Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 530
Filtrar
1.
Phytomedicine ; 130: 155482, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38824823

RESUMEN

BACKGROUND: Acute lung injury (ALI) is characterized by acute pulmonary inflammatory infiltration. Alveolar epithelial cells (AECs) release numerous pro-inflammatory cytokines, which result in the pathological changes seen in ALI. Ophiopogonin D (OD), extracted from the roots of Ophiopogon japonicus (Thunb.) Ker Gawl. (Liliaceae), reduces inflammation; however, the efficacy of OD in ALI has not been reported and the underlying molecular mechanisms remain unclear. PURPOSE: This study investigated the anti-inflammatory effects of OD, as well as the underlying mechanisms, in AECs and a mouse ALI model. METHODS: Lipopolysaccharide (LPS) and tumor necrosis factor-α (TNF-α) were used to stimulate macrophages and A549 cells, and a mouse ALI model was established by intratracheal LPS administration. The anti-inflammatory effects and mechanisms of OD in the TNF-α-induced in vitro inflammation model was evaluated using real-time quantitative polymerase chain reaction qPCR), enzyme-linked immunosorbent assay (ELISA), western blotting, nuclear and cytoplasmic protein extraction, and immunofluorescence. The in vivo anti-inflammatory activity of OD was evaluated using hematoxylin and eosin staining, qPCR, ELISA, and western blotting. RESULTS: The bronchoalveolar lavage fluid and lung tissue of LPS-induced ALI mice exhibited increased TNF-α expression. TNF-α induced a significantly greater pro-inflammatory effect in AECs than LPS. OD reduced inflammation and mitogen-activated protein kinase (MAPK) and transcription factor p65 phosphorylation in vivo and in vitro and promoted signal transducer and activator of transcription 3 (STAT3) phosphorylation and A20 expression, thereby inducing apoptosis signal-regulating kinase 1 (ASK1) proteasomal degradation. CONCLUSION: OD exerts an anti-inflammatory effect by promoting STAT3-dependent A20 expression and ASK1 degradation. OD may therefore have therapeutic value in treating ALI and other TNF-α-related inflammatory diseases.


Asunto(s)
Lesión Pulmonar Aguda , Antiinflamatorios , Lipopolisacáridos , Factor de Transcripción STAT3 , Saponinas , Espirostanos , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Animales , Saponinas/farmacología , Espirostanos/farmacología , Ratones , Factor de Transcripción STAT3/metabolismo , Humanos , Antiinflamatorios/farmacología , Masculino , MAP Quinasa Quinasa Quinasa 5/metabolismo , Células A549 , Modelos Animales de Enfermedad , Factor de Necrosis Tumoral alfa/metabolismo , Células RAW 264.7 , Ratones Endogámicos C57BL , Ophiopogon/química , Inflamación/tratamiento farmacológico , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Transducción de Señal/efectos de los fármacos , Raíces de Plantas/química
2.
Inorg Chem ; 63(25): 11779-11787, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38850241

RESUMEN

Cisplatin is a widely used anticancer drug. In addition to inducing DNA damage, increased levels of reactive oxygen species (ROS) play a significant role in cisplatin-induced cell death. Thioredoxin-1 (Trx1), a redox regulatory protein that can scavenge ROS, has been found to eliminate cisplatin-induced ROS, while elevated Trx1 levels are associated with cisplatin resistance. However, it is unknown whether the effect of Trx1 on the cellular response to cisplatin is due to its direct reaction and how this reaction influences the activity of Trx1. In this work, we performed detailed studies of the reaction between Trx1 and cisplatin. Trx1 is highly reactive to cisplatin, and the catalytic motif of Trx1 (CGPC) is the primary binding site of cisplatin. Trx1 can bind up to 6 platinum moieties, resulting in the structural alteration and oligomerization of Trx1 depending on the degree of platination. Platination of Trx1 inhibits its interaction with ASK1, a Trx1-binding protein that regulates cell apoptosis. Furthermore, the reaction with cisplatin suppresses drug-induced ROS generation, which could be associated with drug resistance. This study provides more insight into the mechanism of action of cisplatin.


Asunto(s)
Antineoplásicos , Cisplatino , MAP Quinasa Quinasa Quinasa 5 , Oxidación-Reducción , Especies Reactivas de Oxígeno , Tiorredoxinas , Cisplatino/farmacología , Cisplatino/química , Tiorredoxinas/metabolismo , Tiorredoxinas/química , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , MAP Quinasa Quinasa Quinasa 5/metabolismo , Homeostasis/efectos de los fármacos , Apoptosis/efectos de los fármacos
3.
Commun Biol ; 7(1): 691, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839869

RESUMEN

Cellular senescence is a stress-induced, permanent cell cycle arrest involved in tumor suppression and aging. Senescent cells secrete bioactive molecules such as pro-inflammatory cytokines and chemokines. This senescence-associated secretory phenotype (SASP) has been implicated in immune-mediated elimination of senescent cells and age-associated chronic inflammation. However, the mechanisms regulating the SASP are incompletely understood. Here, we show that the stress-responsive kinase apoptosis signal-regulating kinase 1 (ASK1) promotes inflammation in senescence and aging. ASK1 is activated during senescence and increases the expression of pro-inflammatory cytokines and chemokines by activating p38, a kinase critical for the SASP. ASK1-deficient mice show impaired elimination of oncogene-induced senescent cells and an increased rate of tumorigenesis. Furthermore, ASK1 deficiency prevents age-associated p38 activation and inflammation and attenuates glomerulosclerosis. Our results suggest that ASK1 is a driver of the SASP and age-associated chronic inflammation and represents a potential therapeutic target for age-related diseases.


Asunto(s)
Envejecimiento , Senescencia Celular , Inflamación , MAP Quinasa Quinasa Quinasa 5 , MAP Quinasa Quinasa Quinasa 5/metabolismo , MAP Quinasa Quinasa Quinasa 5/genética , Animales , Inflamación/metabolismo , Ratones , Humanos , Ratones Noqueados , Ratones Endogámicos C57BL , Fenotipo Secretor Asociado a la Senescencia/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Citocinas/metabolismo , Citocinas/genética
4.
J Cancer Res Clin Oncol ; 150(4): 218, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678126

RESUMEN

BACKGROUND: Targeting ferroptosis mediated by autophagy presents a novel therapeutic approach to breast cancer, a mortal neoplasm on the global scale. Pyruvate dehydrogenase kinase isozyme 4 (PDK4) has been denoted as a determinant of breast cancer metabolism. The target of this study was to untangle the functional mechanism of PDK4 in ferroptosis dependent on autophagy in breast cancer. METHODS: RT-qPCR and western blotting examined PDK4 mRNA and protein levels in breast cancer cells. Immunofluorescence staining appraised light chain 3 (LC3) expression. Fe (2 +) assay estimated total iron level. Relevant assay kits and C11-BODIPY (591/581) staining evaluated lipid peroxidation level. DCFH-DA staining assayed intracellular reactive oxygen species (ROS) content. Western blotting analyzed the protein levels of autophagy, ferroptosis and apoptosis-signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK) pathway-associated proteins. RESULTS: PDK4 was highly expressed in breast cancer cells. Knockdown of PDK4 induced the autophagy of breast cancer cells and 3-methyladenine (3-MA), an autophagy inhibitor, countervailed the promoting role of PDK4 interference in ferroptosis in breast cancer cells. Furthermore, PDK4 knockdown activated ASK1/JNK pathway and ASK1 inhibitor (GS-4997) partially abrogated the impacts of PDK4 absence on the autophagy and ferroptosis in breast cancer cells. CONCLUSION: To sum up, deficiency of PDK4 activated ASK1/JNK pathway to stimulate autophagy-dependent ferroptosis in breast cancer.


Asunto(s)
Autofagia , Neoplasias de la Mama , Ferroptosis , MAP Quinasa Quinasa Quinasa 5 , Humanos , Ferroptosis/fisiología , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Femenino , Autofagia/fisiología , MAP Quinasa Quinasa Quinasa 5/metabolismo , MAP Quinasa Quinasa Quinasa 5/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Sistema de Señalización de MAP Quinasas/fisiología , Animales , Línea Celular Tumoral , Ratones , Especies Reactivas de Oxígeno/metabolismo
5.
Int J Biol Macromol ; 264(Pt 1): 130542, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432272

RESUMEN

Pathological cardiac hypertrophy (CH) is driven by maladaptive changes in myocardial cells in response to pressure overload or other stimuli. CH has been identified as a significant risk factor for the development of various cardiovascular diseases, ultimately resulting in heart failure. Melanoma differentiation-associated protein 5 (MDA5), encoded by interferon-induced with helicase C domain 1 (IFIH1), is a cytoplasmic sensor that primarily functions as a detector of double-stranded ribonucleic acid (dsRNA) viruses in innate immune responses; however, its role in CH pathogenesis remains unclear. Thus, the aim of this study was to examine the relationship between MDA5 and CH using cellular and animal models generated by stimulating neonatal rat cardiomyocytes with phenylephrine and by performing transverse aortic constriction on mice, respectively. MDA5 expression was upregulated in all models. MDA5 deficiency exacerbated myocardial pachynsis, fibrosis, and inflammation in vivo, whereas its overexpression hindered CH development in vitro. In terms of the underlying molecular mechanism, MDA5 inhibited CH development by promoting apoptosis signal-regulating kinase 1 (ASK1) phosphorylation, thereby suppressing c-Jun N-terminal kinase/p38 signaling pathway activation. Rescue experiments using an ASK1 activation inhibitor confirmed that ASK1 phosphorylation was essential for MDA5-mediated cell death. Thus, MDA5 protects against CH and is a potential therapeutic target.


Asunto(s)
Apoptosis , MAP Quinasa Quinasa Quinasa 5 , Ratones , Ratas , Animales , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Apoptosis/fisiología , Cardiomegalia/metabolismo , Transducción de Señal , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo
6.
Protein Cell ; 15(7): 512-529, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38167949

RESUMEN

Polycystic ovary syndrome (PCOS) is the leading cause of anovulatory infertility. Inadequate understanding of the ovulation drivers hinders PCOS intervention. Herein, we report that follicle stimulating hormone (FSH) controls follicular fluid (FF) glutamine levels to determine ovulation. Murine ovulation starts from FF-exposing granulosa cell (GC) apoptosis. FF glutamine, which decreases in pre-ovulation porcine FF, elevates in PCOS patients FF. High-glutamine chow to elevate FF glutamine inhibits mouse GC apoptosis and induces hormonal, metabolic, and morphologic PCOS traits. Mechanistically, follicle-development-driving FSH promotes GC glutamine synthesis to elevate FF glutamine, which maintain follicle wall integrity by inhibiting GC apoptosis through inactivating ASK1-JNK apoptotic pathway. FSH and glutamine inhibit the rapture of cultured murine follicles. Glutamine removal or ASK1-JNK pathway activation with metformin or AT-101 reversed PCOS traits in PCOS models that are induced with either glutamine or EsR1-KO. These suggest that glutamine, FSH, and ASK1-JNK pathway are targetable to alleviate PCOS.


Asunto(s)
Hormona Folículo Estimulante , Glutamina , Células de la Granulosa , Ovulación , Síndrome del Ovario Poliquístico , Animales , Femenino , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos , Glutamina/metabolismo , Ratones , Hormona Folículo Estimulante/metabolismo , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/patología , Humanos , Apoptosis/efectos de los fármacos , MAP Quinasa Quinasa Quinasa 5/metabolismo , MAP Quinasa Quinasa Quinasa 5/genética , Porcinos , Ratones Endogámicos C57BL
7.
J Biomol Struct Dyn ; 42(2): 696-709, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37021478

RESUMEN

Cancers are characterized by the aberrant expression of certain genes that trigger a cascade of molecular events that culminate in dysregulated cell division. Consequently, the inhibition of the products of these expressedgenes has emerged as a rational approach in cancer therapy. The apoptosis signal-regulating kinase 1 (ASK1) protein, encoded by the mitogen-activated protein kinase kinase kinase 5 (MAP3K5) gene, plays pertinent roles in the mediation of cell death induced by stress and inflammation, andis often found at elevated levels in cancer. Consequently, it has emerged as a molecular target for the development of potential chemotherapeutics through identification of selective inhibitors. However, there is still dearth of ASK1 inhibitors in clinical use. Hence, molecular modelling approaches were employed in this study to discover potential ASK1 inhibitors from phytochemicals. Twenty-five phytocompounds from four medicinal plants were tested for their inhibitory prowess via molecular docking. Interestingly, all the compounds exhibited promising inhibitory potentials for ASK1. However, further subjection to filtering procedures via different pipelines including drug-likeness evaluation, pharmacokinetics screening, toxicity profiling, and better affinities compared to the approved inhibitor resulted in three hit compounds namely ellagic acid, luteolin, and kaempferol with suitable properties. Profiling of the interactions formed between the hit\compounds and the targets revealed several interactions that were not present in that of the approved inhibitor, while molecular dynamics (MD) simulation revealed the complexes formed as stable. Conclusively, this study identified three compounds with ASK1 inhibitory potentials that are worthy of further exploration in in vitro and in vivo studies.Communicated by Ramaswamy H. Sarma.


Asunto(s)
MAP Quinasa Quinasa Quinasa 5 , Neoplasias , Humanos , MAP Quinasa Quinasa Quinasa 5/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Transducción de Señal , Neoplasias/tratamiento farmacológico , Apoptosis/fisiología
8.
Cell Signal ; 115: 111010, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38128707

RESUMEN

Follicle-stimulating hormone (FSH), luteinizing hormone (LH), miR-23a, apoptosis signal-regulating kinase 1(ASK1)/c-Jun N-terminal kinase (JNK), autophagy and apoptosis play crucial roles in follicular development. However, their role in yak granulosa cells (GCs) remains unknown. Therefore, we examined the effect of miR-23a, ASK1, FSH, and LH on apoptosis, autophagy, and the release and reception of some steroid hormones in these cells. Our results showed that miR-23a overexpression significantly increased the abundance of Beclin1, the LC3II/I ratio, and the number of Ad-mRFP-GFP-LC3-labeled autophagosomes, and decreased p62 abundance. Additionally, Bax abundance and the number of terminal deoxynucleotidyl transferase deoxynucleotide triphosphate nick end labeling-positive cells were reduced, while Bcl2 expression was increased. Overexpression of miR-23a also significantly increased the abundance of estradiol receptor α (ER-α) and ß (ER-ß) and the concentrations of estradiol (E2), progesterone (P4) in yak GCs. Here, treating yak GCs with miR-23a decreased ASK1 expression, which regulates ASK1/JNK-mediated apoptosis, autophagy, E2 and P4 levels, and ER-α/ß abundance. In contrast, treatment of yak GCs with FSH (10 µg/mL) and LH (100 µg/mL) increased miR-23a abundance, regulating the subsequent effect on ASK1/JNK-mediated apoptosis, autophagy, ER-α/ß abundance, and E2 and P4 concentrations. In conclusion, miR-23a enhances autophagy in yak GCs, attenuates apoptosis, and increases ER-α/ß abundance and E2 and P4 concentrations by downregulating ASK1. Additionally, FSH and LH can regulate these effects of miR-23a by altering its expression. These results provide important insights that can inform the development of strategies to reduce abnormal follicular atresia and improve the reproductive rate of yaks.


Asunto(s)
Hormona Luteinizante , MicroARNs , Animales , Bovinos , Femenino , Apoptosis , Autofagia , Estradiol/metabolismo , Hormona Folículo Estimulante/farmacología , Atresia Folicular/fisiología , Células de la Granulosa/metabolismo , Hormona Luteinizante/farmacología , Hormona Luteinizante/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Progesterona/metabolismo
9.
Eur J Med Chem ; 262: 115889, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37883895

RESUMEN

Apoptosis signal regulated kinase 1 (ASK1, also known as MAP3K5) is a member of the mitogen activated protein kinase kinase kinase (MAP3K) family. Since its first isolation from a human macrophage library in 1996, its research has been ongoing for over 25 years. A large number of reports have revealed that ASK1, as a key activator of the p38 mitogen-activated protein kinase and c-Jun N-terminal kinase (JNK) signaling cascade, responds to various stressors, and its inhibitors have important potential value in the treatment of diseases such as inflammation, cancer, and the nervous system and so on. This review summarizes the recent development in this field, including the structure and signaling pathways of ASK1, with a particular focus on the structure-activity relationships, and the hit-to-lead optimization strategies.


Asunto(s)
Apoptosis , Transducción de Señal , Humanos , Apoptosis/fisiología , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , MAP Quinasa Quinasa Quinasa 5/metabolismo
10.
Pharmacogenet Genomics ; 33(6): 117-125, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37306338

RESUMEN

BACKGROUND: Bone marrow mesenchymal stem cell (BMSC)-derived exosomes have been verified to perform an effective role in treating acute myocardial infarction (MI). Herein, we aimed to investigate the role of BMSC-derived exosomes carrying itchy E3 ubiquitin ligase (ITCH) in MI and the underlying mechanism involved. METHODS: BMSCs were isolated from rat bone marrow and exosomes were extracted using ultra-high speed centrifugation. Exosomes uptake by cardiomyoblasts was determined by PKH-67 staining. Rat cardiomyoblast cell line H9C2 was stimulated by hypoxia, as in vitro model. H9C2 cell apoptosis was determined by flow cytometry. Cell viability was examined by cell counting kit-8 assay. Western blotting was performed to determine the expression of ITCH, apoptosis signal-regulated kinase-1 (ASK1), and apoptotic-related protein cleaved-caspase 3 and Bcl-2. Ubiquitination assay was employed to measure the levels of ASK1 ubiquitination. RESULTS: Exosomes derived from BMSCs were endocytosed by H9C2 cardiomyoblasts. BMSC-Exo downregulated cleaved-caspase 3 expression, upregulated Bcl-2 expression, further suppressed H9C2 cell apoptosis under hypoxia treatment, meanwhile the expression of ASK1 was downregulated, and similar effects were observed in BMSC-cultured supernatant (BMSC-S). However, these effects were reversed by exosome inhibitor GW4869. BMSC-derived exosomes enhanced ASK1 ubiquitination and degradation. Mechanically, exosomes of ITCH-knockdown BMSCs promoted H9C2 cell apoptosis and upregulated ASK1 expression. Overexpression of ITCH enhanced ASK1 ubiquitination and degradation. Further, the protein expression of ASK1 and cleaved-caspase 3 was upregulated and Bcl-2 protein expression was downregulated. ITCH-knockdown BMSC exosomes increased cardiomyoblast apoptosis. CONCLUSION: BMSC-derived exosomes carrying ITCH suppressed cardiomyoblast apoptosis, promoted cardiomyoblast viability, and improved myocardial injury in AMI by mediating ASK1 ubiquitination.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , Animales , Humanos , Ratas , Apoptosis , Caspasa 3/metabolismo , Caspasa 3/farmacología , Exosomas/genética , Exosomas/metabolismo , Hipoxia/metabolismo , Células Madre Mesenquimatosas/metabolismo , Miocitos Cardíacos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/farmacología , MAP Quinasa Quinasa Quinasa 5/metabolismo
11.
Phytomedicine ; 111: 154646, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36645975

RESUMEN

BACKGROUND: Obese asthma is one of the important asthma phenotypes that have received wide attention in recent years. Excessive oxidative stress and different inflammatory endotypes may be important reasons for the complex symptoms, frequent aggravation, and resistance to traditional treatments of obese asthma. Apigenin (API), is a flavonoid natural small molecule compound with good anti-inflammatory and antioxidant activity in various diseases and proved to have the potential efficacy to combat obese asthma. METHODS: In vivo, this study fed C57BL/6 J mice with high-fat diets(HFD)for 12 weeks and then stimulated them with OVA for 6 weeks to establish a model of chronic obese asthma, while different doses of oral API or dexamethasone were used for therapeutic interventions. In vitro, this study used HDM to stimulate human bronchial cells (HBEs) to establish the model and intervened with API or Selonsertib (SEL). RESULTS: This study clarified that OVAinduced a type of mixed granulocytic asthma with elevated neutrophils and eosinophils in obese male mice fed with long-term HFD, which also exhibited mixed TH17/TH1/TH2 inflammation. Apigenin effectively suppressed this complex inflammation and acted as a regulator of immune homeostasis. Meanwhile, apigenin reduced AHR, inflammatory cell infiltration, airway epithelial cell apoptosis, airway collagen deposition, and lung oxidative stress via the ROS-ASK1-MAPK pathway in an obese asthma mouse model. In vitro, this study found that apigenin altered the binding status of TRAF6 to ASK1, inhibited ASK1 phosphorylation, and protected against ubiquitin-dependent degradation of ASK1, suggesting that ROS-activated ASK1 may be an important target for apigenin to exert anti-inflammatory and anti-apoptotic effects. To further verify the intervention mechanism, this study clarified that apigenin improved cell viability and mitochondrial function and inhibited apoptosis by interfering with the ROS-ASK1-MAPK pathway. CONCLUSIONS: This study demonstrates for the first time the therapeutic effect of apigenin in chronic obese asthma and further clarifies its potential therapeutic targets. In addition, this study clarifies the specificity of chronic obese asthma and provides new options for its treatment.


Asunto(s)
Apigenina , Asma , Animales , Humanos , Masculino , Ratones , Apigenina/farmacología , Apoptosis , Asma/metabolismo , Células Epiteliales/metabolismo , Homeostasis , Inflamación/metabolismo , Pulmón , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Especies Reactivas de Oxígeno/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo
12.
Mol Cancer Res ; 21(3): 214-227, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36573960

RESUMEN

ABSTRACT: System paclitaxel-based chemotherapy is the first-line treatment regimen of defense against breast cancer, but inherent or acquired chemotherapy resistance remains a major obstacle in breast cancer therapy. Elucidating the molecular mechanism of chemoresistance is essential to improve the outcome of patients with breast cancer. Here, we demonstrate that intraflagellar transport 20 (IFT20) is positively associated with shorter relapse-free survival in patients with system paclitaxel-based chemotherapy. High-expressed IFT20 in breast cancer cells increases resistance to cell death upon paclitaxel treatment; in contrast, IFT20 knockdown enhances apoptosis in breast cancer cells in response to paclitaxel. Mechanistically, IFT20 triggers ß-arrestin-1 to bind with apoptosis signal-regulating kinase 1 (ASK1) and promotes the ubiquitination of ASK1 degradation, leading to attenuating ASK1 signaling and its downstream JNK cascades, which helps cells to escape from cell death during paclitaxel treatment. Our results reveal that IFT20 drives paclitaxel resistance through modulating ASK1 signaling and identifies IFT20 as a potential molecular biomarker for predicting the response to paclitaxel therapeutic in breast cancer. IMPLICATIONS: IFT20 drives paclitaxel resistance through modulating ASK1 signaling and IFT20 may act as a potential molecular biomarker for predicting the response to paclitaxel therapeutic in breast cancer.


Asunto(s)
Neoplasias de la Mama , Paclitaxel , Humanos , Femenino , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , beta-Arrestina 1/uso terapéutico , MAP Quinasa Quinasa Quinasa 5/genética , MAP Quinasa Quinasa Quinasa 5/metabolismo , MAP Quinasa Quinasa Quinasa 5/uso terapéutico , Línea Celular Tumoral , Recurrencia Local de Neoplasia/tratamiento farmacológico , Apoptosis , Resistencia a Antineoplásicos , Proteínas Portadoras
13.
Cells ; 11(20)2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36291141

RESUMEN

The capacity to induce tumour-cell specific apoptosis represents the most unique feature of the TNF receptor (TNFR) family member CD40. Recent studies on the signalling events triggered by its membrane-presented ligand CD40L (mCD40L) in normal and malignant epithelial cells have started to unravel an exquisite context and cell type specificity for the functional effects of CD40. Here, we demonstrate that, in comparison to other carcinomas, mCD40L triggered strikingly more rapid apoptosis in colorectal carcinoma (CRC) cells, underpinned by its ability to entrain two concurrently operating signalling axes. CD40 ligation initially activates TNFR-associated factor 3 (TRAF3) and subsequently NADPH oxidase (NOX)/Apoptosis signal-regulating kinase 1 (ASK1)-signalling and induction of reactive oxygen species (ROS) to mediate p38/JNK- and ROS-dependent cell death. At that point, p38/JNK signalling directly activates the mitochondrial pathway, and triggers rapid induction of intracellular TNF-related apoptosis-inducing ligand (TRAIL) that signals from internal compartments to initiate extrinsic caspase-10-asscociated apoptosis, leading to truncated Bid (tBid)-activated mitochondrial signalling. p38 and JNK are essential both for direct mitochondrial apoptosis induction and the TRAIL/caspase-10/tBid pathway, but their involvement follows functional hierarchy and temporally controlled interplay, as p38 function is required for JNK phosphorylation. By engaging both intrinsic and extrinsic pathways to activate apoptosis via two signals simultaneously, CD40 can accelerate CRC cell death. Our findings further unravel the multi-faceted properties of the CD40/mCD40L dyad, highlighted by the novel TNFR crosstalk that accelerates tumour cell-specific death, and may have implications for the use of CD40 as a therapeutic target.


Asunto(s)
Apoptosis , Antígenos CD40 , Neoplasias Colorrectales , MAP Quinasa Quinasa 4 , Especies Reactivas de Oxígeno , Factor 3 Asociado a Receptor de TNF , Ligando Inductor de Apoptosis Relacionado con TNF , Proteínas Quinasas p38 Activadas por Mitógenos , Humanos , Caspasa 10/metabolismo , Antígenos CD40/metabolismo , Ligando de CD40/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor 3 Asociado a Receptor de TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo
14.
Immunopharmacol Immunotoxicol ; 44(5): 732-745, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35815528

RESUMEN

OBJECTIVES: This study aimed to explore the underlying role and mechanism of LINC00313 in osteoarthritis (OA) progression. METHODS: CHON-001 chondrocytes were treated with interleukin (IL)-1ß to induce OA in vitro, and then transfected with LINC00313 overexpression plasmids (pcDNA-LINC00313) or small interfering RNA against tumor necrosis factor (TNF) receptor-associated factor 1 (si-TRAF1). Cell viability, apoptosis, levels of inflammatory cytokines tumor necrosis factor-α (TNF-α), IL-6 and IL-8, and expression of extracellular matrix (ECM) degradation related proteins in CHON-001 cells were determined. TRAF1 promoter methylation were was detected with methylation-specific polymerase chain reaction (MSP) assay. Furthermore, a c-Jun N-terminal kinase (JNK) signaling activator was used to confirm whether the apoptosis signal-regulating kinase 1 (ASK1)/JNK signaling pathway was involved in the function of LINC00313/TRAF1 axis in chondrocytes. In addition, an OA mouse model was established and lentivirus LINC00313 overexpression vector (Lv-LINC00313) was injected, and then inflammatory cytokine levels, ECM protein expression, and pathological changes in cartilage tissues were detected. RESULTS: LINC00313 was downregulated and TRAF1 was upregulated in OA cartilage tissues. LINC00313 overexpression or TRAF1 silencing attenuated IL-1ß-induced viability inhibition, apoptosis, inflammation and ECM degradation in CHON-001 cells. Moreover, LINC00313 inhibited TRAF1 expression through promoting DNA methyltransferase 1 (DNMT1) mediated promoter methylation. TRAF1 overexpression reversed the effects of LINC00313 on IL-1ß-induced chondrocyte injury. LINC00313 overexpression inhibited the ASK1/JNK signaling pathway, and JNK activator reversed the effect. In addition, Lv-LINC00313 treatment alleviated cartilage tissue damage and cartilage matrix degradation in OA mice. CONCLUSIONS: LINC00313 alleviated OA progression through inhibiting TRAF1 expression and the ASK1/JNK signaling pathway.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Osteoartritis , Animales , Apoptosis , ADN/metabolismo , ADN/farmacología , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-8/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , MAP Quinasa Quinasa Quinasa 5/farmacología , Metilación , Metiltransferasas/metabolismo , Metiltransferasas/farmacología , Ratones , Osteoartritis/genética , Osteoartritis/metabolismo , ARN Interferente Pequeño , Factor 1 Asociado a Receptor de TNF/genética , Factor de Necrosis Tumoral alfa/metabolismo
15.
Environ Toxicol ; 37(6): 1288-1296, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35166444

RESUMEN

With the spread of hexavalent chromium (Cr(VI)) contamination, Cr(VI)-induced hepatotoxicity has attracted increasing attention in recent years. To date, however, the exact mechanism of Cr(VI) toxicity remains unclear. In this study, we investigated the role of apoptosis signal-regulating kinase 1 (ASK1)/c-Jun amino-terminal kinase (JNK) in Cr(VI)-induced hepatic toxicity and the possible related mechanisms. AML-12 hepatocyte cell-lines were treated with 0, 1, 4, and 16 µmol/Lof Cr(VI) with or without GS-444271 (an ASK1 inhibitor). Adult male mice were administered with 0, 2, 8, and 32 mg/kg body mass (BM)/day of Cr(VI) for 5 days. The level of hepatocyte apoptosis/proliferation, generation of reactive oxygen species (ROS), and expression levels of mRNAs and proteins related to ASK1/JNK and nuclear factor-E2-related factor 2 (Nrf2) signaling were assessed. Results showed that high Cr(VI) exposure induced hepatocyte apoptosis and liver injury by generation of ROS and down-regulation of Nrf2 signaling. In addition, ASK1/JNK signaling activity was upregulated in the Cr(VI)-treated group. Furthermore, GS-444217 treatment significantly rescued Cr(VI)-induced hepatocyte apoptosis and liver dysfunction in vitro and in vivo by down-regulation of ASK1/JNK signaling. Thus, ASK1/JNK signaling appears to play an important role in Cr(VI)-induced hepatocyte apoptosis and liver injury. This study should help improve our understanding of the mechanism of Cr(VI)-induced liver injury and provide support for future investigations on liver disease therapy.


Asunto(s)
MAP Quinasa Quinasa Quinasa 5 , Factor 2 Relacionado con NF-E2 , Animales , Apoptosis , Cromo/metabolismo , Cromo/toxicidad , Hepatocitos/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Masculino , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo
16.
Acta Biochim Biophys Sin (Shanghai) ; 54(12): 1811-1821, 2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36789693

RESUMEN

Hepatic ischemia/reperfusion (I/R) injury occurs frequently in various liver operations and diseases, but its effective treatment remains inadequate because the key switch that leads to hepatic explosive inflammation has not been well disclosed. Dual specificity phosphatase 9 (DUSP9) is widely involved in the innate immune response of solid organs and is sometimes regulated by ubiquitin. In the present study, we find that DUSP9 is reduced in mouse hepatic I/R injury. DUSP9 enrichment attenuates hepatic inflammation both in vivo and in vitro as revealed by western blot analysis and qRT-PCR. In contrast, DUSP9 depletion leads to more severe I/R injury. Mechanistically, DUSP9 inhibits the phosphorylation of apoptosis signal-regulating kinase 1 (ASK1) by directly binding to ASK1, thereby decreasing tumor necrosis factor receptor-associated factor 6 (TRAF6), K63 ubiquitin and the phosphorylation of p38/JNK1 instead of ERK1. The present study documents a novel role of DUSP9 in hepatic I/R injury and implies the potential of targeting the DUSP9/ASK1 axis towards mitogen-activated protein kinase and TRAF6/inhibitor of κB kinase pathways.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Daño por Reperfusión , Ratones , Animales , Proteínas Quinasas Activadas por Mitógenos/metabolismo , MAP Quinasa Quinasa Quinasa 5/genética , MAP Quinasa Quinasa Quinasa 5/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Hígado/metabolismo , Inflamación , Ubiquitinas/metabolismo , Isquemia , Apoptosis/fisiología , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo
17.
Hepatology ; 75(6): 1446-1460, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34662438

RESUMEN

BACKGROUND AND AIMS: Ischemia-reperfusion (I/R) injury is an inevitable complication of liver transplantation (LT) and compromises its prognosis. Glycosyltransferases have been recognized as promising targets for disease therapy, but their roles remain open for study in hepatic I/R (HIR) injury. Here, we aim to demonstrate the exact function and molecular mechanism of a glycosyltransferase, N-acetylgalactosaminyltransferase-4 (GALNT4), in HIR injury. APPROACH AND RESULTS: By an RNA-sequencing data-based correlation analysis, we found a close correlation between GALNT4 expression and HIR-related molecular events in a murine model. mRNA and protein expression of GALNT4 were markedly up-regulated upon reperfusion surgery in both clinical samples from subjects who underwent LT and in a mouse model. We found that GALNT4 deficiency significantly exacerbated I/R-induced liver damage, inflammation, and cell death, whereas GALNT4 overexpression led to the opposite phenotypes. Our in-depth mechanistic exploration clarified that GALNT4 directly binds to apoptosis signal-regulating kinase 1 (ASK1) to inhibit its N-terminal dimerization and subsequent phosphorylation, leading to a robust inactivation of downstream c-Jun N-terminal kinase (JNK)/p38 and NF-κB signaling. Intriguingly, the inhibitory capacity of GALNT4 on ASK1 activation is independent of its glycosyltransferase activity. CONCLUSIONS: GALNT4 represents a promising therapeutic target for liver I/R injury and improves liver surgery prognosis by inactivating the ASK1-JNK/p38 signaling pathway.


Asunto(s)
Hígado , MAP Quinasa Quinasa Quinasa 5 , N-Acetilgalactosaminiltransferasas , Daño por Reperfusión , Animales , Apoptosis , Hígado/patología , MAP Quinasa Quinasa Quinasa 5/metabolismo , Ratones , N-Acetilgalactosaminiltransferasas/genética , Multimerización de Proteína , Daño por Reperfusión/genética , Daño por Reperfusión/prevención & control , Polipéptido N-Acetilgalactosaminiltransferasa
18.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34948191

RESUMEN

Apoptosis signal-regulating kinase (ASK) 1, a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, modulates diverse responses to oxidative and endoplasmic reticulum (ER) stress and calcium influx. As a crucial cellular stress sensor, ASK1 activates c-Jun N-terminal kinases (JNKs) and p38 MAPKs. Their excessive and sustained activation leads to cell death, inflammation and fibrosis in various tissues and is implicated in the development of many neurological disorders, such as Alzheimer's, Parkinson's and Huntington disease and amyotrophic lateral sclerosis, in addition to cardiovascular diseases, diabetes and cancer. However, currently available inhibitors of JNK and p38 kinases either lack efficacy or have undesirable side effects. Therefore, targeted inhibition of their upstream activator, ASK1, stands out as a promising therapeutic strategy for treating such severe pathological conditions. This review summarizes recent structural findings on ASK1 regulation and its role in various diseases, highlighting prospects for ASK1 inhibition in the treatment of these pathologies.


Asunto(s)
MAP Quinasa Quinasa Quinasa 5/metabolismo , MAP Quinasa Quinasa Quinasa 5/fisiología , Proteínas 14-3-3/metabolismo , Animales , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis/metabolismo , Estrés del Retículo Endoplásmico , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , MAP Quinasa Quinasa Quinasa 5/genética , MAP Quinasa Quinasa Quinasa 5/ultraestructura , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Oxidación-Reducción , Estrés Oxidativo , Fosforilación , Mapas de Interacción de Proteínas/genética , Mapas de Interacción de Proteínas/fisiología , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
Cells ; 10(11)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34831394

RESUMEN

Hepatic ischemia/reperfusion injury (IRI) is aggravated by steatosis and is a main risk factor in fatty liver transplantation. Adenosine receptors (ARs) are emerging as therapeutic targets in liver diseases. By using cellular and in vivo systems of hepatic steatosis and IRI, here we evaluated the effects of pharmacological A2AR and A1R activation. The A2AR agonist CGS21680 protected the primary steatotic murine hepatocyte from IR damage and the activation of ASK1 and JNK. Such an effect was attributed to a phosphatidylinositol-3-kinase (PI3K)/Akt-dependent inhibition of ASK1. By contrast, the A1R agonist CCPA enhanced IR damage, intracellular steatosis and oxidative species (OS) production, thereby further increasing the lipid/OS-dependent ASK1-JNK stimulation. The CGS2680 and CCPA effects were nullified by a genetic ASK1 downregulation in steatotic hepatoma C1C7 cells. In steatotic mice livers, CGS21680 protected against hepatic IRI and ASK1/JNK activation whereas CCPA aggravated hepatic steatosis and IRI, and enhanced ASK1 and JNK stimulation. These results evidence a novel mechanism of CGS21680-mediated hepatoprotection, i.e., the PI3K/AKT-dependent inhibition of ASK1, and they show that CGS21680 and CCPA reduces and enhances the IRI of fatty liver, respectively, by preventing or increasing the activation of the cytotoxic ASK1/JNK axis. They also indicate the selective employment of A2AR agonists as an effective therapeutic strategy to prevent IRI in human fatty liver surgery.


Asunto(s)
Progresión de la Enfermedad , Hígado Graso/complicaciones , MAP Quinasa Quinasa Quinasa 5/metabolismo , Sustancias Protectoras/metabolismo , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Daño por Reperfusión/complicaciones , Agonistas del Receptor de Adenosina A1/farmacología , Agonistas del Receptor de Adenosina A2/farmacología , Animales , Muerte Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Silenciador del Gen , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lípidos/análisis , Masculino , Ratones Endogámicos BALB C , Oxidación-Reducción
20.
Sci Rep ; 11(1): 21604, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732784

RESUMEN

Oxidative stress-induced dopaminergic neuronal loss and apoptosis play a crucial role in the pathogenesis of Parkinson's disease (PD), and as a vital antioxidant protein, thioredoxin (Trx) exerts neuroprotection against PD. In this study, we investigated the effect of Schisanhenol (Sal), an active component from a traditional Chinese herb Schisandra rubriflora (Franch.), on MPP+-induced apoptosis and its association with thioredoxin-1 (Trx1) in SH-SY5Y cells. The protein levels of Trx1 and apoptosis-related proteins were detected by Western blot, the expression of Trx1 mRNA by real time qPCR, and apoptosis was detected by fluorescence microscopy and flow cytometry. Pretreatment with Sal (1 µM, 10 µM, and 50 µM) dose-dependently ameliorated MPP+-induced neuronal injury, confirmed by the improvement of the viability and morphological changes. Sal decreased the apoptosis rate of cells, suppressed the production of DNA ladder and sub-G1 peak, inhibited the Caspase-3 activity and the expression of apoptosis-related proteins. Sal enhanced the expression of Trx1 both in the protein and mRNA levels. However, the Trx1 inhibitor PX-12 suppressed the protective effects of Sal. In addition, Sal inhibited NF-κB translocation and activation. These results suggest that Sal has a protective effect against MPP+-induced apoptosis in SH-SY5Y cells via up-regulation of Trx1 expression and suppression of ASK1-P38-NF-κB pathway.


Asunto(s)
1-Metil-4-fenilpiridinio/efectos adversos , Ciclooctanos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MAP Quinasa Quinasa Quinasa 5/antagonistas & inhibidores , FN-kappa B/antagonistas & inhibidores , Neuroblastoma/patología , Compuestos Policíclicos/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Herbicidas/efectos adversos , Humanos , MAP Quinasa Quinasa Quinasa 5/genética , MAP Quinasa Quinasa Quinasa 5/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroprotección , Células Tumorales Cultivadas , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA