Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.899
Filtrar
1.
Stem Cell Res Ther ; 15(1): 127, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693589

RESUMEN

BACKGROUND: Endometria are one of the important components of the uterus, which is located in the peritoneal cavity. Endometrial injury usually leads to intrauterine adhesions (IUA), accompanied by inflammation and cell death. We previously reported that both the endometrial ferroptosis was increased and monocytes/macrophages were involved in endometrial injury of IUA. Large peritoneal macrophages (LPMs) are recently reported to migrate into the injured tissues and phagocytose dead cells to repair the tissues. We previously demonstrated that mesenchymal stromal cells (MSCs) had made excellent progress in the repair of endometrial injury. However, it is unclear whether MSCs regulate the LPM efferocytosis against ferroptotic monocytes/macrophages in the injured endometria. METHODS: Here, endometrial injury in IUA mouse model was conducted by uterine curettage and LPS injection surgery and the samples were collected at different times to detect the changes of LPMs and ferroptotic monocytes/macrophages. We conducted LPMs depletion assay in vivo and LPMs and Erastin-induced ferroptotic THP-1 cells coculture systems in vitro to detect the LPM efferocytosis against ferroptotic monocytes/macrophages. The IUA model was treated with MSCs, and their effects on LPMs and endometrial repair were analyzed. Flow cytometry, western blotting, quantitative real-time PCR, immunohistochemical analysis, ELISA, and RNA-sequencing were performed. RESULTS: We found that LPMs migrated to the injured uteri in response to the damage in early phase (3 h), and sustained to a later stage (7 days). Astonishingly, we found that ferroptotic monocytes/macrophages were significantly increased in the injured uteri since 12 h after injury. Moreover, LPMs cocultured with Erastin-induced ferroptotic THP-1 cells in vitro, efferocytosis of LPMs against ferroptotic monocytes/macrophages was emerged. The mRNA expression profiles revealed that LPM efferocytosis against ferroptotic monocytes/macrophages was an induction of glycolysis program and depended on the PPARγ-HK2 pathway. Importantly, we validated that MSCs promoted the efferocytic capability and migration of LPMs to the injured uteri via secreting stanniocalcin-1 (STC-1). CONCLUSION: The data collectively demonstrated first the roles of LPMs via removal of ferroptotic monocytes/macrophages and provided a novel mechanism of MSCs in repairing the endometrial injury.


Asunto(s)
Macrófagos Peritoneales , Células Madre Mesenquimatosas , Monocitos , Femenino , Animales , Ratones , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Monocitos/metabolismo , Monocitos/citología , Humanos , Macrófagos Peritoneales/metabolismo , Endometrio/lesiones , Endometrio/metabolismo , Endometrio/citología , Endometrio/patología , Fagocitosis , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Eferocitosis
2.
Sci Rep ; 14(1): 11079, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745047

RESUMEN

N-acetyl glucosamine (NAG) is a natural amino sugar found in various human tissues with previously described anti-inflammatory effects. Various chemical modifications of NAG have been made to promote its biomedical applications. In this study, we synthesized two bi-deoxygenated NAG, BNAG1 and BNAG2 and investigated their anti-inflammatory properties, using an in vivo and in vitro inflammation mouse model induced by lipopolysaccharide (LPS). Among the parent molecule NAG, BNAG1 and BNAG2, BNAG1 showed the highest inhibition against serum levels of IL-6 and TNF α and the leukocyte migration to lungs and peritoneal cavity in LPS challenged mice, as well as IL-6 and TNF α production in LPS-stimulated primary peritoneal macrophages. BNAG2 displayed an anti-inflammatory effect which was comparable to NAG. These findings implied potential application of these novel NAG derivatives, especially BNAG1, in treatment of certain inflammation-related diseases.


Asunto(s)
Acetilglucosamina , Antiinflamatorios , Lipopolisacáridos , Macrófagos Peritoneales , Factor de Necrosis Tumoral alfa , Animales , Acetilglucosamina/farmacología , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/síntesis química , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-6/sangre , Inflamación/tratamiento farmacológico , Masculino , Modelos Animales de Enfermedad
3.
Cell Rep ; 43(4): 114096, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607919

RESUMEN

Receptors controlling the cross-presentation of tumor antigens by macrophage subsets in cancer tissues are poorly explored. Here, we show that TIM4+ large peritoneal macrophages efficiently capture and cross-present tumor-associated antigens at early stages of peritoneal infiltration by ovarian cancer cells. The phosphatidylserine (PS) receptor TIM4 promotes maximal uptake of dead cells or PS-coated artificial targets and triggers inflammatory and metabolic gene programs in combination with cytoskeletal remodeling and upregulation of transcriptional signatures related to antigen processing. At the cellular level, TIM4-mediated engulfment induces nucleation of F-actin around nascent phagosomes, delaying the recruitment of vacuolar ATPase, acidification, and cargo degradation. In vivo, TIM4 deletion blunts induction of early anti-tumoral effector CD8 T cells and accelerates the progression of ovarian tumors. We conclude that TIM4-mediated uptake drives the formation of specialized phagosomes that prolong the integrity of ingested antigens and facilitate cross-presentation, contributing to immune surveillance of the peritoneum.


Asunto(s)
Antígenos de Neoplasias , Carcinogénesis , Macrófagos Peritoneales , Animales , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/inmunología , Femenino , Ratones , Carcinogénesis/patología , Carcinogénesis/inmunología , Carcinogénesis/metabolismo , Humanos , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/inmunología , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Reactividad Cruzada/inmunología , Línea Celular Tumoral , Fagosomas/metabolismo , Presentación de Antígeno/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Actinas/metabolismo
4.
Mol Immunol ; 170: 110-118, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653076

RESUMEN

Sepsis is a systemic inflammatory response syndrome caused by trauma or infection, which can lead to multiple organ dysfunction. In severe cases, sepsis can also progress to septic shock and even death. Effective treatments for sepsis are still under development. This study aimed to determine if targeting the PI3K/Akt signaling with CAL-101, a PI3K p110δ inhibitor, could alleviate lipopolysaccharide (LPS)-induced sepsis and contribute to immune tolerance. Our findings indicated that CAL-101 treatment improved survival rates and alleviated the progression of LPS-induced sepsis. Compared to antibiotics, CAL-101 not only restored the Th17/regulatory T cells (Treg) balance but also enhanced Treg cell function. Additionally, CAL-101 promoted type 2 macrophage (M2) polarization, inhibited TNF-α secretion, and increased IL-10 secretion. Moreover, CAL-101 treatment reduced pyroptosis in peritoneal macrophages by inhibiting caspase-1/gasdermin D (GSDMD) activation. This study provides a mechanistic basis for future clinical exploration of targeted therapeutics and immunomodulatory strategies in the treatment of sepsis.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I , Lipopolisacáridos , Ratones Endogámicos C57BL , Piroptosis , Sepsis , Linfocitos T Reguladores , Células Th17 , Animales , Piroptosis/efectos de los fármacos , Sepsis/inmunología , Sepsis/tratamiento farmacológico , Lipopolisacáridos/farmacología , Ratones , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Células Th17/inmunología , Células Th17/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Transducción de Señal/efectos de los fármacos
5.
Int Immunopharmacol ; 133: 112153, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38678669

RESUMEN

LPS induced sepsis is a complex process involving various immune cells and signaling molecules. Dysregulation of macrophage polarization and ROS production contributed to the pathogenesis of sepsis. PGP is a transmembrane transporter responsible for the efflux of a number of drugs and also expressed in murine macrophages. Natural products have been shown to decrease inflammation and expression of efflux transporters. However, no treatment is currently available to treat LPS induced sepsis. Verapamil and Tangeretin also reported to attenuate lipopolysaccharide-induced inflammation. However, the effects of verapamil or tangeretin on lipopolysaccharide (LPS)-induced sepsis and its detailed anti-inflammatory mechanism have not been reported. Here, we have determined that verapamil and tangeretin protects against LPS-induced sepsis by suppressing M1 macrophages populations and also through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression in macrophages. An hour before LPS (10 mg/kg) was administered; mice were given intraperitoneal injections of either verapamil (5 mg/kg) or tangeretin (5 mg/kg). The peritoneal macrophages from different experimental groups of mice were isolated. Hepatic, pulmonary and splenic morphometric analyses revealed that verapamil and tangeretin decreased the infiltration of neutrophils into the tissues. Verapamil and tangeritin also enhanced the activity of SOD, CAT, GRX and GSH level in all the tissues tested. verapamil or tangeretin pre-treated mice shifted M1 macrophages to M2 type possibly through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression. Hence, both these drugs have shown protective effects in sepsis via suppressing iNOS, COX-2, oxidative stress and NF-κB signaling in macrophages. Therefore, in our study we can summarize that mice were treated with either Vera or Tan before LPS administration cause an elevated IL-10 by the macrophages which enhances the SOCS3 expression, and thereby able to limits STAT1/STAT3 inter-conversion in the macrophages. As a result, NF-κB activity is also getting down regulated and ultimately mitigating the adverse effect of inflammation caused by LPS in resident macrophages. Whether verapamil or tangeretin offers such protection possibly through the inhibition of P-glycoprotein expression in macrophages needs clarification with the bio availability of these drugs under PGP inhibited conditions is a limitation of this study.


Asunto(s)
Flavonas , Lipopolisacáridos , Factor de Transcripción STAT1 , Factor de Transcripción STAT3 , Proteína 3 Supresora de la Señalización de Citocinas , Verapamilo , Animales , Verapamilo/farmacología , Factor de Transcripción STAT1/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Flavonas/farmacología , Flavonas/uso terapéutico , Ratones , Factor de Transcripción STAT3/metabolismo , Masculino , Sepsis/tratamiento farmacológico , Sepsis/inmunología , Sepsis/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Regulación hacia Abajo/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/inmunología , Células Cultivadas , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
6.
J Ethnopharmacol ; 331: 118210, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38641074

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Long-term chronic inflammation often leads to chronic diseases. Although Sophora flavescens has been shown to have anti-inflammatory properties, its detailed molecular mechanism is still unknown. AIM OF STUDY: This study investigated the effect of Radix Sophorae Flavescentis on the LPS-induced inflammatory response in macrophages. MATERIALS AND METHODS: LPS was used to induce the peritoneal macrophages to simulate the inflammatory environment in vitro. Different concentrations of Radix Sophorae Flavescentis-containing (medicated) serum were used for intervention. The peritoneal macrophages were identified by using hematoxylin-eosin and immunofluorescence staining. ELISA was used to measure the TNF-α and IL-6 expression to determine the concentration of LPS. ELISA and Western blot (WB) were used to detect the PGE2 and CFHR2 expression in each group, respectively. The lentiviral vector for interference and overexpression of the CFHR2 gene was constructed, packaged, and transfected into LPS-induced macrophages. The transfection efficiency was verified by WB. Then, ELISA was used to detect the TNF-α, PGE2, and IL-6 expression. WB was used to detect the CFHR2, iNOS, COX-2, TLR2, TLR4, IFN-γ, STAT1, and p-STAT1 expression. RESULTS: The primary isolated cells were identified as macrophages. The LPS-treated macrophages exhibited significantly higher expression of PGE2 and CFHR2, and the inflammatory factors TNF-α and IL-6, as well as iNOS, COX-2, TLR2, TLR4, IFN-γ, STAT1, and p-STAT1 expression compared with the control group (P < 0.05). The TNF-α, PGE2, and IL-6 levels, as well as CFHR2, iNOS, COX-2, TLR2, TLR4, IFN-γ, STAT1, and p-STAT1 expression were considerably lower in the LPS-induced+10% medicated-serum group, LPS-induced+20% medicated-serum group, and shCFHR interference group compared with the LPS group (P < 0.05). CONCLUSION: Radix Sophorae Flavescentis might mediate CFHR2 expression and play an important role in inhibiting the LPS-induced pro-inflammatory response of macrophages. Radix Sophorae Flavescentis could be a potential treatment for LPS-induced related inflammatory diseases.


Asunto(s)
Antiinflamatorios , Lipopolisacáridos , Sophora , Animales , Sophora/química , Antiinflamatorios/farmacología , Ratones , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Factor de Necrosis Tumoral alfa/metabolismo , Dinoprostona/metabolismo , Extractos Vegetales/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/inducido químicamente , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética , Masculino , Factor de Transcripción STAT1/metabolismo , Raíces de Plantas , Células Cultivadas , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Sophora flavescens
7.
Theranostics ; 14(6): 2526-2543, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646640

RESUMEN

Rationale: A mature tissue resident macrophage (TRM) population residing in the peritoneal cavity has been known for its unique ability to migrate to peritoneally located injured tissues and impart wound healing properties. Here, we sought to expand on this unique ability of large peritoneal macrophages (LPMs) by investigating whether these GATA6+ LPMs could also intravasate into systemic circulation and migrate to extra-peritoneally located lungs upon ablating lung-resident alveolar macrophages (AMs) by intranasally administered clodronate liposomes in mice. Methods: C12-200 cationic lipidoid-based nanoparticles were employed to selectively deliver a small interfering RNA (siRNA)-targeting CD-45 labeled with a cyanine 5.5 (Cy5.5) dye to LPMs in vivo via intraperitoneal injection. We utilized a non-invasive optical technique called Diffuse In Vivo Flow Cytometry (DiFC) to then systemically track these LPMs in real time and paired it with more conventional techniques like flow cytometry and immunocytochemistry to initially confirm uptake of C12-200 encapsulated siRNA-Cy5.5 (siRNA-Cy5.5 (C12-200)) into LPMs, and further track them from the peritoneal cavity to the lungs in a mouse model of AM depletion incited by intranasally administered clodronate liposomes. Also, we stained for LPM-specific marker zinc-finger transcription factor GATA6 in harvested cells from biofluids like broncho-alveolar lavage as well as whole blood to probe for Cy5.5-labeled LPMs in the lungs as well as in systemic circulation. Results: siRNA-Cy5.5 (C12-200) was robustly taken up by LPMs. Upon depletion of lung-resident AMs, these siRNA-Cy5.5 (C12-200) labeled LPMs rapidly migrated to the lungs via systemic circulation within 12-24 h. DiFC results showed that these LPMs intravasated from the peritoneal cavity and utilized a systemic route of migration. Moreover, immunocytochemical staining of zinc-finger transcription factor GATA6 further confirmed results from DiFC and flow cytometry, confirming the presence of siRNA-Cy5.5 (C12-200)-labeled LPMs in the peritoneum, whole blood and BALF only upon clodronate-administration. Conclusion: Our results indicate for the very first time that selective tropism, migration, and infiltration of LPMs into extra-peritoneally located lungs was dependent on clodronate-mediated AM depletion. These results further open the possibility of therapeutically utilizing LPMs as delivery vehicles to carry nanoparticle-encapsulated oligonucleotide modalities to potentially address inflammatory diseases, infectious diseases and even cancer.


Asunto(s)
Ácido Clodrónico , Pulmón , Macrófagos Peritoneales , Nanopartículas , Animales , Ácido Clodrónico/farmacología , Ácido Clodrónico/administración & dosificación , Nanopartículas/química , Nanopartículas/administración & dosificación , Ratones , Pulmón/metabolismo , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Alveolares/metabolismo , ARN Interferente Pequeño/administración & dosificación , Factor de Transcripción GATA6/metabolismo , Liposomas , Ratones Endogámicos C57BL , Carbocianinas/química , Movimiento Celular/efectos de los fármacos , Citometría de Flujo
8.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612926

RESUMEN

A spectrum of immune states resulting from tumor resident macrophages and T-lymphocytes in the solid tumor microenvironment correlates with patient outcomes. We hypothesized that in gastric cancer (GC), macrophages in a polarized immunosuppressive transcriptional state would be prognostic of poor survival. We derived transcriptomic signatures for M2 (M2TS, MRC1; MS4A4A; CD36; CCL13; CCL18; CCL23; SLC38A6; FGL2; FN1; MAF) and M1 (M1TS, CCR7; IL2RA; CXCL11; CCL19; CXCL10; PLA1A; PTX3) macrophages, and cytolytic T-lymphocytes (CTLTS, GZMA; GZMB; GZMH; GZMM; PRF1). Primary GC in a TCGA stomach cancer dataset was evaluated for signature expressions, and a log-rank test determined overall survival (OS) and the disease-free interval (DFI). In 341 TCGA GC entries, high M2TS expression was associated with histological types and later stages. Low M2TS expression was associated with significantly better 5-year OS and DFI. We validated M2TS in prospectively collected peritoneal fluid of a GC patient cohort (n = 28). Single-cell RNA sequencing was used for signature expression in CD68+CD163+ cells and the log-rank test compared OS. GC patients with high M2TS in CD68+CD163+ cells in their peritoneal fluid had significantly worse OS than those with low expression. Multivariate analyses confirmed M2TS was significantly and independently associated with survival. As an independent predictor of poor survival, M2TS may be prognostic in primary tumors and peritoneal fluid of GC patients.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Peritoneo , Macrófagos Peritoneales , Biomarcadores , Macrófagos , Microambiente Tumoral/genética , Fibrinógeno
9.
Parasitology ; 151(5): 506-513, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38533610

RESUMEN

Leishmania is a trypanosomatid parasite that causes skin lesions in its cutaneous form. Current therapies rely on old and expensive drugs, against which the parasites have acquired considerable resistance. Trypanosomatids are unable to synthesize purines relying on salvaging from the host, and nucleoside analogues have emerged as attractive antiparasitic drug candidates. 4-Methyl-7-ß-D-ribofuranosyl-7H-pyrrolo[2,3-d]pyrimidine (CL5564), an analogue of tubercidin in which the amine has been replaced by a methyl group, demonstrates activity against Trypanosoma cruzi and Leishmania infantum. Herein, we investigated its in vitro and in vivo activity against L. amazonensis. CL5564 was 6.5-fold (P = 0.0002) more potent than milteforan™ (ML) against intracellular forms in peritoneal mouse macrophages, and highly selective, while combination with ML gave an additive effect. These results stimulated us to study the activity of CL5564 in mouse model of cutaneous Leishmania infection. BALB/c female and male mice infected by L. amazonensis treated with CL5564 (10 mg kg−1, intralesional route for five days) presented a >93% reduction of paw lesion size likely ML given orally at 40 mg kg−1, while the combination (10 + 40 mg kg−1 of CL5564 and ML, respectively) caused >96% reduction. The qPCR confirmed the suppression of parasite load, but only the combination approach reached 66% of parasitological cure. These results support additional studies with nucleoside derivatives.


Asunto(s)
Modelos Animales de Enfermedad , Leishmania mexicana , Leishmaniasis Cutánea , Ratones Endogámicos BALB C , Animales , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/parasitología , Ratones , Femenino , Masculino , Leishmania mexicana/efectos de los fármacos , Tubercidina/farmacología , Tubercidina/análogos & derivados , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Antiprotozoarios/administración & dosificación , Macrófagos Peritoneales/parasitología , Macrófagos Peritoneales/efectos de los fármacos , Leishmania/efectos de los fármacos
10.
J Immunol Res ; 2024: 7484490, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455363

RESUMEN

Macrophages are the immune cells of high-immunological plasticity, which can exert both pro- and anti-inflammatory activity, as well as repolarize their phenotype to the opposite or neutral one. In this regard, M2 macrophages of the tumor-associated stroma (TAS) are a promising therapeutic target in treating malignant neoplasms. Using FACS assay, we have estimated the CD11b+/Ly-6G+/Ly-6C+ fraction of macrophages from the peritoneum and TAS in intact healthy mice and those with developed Lewis carcinoma, both untreated and treated according to Karanahan technology in combination with group-specific macrophage activator (GcMAF-RF). As well, the pattern of pro- and anti-inflammatory cytokines mRNA expression in different groups of experimental and tumor-bearing animals was assessed. It was found that: (i) exposure of intact mice to GcMAF-RF results in the increased number of CD11b+/Ly-6C+ peritoneal macrophages and, at the same time, the expression pattern of cytokines in peritoneal macrophages switches from that characteristic of the mixed M1/M2 phenotype to that characteristic of the neutral M0 one; (ii) combination of Karanahan technology and GcMAF-RF treatment results in M0/M1 repolarization of TAS macrophages; (iii) in tumor-bearing mice, the response of peritoneal macrophages to such a treatment is associated with the induction of anti-inflammatory reaction, which is opposite to that in TAS macrophages.


Asunto(s)
Factores Activadores de Macrófagos , Macrófagos , Neoplasias , Proteína de Unión a Vitamina D , Ratones , Animales , Macrófagos Peritoneales/metabolismo , Citocinas/metabolismo , Neoplasias/patología , Antiinflamatorios/metabolismo
11.
Cell Rep ; 43(4): 113981, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520688

RESUMEN

Cholera toxin (CT), a bacterial exotoxin composed of one A subunit (CTA) and five B subunits (CTB), functions as an immune adjuvant. CTB can induce production of interleukin-1ß (IL-1ß), a proinflammatory cytokine, in synergy with a lipopolysaccharide (LPS), from resident peritoneal macrophages (RPMs) through the pyrin and NLRP3 inflammasomes. However, how CTB or CT activates these inflammasomes in the macrophages has been unclear. Here, we clarify the roles of inositol-requiring enzyme 1 alpha (IRE1α), an endoplasmic reticulum (ER) stress sensor, in CT-induced IL-1ß production in RPMs. In RPMs, CTB is incorporated into the ER and induces ER stress responses, depending on GM1, a cell membrane ganglioside. IRE1α-deficient RPMs show a significant impairment of CT- or CTB-induced IL-1ß production, indicating that IRE1α is required for CT- or CTB-induced IL-1ß production in RPMs. This study demonstrates the critical roles of IRE1α in activation of both NLRP3 and pyrin inflammasomes in tissue-resident macrophages.


Asunto(s)
Toxina del Cólera , Estrés del Retículo Endoplásmico , Endorribonucleasas , Interleucina-1beta , Proteínas Serina-Treonina Quinasas , Interleucina-1beta/metabolismo , Animales , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones , Toxina del Cólera/farmacología , Toxina del Cólera/metabolismo , Inflamasomas/metabolismo , Ratones Endogámicos C57BL , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/inmunología , Lipopolisacáridos/farmacología , Retículo Endoplásmico/metabolismo
12.
Front Immunol ; 15: 1357340, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38504975

RESUMEN

In the context of multimodal treatments for abdominal cancer, including procedures such as cytoreductive surgery and intraperitoneal chemotherapy, recurrence rates remain high, and long-term survival benefits are uncertain due to post-operative complications. Notably, treatment-limiting side effects often arise from an uncontrolled activation of the immune system, particularly peritoneally localized macrophages, leading to massive cytokine secretion and phenotype changes. Exploring alternatives, an increasing number of studies investigated the potential of plasma-activated liquids (PAL) for adjuvant peritoneal cancer treatment, aiming to mitigate side effects, preserve healthy tissue, and reduce cytotoxicity towards non-cancer cells. To assess the non-toxicity of PAL, we isolated primary human macrophages from the peritoneum and subjected them to PAL exposure. Employing an extensive methodological spectrum, including flow cytometry, Raman microspectroscopy, and DigiWest protein analysis, we observed a pronounced resistance of macrophages towards PAL. This resistance was characterized by an upregulation of proliferation and anti-oxidative pathways, countering PAL-derived oxidative stress-induced cell death. The observed cellular effects of PAL treatment on human tissue-resident peritoneal macrophages unveil a potential avenue for PAL-derived immunomodulatory effects within the human peritoneal cavity. Our findings contribute to understanding the intricate interplay between PAL and macrophages, shedding light on the promising prospects for PAL in the adjuvant treatment of peritoneal cancer.


Asunto(s)
Neoplasias Peritoneales , Peritoneo , Humanos , Peritoneo/metabolismo , Macrófagos Peritoneales , Macrófagos , Cavidad Peritoneal , Neoplasias Peritoneales/metabolismo , Estrés Oxidativo
13.
J Leukoc Biol ; 115(6): 1177-1182, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38298146

RESUMEN

CXCL17, a novel member of the CXC chemokine class, has been implicated in several human pathologies, but its role in mediating immune response is not well understood. Characteristic features of immune response include resident macrophages orchestrating successive and structured recruitment of neutrophils and monocytes to the insult site. Here, we show that Cxcl17 knockout (KO) mice, compared with the littermate wild-type control mice, were significantly impaired in peritoneal neutrophil recruitment post-lipopolysaccharide (LPS) challenge. Further, the KO mice show dysregulated Cxcl1, Cxcr2, and interleukin-6 levels, all of which directly impact neutrophil recruitment. Importantly, the KO mice showed no difference in monocyte recruitment post-LPS challenge or in peritoneal macrophage levels in both unchallenged and LPS-challenged mice. We conclude that Cxcl17 is a proinflammatory chemokine and that it plays an important role in the early proinflammatory response by promoting neutrophil recruitment to the insult site.


Asunto(s)
Quimiocinas CXC , Lipopolisacáridos , Ratones Noqueados , Neutrófilos , Receptores de Interleucina-8B , Animales , Ratones , Neutrófilos/inmunología , Neutrófilos/metabolismo , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Quimiocinas CXC/metabolismo , Quimiocinas CXC/genética , Lipopolisacáridos/farmacología , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Infiltración Neutrófila , Ratones Endogámicos C57BL , Inflamación/inmunología , Inflamación/patología , Inflamación/metabolismo , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Monocitos/inmunología , Monocitos/metabolismo
15.
J Basic Microbiol ; 64(5): e2300490, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38227394

RESUMEN

Currently, zinc oxide (ZnO) particles are used in nanotechnology to destroy a wide range of microorganisms. Although pentavalent antimony compounds are used as antileishmanial drugs, they are associated with several limitations and side effects. Therefore, it is always desirable to try to find new and effective treatments. The aim of this research is to determine the antileishmanial effect of ZnO particles in comparison to the Antimoan Meglumine compound on promastigotes and amastigotes of Leishmania major (MRHO/IR/75/ER). After the extraction and purification of macrophages from the peritoneal cavity of C57BL/6 mice, L. major parasites were cultured in Roswell Park Memorial Institute-1640 culture medium containing fetal bovine serum (FBS) 10% and antibiotic. In this experimental study, the effect of different concentrations of nanoparticles was investigated using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) colorimetric method, in comparison to the glucantime on promastigotes, amastigotes and healthy macrophages in the culture medium. The amount of light absorption of the obtained color from the regeneration of tetrazolium salt to the product color of formazan by the parasite was measured by an enzyme-linked immunosorbent assay (ELISA) reader, and the IC50 value was calculated. IC50 after 24 h of incubation was calculated as IC50 = 358.6 µg/mL. The results showed, that the efficacy of ZnO nanoparticles was favorable and dose-dependent. The concentration of 500 µg/mL of ZnO nanoparticles induced 84.67% apoptosis after 72. Also, the toxicity of nanoparticles was less than the drug. Nanoparticles exert their cytotoxic effects by inducing apoptosis. They can be suitable candidates in the pharmaceutical industry in the future.


Asunto(s)
Antiprotozoarios , Leishmania major , Antimoniato de Meglumina , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Animales , Leishmania major/efectos de los fármacos , Ratones , Antiprotozoarios/farmacología , Antimoniato de Meglumina/farmacología , Ratones Endogámicos C57BL , Nanopartículas/química , Macrófagos/parasitología , Macrófagos/efectos de los fármacos , Concentración 50 Inhibidora , Macrófagos Peritoneales/parasitología , Macrófagos Peritoneales/efectos de los fármacos , Nanopartículas del Metal/química
16.
Microbiol Spectr ; 12(1): e0347523, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38018982

RESUMEN

IMPORTANCE: Sepsis is the consequence of a systemic bacterial infection that exacerbates the immune cell's activation via bacterial products, resulting in the augmented release of inflammatory mediators. A critical factor in the pathogenesis of sepsis is the primary component of the outer membrane of Gram-negative bacteria known as lipopolysaccharide (LPS), which is sensed by TLR4. For this reason, scientists have aimed to develop antagonists able to block TLR4 and, thereby the cytokine storm. We report here that a mixture of mu-class isoforms from the F. hepatica GST protein family administered intraperitoneally 1 h prior to a lethal LPS injection can modulate the dynamics and abundance of large peritoneal macrophages in the peritoneal cavity of septic mice while significantly suppressing the LPS-induced cytokine storm in a mouse model of septic shock. These results suggest that native F. hepatica glutathione S-transferase is a promising candidate for drug development against endotoxemia and other inflammatory diseases.


Asunto(s)
Fasciola hepatica , Sepsis , Animales , Ratones , Macrófagos Peritoneales/metabolismo , Lipopolisacáridos/metabolismo , Fasciola hepatica/metabolismo , Escherichia coli/metabolismo , Síndrome de Liberación de Citoquinas/metabolismo , Receptor Toll-Like 4/metabolismo , Macrófagos
17.
Nat Immunol ; 25(1): 155-165, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38102487

RESUMEN

In mouse peritoneal and other serous cavities, the transcription factor GATA6 drives the identity of the major cavity resident population of macrophages, with a smaller subset of cavity-resident macrophages dependent on the transcription factor IRF4. Here we showed that GATA6+ macrophages in the human peritoneum were rare, regardless of age. Instead, more human peritoneal macrophages aligned with mouse CD206+ LYVE1+ cavity macrophages that represent a differentiation stage just preceding expression of GATA6. A low abundance of CD206+ macrophages was retained in C57BL/6J mice fed a high-fat diet and in wild-captured mice, suggesting that differences between serous cavity-resident macrophages in humans and mice were not environmental. IRF4-dependent mouse serous cavity macrophages aligned closely with human CD1c+CD14+CD64+ peritoneal cells, which, in turn, resembled human peritoneal CD1c+CD14-CD64- cDC2. Thus, major populations of serous cavity-resident mononuclear phagocytes in humans and mice shared common features, but the proportions of different macrophage differentiation stages greatly differ between the two species, and dendritic cell (DC2)-like cells were especially prominent in humans.


Asunto(s)
Macrófagos Peritoneales , Macrófagos , Humanos , Ratones , Animales , Ratones Endogámicos C57BL , Macrófagos/metabolismo , Macrófagos Peritoneales/metabolismo , Diferenciación Celular , Células Dendríticas
18.
J Toxicol Sci ; 48(12): 617-639, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38044124

RESUMEN

Although toxicities of multiwalled carbon nanotube (MWCNT) have been found to be related with activities of macrophages phagocytosing the fibers, the exact relationship between macrophage population and pathogenesis of fibrosis and mesotheliomas induced by MWCNTs is largely unknown. CCL2-CCR2 axis, a major monocyte/macrophage infiltration route, is thought to be involved in not only acute inflammation but also the formation of tumor microenvironment. We therefore described a time-course of alteration of macrophage population in an attempt to clarify the contribution of the Ccr2 gene to mesotheliomagenesis. Wild-type (WT) C57BL/6 mice and Ccr2-knockout (KO) mice were intraperitoneally administered with MWNT-7 and were sequentially necropsied at 1, 7, 28, 90, and 245 day(s) after the injection. Peritoneal fibrosis was prominent in all MWCNT-treated mice, with a lower severity in the KO mice. No differences were observed in the incidences of neoplastic lesions of mesothelia between WT and KO mice. A flow cytometric analysis revealed that after gross disappearance of macrophages after MWCNT exposure, small peritoneal macrophages (SPMs) were exclusively refurbished by the CCR2-dependent route at day 1 (as Ly-6C+MHC class II- cells), followed by additional CCR2-independent routes (as Ly-6C-MHC class II- cells); i.e., the only route in KO mice; with a delay of 1-7 days. The SPMs derived from both routes appeared to differentiate into maturated cells as Ly-6C-MHC class II+, whose ratio increased in a time-dependent manner among the total SPM population. Additionally, most macrophages expressed M1-like features, but a small fraction of macrophages exhibited an M1/M2 mixed status in MWCNT-treated animals. Our findings demonstrate a long-persistent activation of the CCL2-CCR2 axis after MWCNT exposure and enable a better understanding of the participation and potential roles of SPMs in fibrous material-induced chronic toxicities.


Asunto(s)
Mesotelioma , Nanotubos de Carbono , Ratones , Animales , Nanotubos de Carbono/toxicidad , Macrófagos Peritoneales , Peritoneo , Ratones Endogámicos C57BL , Fibrosis , Mesotelioma/inducido químicamente , Mesotelioma/genética , Ratones Noqueados , Microambiente Tumoral
19.
Front Immunol ; 14: 1290191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035074

RESUMEN

Macrophages are highly heterogeneous immune cells with a role in maintaining tissue homeostasis, especially in activating the defense response to bacterial infection. Using flow cytometric and single-cell RNA-sequencing analyses of peritoneal cells, we here show that small peritoneal macrophage and immature macrophage populations are enriched in histamine-deficient (Hdc -/-) mice, characterized by a CD11bmiF4/80loCCR2+MHCIIhi and CD11bloF4/80miTHBS1+IL-1α+ phenotype, respectively. Molecular characterization revealed that immature macrophages represent an abnormally differentiated form of large peritoneal macrophages with strong inflammatory properties. Furthermore, deficiency in histamine signaling resulted in significant impairment of the phagocytic activity of peritoneal macrophage populations, conferring high susceptibility to bacterial infection. Collectively, this study reveals the importance of histamine signaling in macrophage differentiation at the molecular level to maintain tissue homeostasis, offering a potential therapeutic target for bacterial infection-mediated diseases.


Asunto(s)
Histamina , Macrófagos , Ratones , Animales , Macrófagos Peritoneales , Diferenciación Celular , Fagocitos
20.
Front Immunol ; 14: 1239592, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965323

RESUMEN

Persistent inflammation and associated pain significantly impact individuals' quality of life, posing substantial healthcare challenges. Proinflammatory cytokines, released by activated macrophages, play crucial roles in the development of chronic inflammatory conditions such as rheumatoid arthritis. To identify and evaluate potential therapeutic interventions targeting this process for mitigating inflammation and pain, we created myeloid cell-specific knockout of Vamp3 (vesicle-associated membrane protein 3) mice (Vamp3 Δmyel) by crossing LysM-Cre mice with newly engineered Vamp3flox/flox mice. Bone marrow-derived macrophages and peritoneal resident macrophages from Vamp3 Δmyel mice exhibited a significant reduction in TNF-α and IL-6 release compared to control mice. Moreover, Vamp3 deficiency led to decreased paw edema and ankle joint swelling induced by intraplantar injection of complete Freund's adjuvant (CFA). Furthermore, Vamp3 depletion also mitigated CFA-induced mechanical allodynia and thermal hyperalgesia. Mechanistically, Vamp3 loss ameliorated the infiltration of macrophages in peripheral sites of the hind paw and resulted in reduced levels of TNF-α and IL-6 in the CFA-injected paw and serum. RT-qPCR analysis demonstrated downregulation of various inflammation-associated genes, including TNF-α, IL-6, IL-1ß, CXCL11, TIMP-1, COX-2, CD68, and CD54 in the injected paw at the test day 14 following CFA administration. These findings highlight the novel role of Vamp3 in regulating inflammatory responses and suggest it as a potential therapeutic target for the development of novel Vamp-inactivating therapeutics, with potential applications in the management of inflammatory diseases.


Asunto(s)
Interleucina-6 , Factor de Necrosis Tumoral alfa , Animales , Ratones , Citocinas/metabolismo , Adyuvante de Freund , Hiperalgesia/inducido químicamente , Hiperalgesia/genética , Inflamación/tratamiento farmacológico , Macrófagos Peritoneales/metabolismo , Dolor/inducido químicamente , Calidad de Vida , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína 3 de Membrana Asociada a Vesículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA