Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 637
Filtrar
1.
Mol Biol Rep ; 51(1): 720, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824268

RESUMEN

BACKGROUND: Tumor-associated macrophages (TAM) exert a significant influence on the progression and heterogeneity of various subtypes of breast cancer (BRCA). However, the roles of heterogeneous TAM within BRCA subtypes remain unclear. Therefore, this study sought to elucidate the role of TAM across the following three BRCA subtypes: triple-negative breast cancer, luminal, and HER2. MATERIALS AND METHODS: This investigation aimed to delineate the variations in marker genes, drug sensitivity, and cellular communication among TAM across the three BRCA subtypes. We identified specific ligand-receptor (L-R) pairs and downstream mechanisms regulated by VEGFA-VEGFR1, SPP1-CD44, and SPP1-ITGB1 L-R pairs. Experimental verification of these pairs was conducted by co-culturing macrophages with three subtypes of BRCA cells. RESULTS: Our findings reveal the heterogeneity of macrophages within the three BRCA subtypes, evidenced by variations in marker gene expression, composition, and functional characteristics. Notably, heterogeneous TAM were found to promote invasive migration and epithelial-mesenchymal transition (EMT) in MDA-MB-231, MCF-7, and SKBR3 cells, activating NF-κB pathway via P38 MAPK, TGF-ß1, and AKT, respectively, through distinct VEGFA-VEGFR1, SPP1-CD44, and SPP1-ITGB1 L-R pairs. Inhibition of these specific L-R pairs effectively reversed EMT, migration, and invasion of each cancer cells. Furthermore, we observed a correlation between ligand gene expression and TAM sensitivity to anticancer drugs, suggesting a potential strategy for optimizing personalized treatment guidance. CONCLUSION: Our study highlights the capacity of heterogeneous TAM to modulate biological functions via distinct pathways mediated by specific L-R pairs within diverse BRCA subtypes. This study might provide insights into precision immunotherapy of different subtypes of BRCA.


Asunto(s)
Neoplasias de la Mama , Transición Epitelial-Mesenquimal , Macrófagos Asociados a Tumores , Humanos , Femenino , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , Análisis de la Célula Individual/métodos , Células MCF-7 , Movimiento Celular/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Análisis de Secuencia de ARN/métodos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Transducción de Señal/genética , Microambiente Tumoral/genética
2.
AAPS PharmSciTech ; 25(5): 125, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834759

RESUMEN

DOX liposomes have better therapeutic effects and lower toxic side effects. The targeting ability of liposomes is one of the key factors affecting the therapeutic effect of DOX liposomes. This study developed two types of targeted liposomes. Sialic acid (SA)-modified liposomes were designed to target the highly expressed Siglec-1 receptor on tumor-associated macrophages surface. Phosphatidylserine (PS)-modified liposomes were designed to promote phagocytosis by monocyte-derived macrophages through PS apoptotic signaling. In order to assess and compare the therapeutic potential of different targeted pathways in the context of anti-tumor treatment, we compared four phosphatidylserine membrane materials (DOPS, DSPS, DPPS and DMPS) and found that liposomes prepared using DOPS as material could significantly improve the uptake ability of RAW264.7 cells for DOX liposomes. On this basis, normal DOX liposomes (CL-DOX) and SA-modified DOX liposomes (SAL-DOX), PS-modified DOX liposomes (PS-CL-DOX), SA and PS co-modified DOX liposomes (PS-SAL-DOX) were prepared. The anti-tumor cells function of each liposome on S180 and RAW264.7 in vitro was investigated, and it was found that SA on the surface of liposomes can increase the inhibitory effect. In vivo efficacy results exhibited that SAL-DOX and PS-CL-DOX were superior to other groups in terms of ability to inhibit tumor growth and tumor inhibition index, among which SAL-DOX had the best anti-tumor effect. Moreover, SAL-DOX group mice had high expression of IFN-γ as well as IL-12 factors, which could significantly inhibit mice tumor growth, improve the immune microenvironment of the tumor site, and have excellent targeted delivery potential.


Asunto(s)
Doxorrubicina , Liposomas , Ácido N-Acetilneuramínico , Fosfatidilserinas , Macrófagos Asociados a Tumores , Animales , Ratones , Ácido N-Acetilneuramínico/química , Células RAW 264.7 , Fosfatidilserinas/metabolismo , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Fagocitosis/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Apoptosis/efectos de los fármacos
3.
Oncoimmunology ; 13(1): 2364382, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846083

RESUMEN

Triple-negative breast cancer (TNBC) lacks the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). TNBC tumors are not sensitive to endocrine therapy, and standardized TNBC treatment regimens are lacking. TNBC is a more immunogenic subtype of breast cancer, making it more responsive to immunotherapy intervention. Tumor-associated macrophages (TAMs) constitute one of the most abundant immune cell populations in TNBC tumors and contribute to cancer metastasis. This study examines the role of the protein kinase HUNK in tumor immunity. Gene expression analysis using NanoString's nCounter PanCancer Immune Profiling panel identified that targeting HUNK is associated with changes in the IL-4/IL-4 R cytokine signaling pathway. Experimental analysis shows that HUNK kinase activity regulates IL-4 production in mammary tumor cells, and this regulation is dependent on STAT3. In addition, HUNK-dependent regulation of IL-4 secreted from tumor cells induces polarization of macrophages into an M2-like phenotype associated with TAMs. In return, IL-4 induces cancer metastasis and macrophages to produce epidermal growth factor. These findings delineate a paracrine signaling exchange between tumor cells and TAMs regulated by HUNK and dependent on IL-4/IL-4 R. This highlights the potential of HUNK as a target for reducing TNBC metastasis through modulation of the TAM population.


Asunto(s)
Interleucina-4 , Neoplasias de la Mama Triple Negativas , Macrófagos Asociados a Tumores , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/metabolismo , Humanos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Femenino , Animales , Ratones , Interleucina-4/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Línea Celular Tumoral , Transducción de Señal , Regulación Neoplásica de la Expresión Génica , Receptores de Interleucina-4/metabolismo , Receptores de Interleucina-4/genética
4.
Front Immunol ; 15: 1388176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840908

RESUMEN

The tumor microenvironment is closely linked to the initiation, promotion, and progression of solid tumors. Among its constitutions, immunologic cells emerge as critical players, facilitating immune evasion and tumor progression. Apart from their indirect impact on anti-tumor immunity, immunocytes directly influence neoplastic cells, either bolstering or impeding tumor advancement. However, current therapeutic modalities aimed at alleviating immunosuppression from regulatory cells on effector immune cell populations may not consistently yield satisfactory results in various solid tumors, such as breast carcinoma, colorectal cancer, etc. Therefore, this review outlines and summarizes the direct, dualistic effects of immunocytes such as T cells, innate lymphoid cells, B cells, eosinophils, and tumor-associated macrophages on tumor cells within the tumor microenvironment. The review also delves into the underlying mechanisms involved and presents the outcomes of clinical trials based on these direct effects, aiming to propose innovative and efficacious therapeutic strategies for addressing solid tumors.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/patología , Animales , Inmunidad Innata , Comunicación Celular/inmunología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Escape del Tumor , Inmunoterapia/métodos
5.
Cancer Res ; 84(11): 1834-1855, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38831751

RESUMEN

Cancer cells exhibit metabolic plasticity to meet oncogene-driven dependencies while coping with nutrient availability. A better understanding of how systemic metabolism impacts the accumulation of metabolites that reprogram the tumor microenvironment (TME) and drive cancer could facilitate development of precision nutrition approaches. Using the Hi-MYC prostate cancer mouse model, we demonstrated that an obesogenic high-fat diet (HFD) rich in saturated fats accelerates the development of c-MYC-driven invasive prostate cancer through metabolic rewiring. Although c-MYC modulated key metabolic pathways, interaction with an obesogenic HFD was necessary to induce glycolysis and lactate accumulation in tumors. These metabolic changes were associated with augmented infiltration of CD206+ and PD-L1+ tumor-associated macrophages (TAM) and FOXP3+ regulatory T cells, as well as with the activation of transcriptional programs linked to disease progression and therapy resistance. Lactate itself also stimulated neoangiogenesis and prostate cancer cell migration, which were significantly reduced following treatment with the lactate dehydrogenase inhibitor FX11. In patients with prostate cancer, high saturated fat intake and increased body mass index were associated with tumor glycolytic features that promote the infiltration of M2-like TAMs. Finally, upregulation of lactate dehydrogenase, indicative of a lactagenic phenotype, was associated with a shorter time to biochemical recurrence in independent clinical cohorts. This work identifies cooperation between genetic drivers and systemic metabolism to hijack the TME and promote prostate cancer progression through oncometabolite accumulation. This sets the stage for the assessment of lactate as a prognostic biomarker and supports strategies of dietary intervention and direct lactagenesis blockade in treating advanced prostate cancer. SIGNIFICANCE: Lactate accumulation driven by high-fat diet and MYC reprograms the tumor microenvironment and promotes prostate cancer progression, supporting the potential of lactate as a biomarker and therapeutic target in prostate cancer. See related commentary by Frigo, p. 1742.


Asunto(s)
Dieta Alta en Grasa , Ácido Láctico , Obesidad , Neoplasias de la Próstata , Proteínas Proto-Oncogénicas c-myc , Microambiente Tumoral , Masculino , Animales , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones , Humanos , Ácido Láctico/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Obesidad/metabolismo , Obesidad/patología , Línea Celular Tumoral , Ratones Endogámicos C57BL , Macrófagos Asociados a Tumores/metabolismo
6.
Front Immunol ; 15: 1361351, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846954

RESUMEN

Background: Gliomas constitute a category of malignant tumors originating from brain tissue, representing the majority of intracranial malignancies. Previous research has demonstrated the pivotal role of CLEC7A in the progression of various cancers, yet its specific implications within gliomas remain elusive. The primary objective of this study was to investigate the prognostic significance and immune therapeutic potential of CLEC7A in gliomas through the integration of bioinformatics and clinical pathological analyses. Methods: This investigation involved examining and validating the relationship between CLEC7A and glioma using samples from Hospital, along with data from TCGA, GEO, GTEx, and CGGA datasets. Subsequently, we explored its prognostic value, biological functions, expression location, and impact on immune cells within gliomas. Finally, we investigated its potential impact on the chemotaxis and polarization of macrophages. Results: The expression of CLEC7A is upregulated in gliomas, and its levels escalate with the malignancy of tumors, establishing it as an independent prognostic factor. Functional enrichment analysis revealed a significant correlation between CLEC7A and immune function. Subsequent examination of immune cell differential expression demonstrated a robust association between CLEC7A and M2 macrophages. This conclusion was further substantiated through single-cell analysis, immunofluorescence, and correlation studies. Finally, the knockout of CLEC7A in M2 macrophages resulted in a noteworthy reduction in macrophage chemotaxis and polarization factors. Conclusion: CLEC7A expression is intricately linked to the pathology and molecular characteristics of gliomas, establishing its role as an independent prognostic factor for gliomas and influencing macrophage function. It could be a promising target for immunotherapy in gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Lectinas Tipo C , Macrófagos , Microambiente Tumoral , Humanos , Glioma/inmunología , Glioma/genética , Glioma/patología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Pronóstico , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo
7.
Mol Cancer ; 23(1): 92, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715072

RESUMEN

Breast cancer, the most frequent female malignancy, is often curable when detected at an early stage. The treatment of metastatic breast cancer is more challenging and may be unresponsive to conventional therapy. Immunotherapy is crucial for treating metastatic breast cancer, but its resistance is a major limitation. The tumor microenvironment (TME) is vital in modulating the immunotherapy response. Various tumor microenvironmental components, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), are involved in TME modulation to cause immunotherapy resistance. This review highlights the role of stromal cells in modulating the breast tumor microenvironment, including the involvement of CAF-TAM interaction, alteration of tumor metabolism leading to immunotherapy failure, and other latest strategies, including high throughput genomic screening, single-cell and spatial omics techniques for identifying tumor immune genes regulating immunotherapy response. This review emphasizes the therapeutic approach to overcome breast cancer immune resistance through CAF reprogramming, modulation of TAM polarization, tumor metabolism, and genomic alterations.


Asunto(s)
Neoplasias de la Mama , Resistencia a Antineoplásicos , Inmunoterapia , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/terapia , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/genética , Femenino , Inmunoterapia/métodos , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/inmunología , Fibroblastos Asociados al Cáncer/patología , Animales , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/efectos de los fármacos
8.
Cancer Immunol Immunother ; 73(7): 128, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743074

RESUMEN

The majority of the immune cell population in the tumor microenvironment (TME) consists of tumor-associated macrophages (TAM), which are the main players in coordinating tumor-associated inflammation. TAM has a high plasticity and is divided into two main phenotypes, pro-inflammatory M1 type and anti-inflammatory M2 type, with tumor-suppressive and tumor-promoting functions, respectively. Considering the beneficial effects of M1 macrophages for anti-tumor and the high plasticity of macrophages, the conversion of M2 TAM to M1 TAM is feasible and positive for tumor treatment. This study sought to evaluate whether the glycopeptide derived from simulated digested Codonopsis pilosula extracts could regulate the polarization of M2-like TAM toward the M1 phenotype and the potential regulatory mechanisms. The results showed that after glycopeptide dCP1 treatment, the mRNA relative expression levels of some M2 phenotype marker genes in M2-like TAM in simulated TME were reduced, and the relative expression levels of M1 phenotype marker genes and inflammatory factor genes were increased. Analysis of RNA-Seq of M2-like TAM after glycopeptide dCP1 intervention showed that the gene sets such as glycolysis, which is associated with macrophage polarization in the M1 phenotype, were significantly up-regulated, whereas those of gene sets such as IL-6-JAK-STAT3 pathway, which is associated with polarization in the M2 phenotype, were significantly down-regulated. Moreover, PCA analysis and Pearson's correlation also indicated that M2-like TAM polarized toward the M1 phenotype at the transcriptional level after treatment with the glycopeptide dCP1. Lipid metabolomics was used to further explore the efficacy of the glycopeptide dCP1 in regulating the polarization of M2-like TAM to the M1 phenotype. It was found that the lipid metabolite profiles in dCP1-treated M2-like TAM showed M1 phenotype macrophage lipid metabolism profiles compared with blank M2-like TAM. Analysis of the key differential lipid metabolites revealed that the interconversion between phosphatidylcholine (PC) and diacylglycerol (DG) metabolites may be the central reaction of the glycopeptide dCP1 in regulating the conversion of M2-like TAM to the M1 phenotype. The above results suggest that the glycopeptide dCP1 has the efficacy to regulate the polarization of M2-like TAM to M1 phenotype in simulated TME.


Asunto(s)
Codonopsis , Fenotipo , Microambiente Tumoral , Macrófagos Asociados a Tumores , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/efectos de los fármacos , Animales , Ratones , Microambiente Tumoral/efectos de los fármacos , Humanos , Glicopéptidos/metabolismo , Glicopéptidos/farmacología , Activación de Macrófagos/efectos de los fármacos , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/inmunología
9.
J Cell Mol Med ; 28(10): e18395, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38774995

RESUMEN

Tumour-associated macrophages (TAMs), encompassing M1 and M2 subtypes, exert significant effects on osteosarcoma (OS) progression and immunosuppression. However, the impacts of TAM-derived biomarkers on the progression of OS remains limited. The GSE162454 profile was subjected to single-cell RNA (scRNA) sequencing analysis to identify crucial mediators between TAMs and OS cells. The clinical features, effects and mechanisms of these mediators on OS cells and tumour microenvironment were evaluated via biological function experiments and molecular biology experiments. Phosphodiesterase 4C (PDE4C) was identified as a pivotal mediator in the communication between M2 macrophages and OS cells. Elevated levels of PDE4C were detected in OS tissues, concomitant with M2 macrophage level, unfavourable prognosis and metastasis. The expression of PDE4C was observed to increase during the conversion process of THP-1 cells to M2 macrophages, which transferred the PDE4C mRNA to OS cells through exosome approach. PDE4C increased OS cell proliferation and mobility via upregulating the expression of collagens. Furthermore, a positive correlation was observed between elevated levels of PDE4C and increased TIDE score, decreased response rate following immune checkpoint therapy, reduced TMB and diminished PDL1 expression. Collectively, PDE4C derived from M2 macrophages has the potential to enhance the proliferation and mobility of OS cells by augmenting collagen expression. PDE4C may serve as a valuable biomarker for prognosticating patient outcomes and response rates following immunotherapy.


Asunto(s)
Neoplasias Óseas , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Inmunoterapia , Macrófagos , Osteosarcoma , Microambiente Tumoral , Osteosarcoma/patología , Osteosarcoma/inmunología , Osteosarcoma/genética , Osteosarcoma/metabolismo , Osteosarcoma/terapia , Humanos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Pronóstico , Inmunoterapia/métodos , Microambiente Tumoral/inmunología , Neoplasias Óseas/inmunología , Neoplasias Óseas/patología , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Línea Celular Tumoral , Proliferación Celular , Masculino , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Femenino , Metástasis de la Neoplasia , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Movimiento Celular
10.
Front Immunol ; 15: 1397005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779660

RESUMEN

As major components of the tumor microenvironment, both mesenchymal stem cells (MSCs) and macrophages can be remodelled and exhibit different phenotypes and functions during tumor initiation and progression. In recent years, increasing evidence has shown that tumor-associated macrophages (TAMs) play a crucial role in the growth, metastasis, and chemotherapy resistance of hematological malignancies, and are associated with poor prognosis. Consequently, TAMs have emerged as promising therapeutic targets. Notably, MSCs exert a profound influence on modulating immune cell functions such as macrophages and granulocytes, thereby playing a crucial role in shaping the immunosuppressive microenvironment surrounding tumors. However, in hematological malignancies, the cellular and molecular mechanisms underlying the interaction between MSCs and macrophages have not been clearly elucidated. In this review, we provide an overview of the role of TAMs in various common hematological malignancies, and discuss the latest advances in understanding the interaction between MSCs and macrophages in disease progression. Additionally, potential therapeutic approaches targeting this relationship are outlined.


Asunto(s)
Células Madre Mesenquimatosas , Microambiente Tumoral , Humanos , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Microambiente Tumoral/inmunología , Animales , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/patología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Comunicación Celular/inmunología
11.
Nat Commun ; 15(1): 4388, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782901

RESUMEN

Lung cancer is the second most frequently diagnosed cancer and the leading cause of cancer-related mortality worldwide. Tumour ecosystems feature diverse immune cell types. Myeloid cells, in particular, are prevalent and have a well-established role in promoting the disease. In our study, we profile approximately 900,000 cells from 25 treatment-naive patients with adenocarcinoma and squamous-cell carcinoma by single-cell and spatial transcriptomics. We note an inverse relationship between anti-inflammatory macrophages and NK cells/T cells, and with reduced NK cell cytotoxicity within the tumour. While we observe a similar cell type composition in both adenocarcinoma and squamous-cell carcinoma, we detect significant differences in the co-expression of various immune checkpoint inhibitors. Moreover, we reveal evidence of a transcriptional "reprogramming" of macrophages in tumours, shifting them towards cholesterol export and adopting a foetal-like transcriptional signature which promotes iron efflux. Our multi-omic resource offers a high-resolution molecular map of tumour-associated macrophages, enhancing our understanding of their role within the tumour microenvironment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Análisis de la Célula Individual , Transcriptoma , Microambiente Tumoral , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Análisis de la Célula Individual/métodos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Regulación Neoplásica de la Expresión Génica , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/inmunología , Perfilación de la Expresión Génica/métodos , Macrófagos/metabolismo , Macrófagos/inmunología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo
12.
BMC Med Genomics ; 17(1): 145, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802881

RESUMEN

BACKGROUND: Emerging investigations have increasingly highlighted the critical role of tumor-associated macrophages (TAMs) and M2 macrophages in cancer development, progression, and metastasis, marking them as potential targets in various cancer types. The main objective of this research is to discover new biomarkers associated with TAM-M2 macrophages in colorectal cancer (CRC) and to dissect the molecular heterogeneity of CRC by combining single-cell RNA sequencing and bulk RNA-seq data. METHODS: By utilizing weighted gene co-expression network analysis (WGCNA), we acquired TAM-M2-associated genes by intersecting TAM marker genes obtained from scRNA-seq data with module genes of M2 macrophages derived from bulk RNA-seq data. We employed least absolute shrinkage and selection operator (LASSO) Cox analysis to select predictive biomarkers from these TAM-M2-related genes. Quantitative polymerase chain reaction (qPCR) was employed to validate the mRNA expression levels of the genes identified in the screening. This led to the development of the TAM-M2-related signature (TAMM2RS). We also conducted functional and immune landscape analyses of different risk groups. RESULTS: The combination of scRNA-seq and bulk RNA-seq analyses yielded 377 TAM-M2-related genes. DAPK1, NAGK, and TRAF1 emerged as key prognostic genes in CRC, which were identified through LASSO Cox analysis. Utilizing these genes, we constructed and validated the TAMM2RS, demonstrating its effectiveness in predicting survival in CRC patients. CONCLUSION: Our research offers a thorough investigation into the molecular mechanisms associated with TAM-M2 macrophages in CRC and unveils potential therapeutic targets, offering new insights for treatment strategies in colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Macrófagos Asociados a Tumores , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Biomarcadores de Tumor/genética , Análisis de la Célula Individual , Masculino , Femenino , Regulación Neoplásica de la Expresión Génica , Pronóstico , Persona de Mediana Edad , Macrófagos/metabolismo , Perfilación de la Expresión Génica
13.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791110

RESUMEN

Vascular co-option is a consequence of the direct interaction between perivascular cells, known as pericytes (PCs), and glioblastoma multiforme (GBM) cells (GBMcs). This process is essential for inducing changes in the pericytes' anti-tumoral and immunoreactive phenotypes. Starting from the initial stages of carcinogenesis in GBM, PCs conditioned by GBMcs undergo proliferation, acquire a pro-tumoral and immunosuppressive phenotype by expressing and secreting immunosuppressive molecules, and significantly hinder the activation of T cells, thereby facilitating tumor growth. Inhibiting the pericyte (PC) conditioning mechanisms in the GBM tumor microenvironment (TME) results in immunological activation and tumor disappearance. This underscores the pivotal role of PCs as a key cell in the TME, responsible for tumor-induced immunosuppression and enabling GBM cells to evade the immune system. Other cells within the TME, such as tumor-associated macrophages (TAMs) and microglia, have also been identified as contributors to this immunomodulation. In this paper, we will review the role of these three cell types in the immunosuppressive properties of the TME. Our conclusion is that the cellular heterogeneity of immunocompetent cells within the TME may lead to the misinterpretation of cellular lineage identification due to different reactive stages and the identification of PCs as TAMs. Consequently, novel therapies could be developed to disrupt GBM-PC interactions and/or PC conditioning through vascular co-option, thereby exposing GBMcs to the immune system.


Asunto(s)
Neoplasias Encefálicas , Pericitos , Microambiente Tumoral , Pericitos/inmunología , Pericitos/patología , Pericitos/metabolismo , Humanos , Microambiente Tumoral/inmunología , Animales , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Glioma/inmunología , Glioma/patología , Glioma/metabolismo , Glioblastoma/inmunología , Glioblastoma/patología , Glioblastoma/metabolismo , Progresión de la Enfermedad , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología
14.
Int J Mol Sci ; 25(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38791312

RESUMEN

Glioblastomas (GBM) are the most common primary malignant brain tumors, comprising 2% of all cancers in adults. Their location and cellular and molecular heterogeneity, along with their highly infiltrative nature, make their treatment challenging. Recently, our research group reported promising results from a prospective phase II clinical trial involving allogeneic vaccination with dendritic cells (DCs). To date, six out of the thirty-seven reported cases remain alive without tumor recurrence. In this study, we focused on the characterization of infiltrating immune cells observed at the time of surgical resection. An analytical model employing a neural network-based predictive algorithm was used to ascertain the potential prognostic implications of immunological variables on patients' overall survival. Counterintuitively, immune phenotyping of tumor-associated macrophages (TAMs) has revealed the extracellular marker PD-L1 to be a positive predictor of overall survival. In contrast, the elevated expression of CD86 within this cellular subset emerged as a negative prognostic indicator. Fundamentally, the neural network algorithm outlined here allows a prediction of the responsiveness of patients undergoing dendritic cell vaccination in terms of overall survival based on clinical parameters and the profile of infiltrated TAMs observed at the time of tumor excision.


Asunto(s)
Neoplasias Encefálicas , Células Dendríticas , Glioblastoma , Inmunoterapia , Humanos , Células Dendríticas/inmunología , Glioblastoma/terapia , Glioblastoma/inmunología , Glioblastoma/mortalidad , Glioblastoma/patología , Inmunoterapia/métodos , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Masculino , Femenino , Persona de Mediana Edad , Antígeno B7-H1/metabolismo , Pronóstico , Adulto , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Anciano , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo
15.
J Immunother Cancer ; 12(5)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782541

RESUMEN

BACKGROUND: Accumulating evidence demonstrates that an increased tumor-associated macrophage abundance is often associated with poor prognosis in colorectal cancer (CRC). The mechanism underlying the effect of tumor-derived exosomes on M2 macrophage polarization remains elusive. RESULTS: The novel circular RNA circPOLQ exhibited significantly higher expression in CRC tissues than in paired normal tissues. Higher circPOLQ expression was associated with poorer prognosis in patients with CRC. In vitro and in vivo experiments showed that tumor-derived exosomal circPOLQ did not directly regulate CRC cell development but promoted CRC metastatic nodule formation by enhancing M2 macrophage polarization. circPOLQ activated the interleukin-10/signal transducer and activator of transcription 3 axis by targeting miR-379-3 p to promote M2 macrophage polarization. CONCLUSION: circPOLQ can enter macrophages via CRC cell-derived exosomes and promote CRC metastatic nodule formation by enhancing M2 macrophage polarization. These findings reveal a tumor-derived exosome-mediated tumor-macrophage interaction potentially affecting CRC metastatic nodule formation.


Asunto(s)
Neoplasias Colorrectales , Exosomas , Interleucina-10 , Macrófagos , ARN Circular , Factor de Transcripción STAT3 , Animales , Femenino , Humanos , Masculino , Ratones , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Exosomas/metabolismo , Interleucina-10/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Macrófagos Asociados a Tumores/metabolismo
16.
Pharmacol Res ; 204: 107198, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692466

RESUMEN

In-depth studies of the tumor microenvironment (TME) have helped to elucidate its cancer-promoting mechanisms and inherent characteristics. Cellular senescence, which acts as a response to injury and can the release of senescence-associated secretory phenotypes (SASPs). These SASPs release various cytokines, chemokines, and growth factors, remodeling the TME. This continual development of a senescent environment could be associated with chronic inflammation and immunosuppressive TME. Additionally, SASPs could influence the phenotype and function of macrophages, leading to the recruitment of tumor-associated macrophages (TAMs). This contributes to tumor proliferation and metastasis in the senescent microenvironment, working in tandem with immune regulation, angiogenesis, and therapeutic resistance. This comprehensive review covers the evolving nature of the senescent microenvironment, macrophages, and TAMs in tumor development. We also explored the links between chronic inflammation, immunosuppressive TME, cellular senescence, and macrophages. Moreover, we compiled various tumor-specific treatment strategies centered on cellular senescence and the current challenges in cellular senescence research. This study aimed to clarify the mechanism of macrophages and the senescent microenvironment in tumor progression and advance the development of targeted tumor therapies.


Asunto(s)
Senescencia Celular , Macrófagos , Neoplasias , Microambiente Tumoral , Macrófagos Asociados a Tumores , Humanos , Microambiente Tumoral/inmunología , Animales , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Macrófagos/inmunología , Senescencia Celular/inmunología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/efectos de los fármacos , Fenotipo Secretor Asociado a la Senescencia
17.
Cancer Immunol Immunother ; 73(6): 115, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693304

RESUMEN

In the malignant progression of tumors, there is deposition and cross-linking of collagen, as well as an increase in hyaluronic acid content, which can lead to an increase in extracellular matrix stiffness. Recent research evidence have shown that the extracellular matrix plays an important role in angiogenesis, cell proliferation, migration, immunosuppression, apoptosis, metabolism, and resistance to chemotherapeutic by the alterations toward both secretion and degradation. The clinical importance of tumor-associated macrophage is increasingly recognized, and macrophage polarization plays a central role in a series of tumor immune processes through internal signal cascade, thus regulating tumor progression. Immunotherapy has gradually become a reliable potential treatment strategy for conventional chemotherapy resistance and advanced cancer patients, but the presence of immune exclusion has become a major obstacle to treatment effectiveness, and the reasons for their resistance to these approaches remain uncertain. Currently, there is a lack of exact mechanism on the regulation of extracellular matrix stiffness and tumor-associated macrophage polarization on immune exclusion. An in-depth understanding of the relationship between extracellular matrix stiffness, tumor-associated macrophage polarization, and immune exclusion will help reveal new therapeutic targets and guide the development of clinical treatment methods for advanced cancer patients. This review summarized the different pathways and potential molecular mechanisms of extracellular matrix stiffness and tumor-associated macrophage polarization involved in immune exclusion and provided available strategies to address immune exclusion.


Asunto(s)
Matriz Extracelular , Neoplasias , Macrófagos Asociados a Tumores , Humanos , Matriz Extracelular/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/terapia , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Animales , Microambiente Tumoral/inmunología , Inmunoterapia/métodos , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo
18.
Breast Cancer Res ; 26(1): 75, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720366

RESUMEN

BACKGROUND: Tumor-associated macrophages (TAMs) are a prominent immune subpopulation in the tumor microenvironment that could potentially serve as therapeutic targets for breast cancer. Thus, it is important to characterize this cell population across different tumor subtypes including patterns of association with demographic and prognostic factors, and breast cancer outcomes. METHODS: We investigated CD163+ macrophages in relation to clinicopathologic variables and breast cancer outcomes in the Women's Circle of Health Study and Women's Circle of Health Follow-up Study populations of predominantly Black women with breast cancer. We evaluated 611 invasive breast tumor samples (507 from Black women, 104 from White women) with immunohistochemical staining of tissue microarray slides followed by digital image analysis. Multivariable Cox proportional hazards models were used to estimate hazard ratios for overall survival (OS) and breast cancer-specific survival (BCSS) for 546 cases with available survival data (median follow-up time 9.68 years (IQR: 7.43-12.33). RESULTS: Women with triple-negative breast cancer showed significantly improved OS in relation to increased levels of tumor-infiltrating CD163+ macrophages in age-adjusted (Q3 vs. Q1: HR = 0.36; 95% CI 0.16-0.83) and fully adjusted models (Q3 vs. Q1: HR = 0.30; 95% CI 0.12-0.73). A similar, but non-statistically significant, association was observed for BCSS. Macrophage infiltration in luminal and HER2+ tumors was not associated with OS or BCSS. In a multivariate regression model that adjusted for age, subtype, grade, and tumor size, there was no significant difference in CD163+ macrophage density between Black and White women (RR = 0.88; 95% CI 0.71-1.10). CONCLUSIONS: In contrast to previous studies, we observed that higher densities of CD163+ macrophages are independently associated with improved OS and BCSS in women with invasive triple-negative breast cancer. Trial registration Not applicable.


Asunto(s)
Antígenos CD , Antígenos de Diferenciación Mielomonocítica , Receptores de Superficie Celular , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Humanos , Femenino , Microambiente Tumoral/inmunología , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Persona de Mediana Edad , Receptores de Superficie Celular/metabolismo , Neoplasias de la Mama Triple Negativas/mortalidad , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/metabolismo , Estudios de Seguimiento , Pronóstico , Adulto , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/patología , Anciano , Biomarcadores de Tumor/metabolismo , Modelos de Riesgos Proporcionales
19.
J Transl Med ; 22(1): 442, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730286

RESUMEN

INTRODUCTION: Lung cancer is a prevalent malignancy globally, and immunotherapy has revolutionized its treatment. However, resistance to immunotherapy remains a challenge. Abnormal cholinesterase (ChE) activity and choline metabolism are associated with tumor oncogenesis, progression, and poor prognosis in multiple cancers. Yet, the precise mechanism underlying the relationship between ChE, choline metabolism and tumor immune microenvironment in lung cancer, and the response and resistance of immunotherapy still unclear. METHODS: Firstly, 277 advanced non-small cell lung cancer (NSCLC) patients receiving first-line immunotherapy in Sun Yat-sen University Cancer Center were enrolled in the study. Pretreatment and the alteration of ChE after 2 courses of immunotherapy and survival outcomes were collected. Kaplan-Meier survival and cox regression analysis were performed, and nomogram was conducted to identify the prognostic and predicted values. Secondly, choline metabolism-related genes were screened using Cox regression, and a prognostic model was constructed. Functional enrichment analysis and immune microenvironment analysis were also conducted. Lastly, to gain further insights into potential mechanisms, single-cell analysis was performed. RESULTS: Firstly, baseline high level ChE and the elevation of ChE after immunotherapy were significantly associated with better survival outcomes for advanced NSCLC. Constructed nomogram based on the significant variables from the multivariate Cox analysis performed well in discrimination and calibration. Secondly, 4 choline metabolism-related genes (MTHFD1, PDGFB, PIK3R3, CHKB) were screened and developed a risk signature that was found to be related to a poorer prognosis. Further analysis revealed that the choline metabolism-related genes signature was associated with immunosuppressive tumor microenvironment, immune escape and metabolic reprogramming. scRNA-seq showed that MTHFD1 was specifically distributed in tumor-associated macrophages (TAMs), mediating the differentiation and immunosuppressive functions of macrophages, which may potentially impact endothelial cell proliferation and tumor angiogenesis. CONCLUSION: Our study highlights the discovery of ChE as a prognostic marker in advanced NSCLC, suggesting its potential for identifying patients who may benefit from immunotherapy. Additionally, we developed a prognostic signature based on choline metabolism-related genes, revealing the correlation with the immunosuppressive microenvironment and uncovering the role of MTHFD1 in macrophage differentiation and endothelial cell proliferation, providing insights into the intricate workings of choline metabolism in NSCLC pathogenesis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Colina , Células Endoteliales , Neoplasias Pulmonares , Microambiente Tumoral , Macrófagos Asociados a Tumores , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Colina/metabolismo , Masculino , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología , Persona de Mediana Edad , Pronóstico , Inmunoterapia , Terapia de Inmunosupresión , Estimación de Kaplan-Meier , Nomogramas , Reprogramación Metabólica
20.
Anticancer Res ; 44(6): 2437-2444, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821624

RESUMEN

BACKGROUND/AIM: Non-invasive physical plasma (NIPP) has shown promise in the treatment of cancer. However, conflicting results have been reported regarding the effect of NIPP on macrophage polarization. As tumor-associated macrophages (TAMs) are essential in the regulation of cancer development, this study aimed to determine the role of NIPP treatment in macrophage polarization and tumor-microenvironment (TME) remodeling. MATERIALS AND METHODS: A portable NIPP device, Plasma Care (Terraplasma Medical, Garching, Germany), was employed as the source of NIPP. The human monocytic cell line THP-1 was adopted as the cell model for macrophage differentiation and polarization. The effects of NIPP treatment on temperature, pH value, and oxidative stress induction of the culture medium were examined to validate the feasibility of applying the NIPP device in subsequent cell treatment. The changes in morphology, viability, and proliferation of THP-1 cells after NIPP treatment were determined. The expression of M1/M2 macrophage markers was examined by real-time quantitative polymerase chain reaction. RESULTS: No significant changes were observed in temperature and pH value after NIPP treatment, while the formation of hydrogen peroxide was promoted in a time-dependent manner. Cell morphology, viability, and proliferation were not affected by up to 6 minutes of NIPP treatment. In monocytes, 6 minutes of NIPP treatment significantly increased the expression of M1 markers (TNF-α and IL-6) and suppressed the M2 marker (CD206), findings which were consistent in the monocyte-derived macrophages. Furthermore, NIPP treatment also significantly promoted M1 polarization in the monocyte-derived macrophages induced by phorbol 12-myristate 13-acetate. CONCLUSION: NIPP is a safe and robust oxidative stress inducer and showed potential in TAM regulation by promoting M1 macrophage polarization.


Asunto(s)
Macrófagos , Gases em Plasma , Microambiente Tumoral , Humanos , Gases em Plasma/farmacología , Macrófagos/metabolismo , Macrófagos/inmunología , Células THP-1 , Estrés Oxidativo , Diferenciación Celular , Proliferación Celular , Activación de Macrófagos , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA