to maintain the epithelial phenotype. Combined loss of MAP3K4/CBP activity represses expression of epithelial genes and causes TS cells to undergo EMT while maintaining their self-renewal and multipotency properties. The expression profile of MAP3K4-deficient TS cells defines an H2B acetylation-regulated gene signature that closely overlaps with that of human breast cancer cells. Taken together, our data define an epigenetic switch that maintains the epithelial phenotype in TS cells and reveals previously unrecognized genes potentially contributing to breast cancer.


Asunto(s)
Células Madre Embrionarias/metabolismo , Transición Epitelial-Mesenquimal , Histonas/metabolismo , Proteínas de la Membrana/metabolismo , Células Madre Multipotentes/metabolismo , Fosfoproteínas/metabolismo , Acetilación , Animales , Línea Celular , Supervivencia Celular/genética , Transformación Celular Neoplásica/genética , Células Madre Embrionarias/patología , Epigénesis Genética , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Histonas/genética , MAP Quinasa Quinasa Quinasa 4/genética , MAP Quinasa Quinasa Quinasa 4/metabolismo , Ratones , Células Madre Multipotentes/patología , Mutación/genética , Trofoblastos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA