Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.596
Filtrar
Más filtros











Intervalo de año de publicación
1.
Ann Afr Med ; 23(4): 674-679, 2024 Oct 01.
Artículo en Francés, Inglés | MEDLINE | ID: mdl-39279172

RESUMEN

AIMS AND OBJECTIVES: This study aimed to investigate the effects of Umbilical Cord Mesencymal Stem Cell Conditioning Medium (UC MSC-CM) administration on body weight recovery and the level of four molecular biomarkers, namely Superoxide Dismutase (SOD), vascular Endothelial Growth Factor (VEGF), C-Reactive Protein (CRP), and myostatin. MATERIALS AND METHODS: Secretome was injected intramuscularly twice at 1.5 mL (day 7 and 14) into the right thigh of high-dose, short-term galactose-induced aging rats. The data of day 7 (before) and day 21 (after the administration) were evaluated. The body weights and the four biomarkers were measured before (day 7) and after intervention (day 21). RESULTS: This study showed that the UC MSC-CM intramuscular administrations did not influence body weight regeneration. However, it could increase SOD and VEGF levels and decrease CRP and myostatin levels. CONCLUSION: Treatment with UC MSC-CM is a promising and potential agent in treating sarcopenia.


Résumé Buts et objectifs:Cette étude visait à examiner les effets de l'administration d'un milieu de conditionnement de cellules souches mésencéphaliques de cordon ombilical (UC MSC-CM) sur la récupération du poids corporel et le niveau de quatre biomarqueurs moléculaires, à savoir la superoxyde dismutase (SOD), le facteur de croissance endothéliale vasculaire (VEGF), la protéine C-réactive (CRP) et la myostatine.Matériels et méthodes:Le sécrétome (UC MSC-CM) a été injecté par voie intramusculaire deux fois à 1,5 ml (jour 7 et 14) dans la cuisse droite de rats vieillissant à forte dose et à court terme induits par le galactose. Les données du jour 7 (avant) et du jour 21 (après l'administration) ont été évaluées. Le poids corporel et les quatre biomarqueurs ont été mesurés avant (jour 7) et après l'intervention (jour 21).Résultats:Cette étude a montré que les administrations intramusculaires de CSM-CM d'UC n'ont pas influencé la régénération du poids corporel. Cependant, elle a pu augmenter les niveaux de SOD et de VEGF et diminuer les niveaux de CRP et de myostatine.Conclusion:Le traitement par UC MSC-CM est un agent prometteur et potentiel dans le traitement de la sarcopénie.


Asunto(s)
Biomarcadores , Proteína C-Reactiva , Células Madre Mesenquimatosas , Miostatina , Superóxido Dismutasa , Factor A de Crecimiento Endotelial Vascular , Animales , Ratas , Biomarcadores/metabolismo , Biomarcadores/sangre , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteína C-Reactiva/metabolismo , Superóxido Dismutasa/metabolismo , Miostatina/metabolismo , Masculino , Sarcopenia/metabolismo , Modelos Animales de Enfermedad , Músculo Esquelético/metabolismo , Medios de Cultivo Condicionados/farmacología , Cordón Umbilical/citología , Peso Corporal , Inyecciones Intramusculares , Trasplante de Células Madre Mesenquimatosas/métodos
2.
Brain Behav ; 14(9): e70010, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39262160

RESUMEN

BACKGROUND: The hippocampus is susceptible to damage, leading to negative impacts on cognition. Conditioned medium (CM) obtained from adipose tissue-derived mesenchymal stem cells (MSCs) and acetylsalicylic acid (ASA) have shown neuroprotective effects independently. This study explored the synergistic potential of ASA and CM from adipose-derived MSCs against hippocampal injury. METHODS: Adult male Wistar rats received bilateral hippocampal ethidium bromide (EB) injections to induce hippocampal damage. Rats were treated with ASA and/or CM derived from adipose tissue MSCs every 48 h for 16 days. Behavioral tests (open field test, Morris water maze, novel object recognition, and passive avoidance), oxidative stress, Western blot analysis of brain-derived neurotrophic factor (BDNF) and cerebral dopamine neurotrophic factor (CDNF) expression, and hippocampal histological investigation were conducted. RESULTS: Administration of EB caused impairments in spatial, recognition, and passive avoidance memory, as well as heightened oxidative stress, reduced BDNF/CDNF expression, and pyramidal cell loss in the hippocampal CA1 region. Administration of ASA, CM, or a combination of both mitigated these hippocampal damages and cognitive deficits, elevated BDNF and CDNF levels, and alleviated the CA1 necrosis caused by EB. Moreover, co-administering ASA and CM resulted in greater improvements in spatial memory compared to administering ASA alone, suggesting possible synergistic interactions. CONCLUSIONS: The ability of ASA, CM obtained from adipose tissue-derived MSCs, and their combination therapy to alleviate hippocampal injuries highlights their promising therapeutic potential as a neuroprotection strategy against brain damage. Our findings provide preliminary evidence of the potential synergistic effects of ASA and CM, which warrants further investigations.


Asunto(s)
Aspirina , Factor Neurotrófico Derivado del Encéfalo , Hipocampo , Células Madre Mesenquimatosas , Estrés Oxidativo , Ratas Wistar , Animales , Masculino , Aspirina/farmacología , Ratas , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación , Cognición/efectos de los fármacos , Antioxidantes/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo
3.
Open Vet J ; 14(8): 1761-1770, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39308716

RESUMEN

Background: Diabetes is a degenerative disease associated with metabolic disorders. The majority of people have type 2 diabetes mellitus (DM) insulin resistance due to an unhealthy lifestyle. The development of DM treatment is also growing, one of which is using conditioned medium. Aim: This study aims to determine the effect of Bovine umbilical mesenchymal stem cell-conditioned medium (BUMSC-CM) on nicotinamide (NA) and streptozotocin (STZ) induced rats as an animal model of DM. Methods: The study began with the in vitro docking of Cholecalciferol with aldolase reductase and glucokinase. In the in vivo study, animal models were divided into five groups: group A (negative control), group B (diabetic rats), group C (NA+STZ+Metformin), group D (NA+STZ+ BUMSC-CM 0.2 ml/kg BW), and group E (NA+STZ+ BUMSC-CM 0.5 ml/kg BW). Blood sugar levels were checked, and BUMSC-CM was administered by intramuscular injection at four-day intervals for a duration of 16 days. Blood sugar levels were also sampled, and GLUT4 histochemical and immunohistochemical staining was performed. Results: The results showed that Cholecalciferol can bind to aldolase reductase ASP43 and TYR48 and bind to glucokinase at TYR214 with hydrogen bonds. BUMSC-CM administration was able to reduce blood sugar well. In addition, BUMSC-CM also helped repair the tissue structure of the pancreas damaged by inflammation from STZ administration. Conclusion: This study can be concluded that the administration of BUMSC-CM can be an alternative cell-free therapy for patients with DM.


Asunto(s)
Diabetes Mellitus Experimental , Transportador de Glucosa de Tipo 4 , Células Madre Mesenquimatosas , Niacinamida , Estreptozocina , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Niacinamida/farmacología , Niacinamida/administración & dosificación , Ratas , Células Madre Mesenquimatosas/efectos de los fármacos , Bovinos , Medios de Cultivo Condicionados/farmacología , Transportador de Glucosa de Tipo 4/metabolismo , Masculino , Páncreas/efectos de los fármacos , Páncreas/patología , Ratas Wistar
4.
Neuromolecular Med ; 26(1): 36, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254908

RESUMEN

The symptoms of fragile X syndrome (FXS), caused by a single gene mutation to Fmr1, have been increasingly linked to disordered astrocyte signalling within the cerebral cortex. We have recently demonstrated that the purinergic signalling pathway, which utilizes nucleoside triphosphates and their metabolites to facilitate bidirectional glial and glial-neuronal interactions, is upregulated in cortical astrocytes derived from the Fmr1 knockout (KO) mouse model of FXS. Heightened Fmr1 KO P2Y purinergic receptor levels were correlated with prolonged intracellular calcium release, elevated synaptogenic protein secretion, and hyperactivity of developing circuits. However, due to the relative lack of sensitive and reproducible quantification methods available for measuring purines and pyrimidines, determining the abundance of these factors in Fmr1 KO astrocytes was limited. We therefore developed a hydrophilic interaction liquid chromatography protocol coupled with mass spectrometry to compare the abundance of intracellular and extracellular purinergic molecules between wildtype and Fmr1 KO mouse astrocytes. Significant differences in the concentrations of UDP, ATP, AMP, and adenosine intracellular stores were found within Fmr1 KO astrocytes relative to WT. The extracellular level of adenosine was also significantly elevated in Fmr1 KO astrocyte-conditioned media in comparison to media collected from WT astrocytes. Glycosylation of the astrocyte membrane-bound CD39 ectonucleotidase, which facilitates ligand breakdown following synaptic release, was also elevated in Fmr1 KO astrocyte cultures. Together, these differences demonstrated further dysregulation of the purinergic signalling system within Fmr1 KO cortical astrocytes, potentially leading to significant alterations in FXS purinergic receptor activation and cellular pathology.


Asunto(s)
Astrocitos , Corteza Cerebral , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Ratones Noqueados , Transducción de Señal , Animales , Astrocitos/metabolismo , Ratones , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Apirasa/genética , Apirasa/metabolismo , Células Cultivadas , Adenosina Trifosfato/metabolismo , Medios de Cultivo Condicionados , Adenosina/metabolismo , Adenosina/análogos & derivados , Receptores Purinérgicos P2Y/metabolismo , Receptores Purinérgicos P2Y/genética , Ratones Endogámicos C57BL , Antígenos CD
5.
Mol Med Rep ; 30(5)2024 11.
Artículo en Inglés | MEDLINE | ID: mdl-39219260

RESUMEN

Previous studies have highlighted the antitumor effects of mesenchymal stem cell­derived extracellular vesicles (MSC­EVs), positioning them as a promising therapeutic avenue for cancer treatment. However, some researchers have proposed a bidirectional influence of MSC­EVs on tumors, determined by the specific tissue origin of the MSCs and the types of tumors involved. The present study aimed to elucidate the effects of human placenta MSC­derived extracellular vesicles (hPMSC­EVs) on the malignant behavior of a mouse breast cancer model of 4T1 cells in vitro and in vivo. The findings revealed that hPMSC­EVs significantly inhibited the proliferation, migration and colony formation of cultured 4T1 mouse breast cancer cells without inducing apoptosis. Exposure to conditioned medium from 4T1 cells pretreated with hPMSC­EVs resulted in decreased angiogenic activity, accompanied by the downregulation of angiogenesis­promoting genes in human umbilical vein endothelial cells. In murine xenograft models derived from the 4T1 cell line, local administration of hPMSC­EVs substantially hindered tumor growth. Further results revealed that hPMSC­EVs inhibited angiogenesis in vivo, as reflected by the use of a vascular growth factor receptor 2­Fluc transgenic mouse model. In summary, the results confirmed that hPMSC­EVs negatively modulated breast cancer growth by suppressing tumor cell proliferation and migration via an indirect antiangiogenic mechanism. These results underscored the therapeutic potential of EVs, suggesting a promising avenue for alternative anticancer treatments in the future.


Asunto(s)
Neoplasias de la Mama , Movimiento Celular , Proliferación Celular , Vesículas Extracelulares , Células Endoteliales de la Vena Umbilical Humana , Células Madre Mesenquimatosas , Neovascularización Patológica , Vesículas Extracelulares/metabolismo , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Femenino , Humanos , Ratones , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Neovascularización Patológica/metabolismo , Línea Celular Tumoral , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Medios de Cultivo Condicionados/farmacología , Ratones Endogámicos BALB C , Placenta/metabolismo , Placenta/citología , Apoptosis , Angiogénesis
6.
Int J Biol Macromol ; 277(Pt 4): 134344, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39089545

RESUMEN

Canine atopic dermatitis (AD) arises from hypersensitive immune reactions. AD symptoms entail severe pruritus and skin inflammation, with frequent relapses. Consequently, AD patients require continuous management, imposing financial burdens and mental fatigue on pet owners. In this study, we aimed to investigate the therapeutic relevance of secretome from canine adipose tissue-derived mesenchymal stem cells (MSCs), especially after encapsulation in nano-villi chitosan microspheres (CS-MS) to expect improved efficacy. Conditioned media (CM) from MSCs significantly inhibited the proliferation of splenocytes, induced the generation of regulatory T cells, and decreased mast cell degranulation. We found that beneficial soluble factors known to reduce AD symptoms, including transforming growth factor-beta 1, were detectable after sequential concentration and lyophilization of CM. The CS-MS, developed by a phase inversion regeneration method, showed high loading and sustained release of the secretome. Local injection of secretome-loaded CS-MS (ST/SC-MS) effectively reduced clinical severity compared to groups treated with secretome. Histological analysis revealed that ST/SC-MS potently suppressed epidermal hyperplasia, immunocyte infiltration and mast cell activation in the lesion. Taken together, this study presents a novel therapeutic approach exhibiting more potent and prolonged immunoregulatory efficacy of MSC secretome for canine AD treatment.


Asunto(s)
Quitosano , Dermatitis Atópica , Células Madre Mesenquimatosas , Microesferas , Secretoma , Dermatitis Atópica/terapia , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/patología , Animales , Perros , Quitosano/química , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Proliferación Celular/efectos de los fármacos , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Mastocitos/inmunología , Medios de Cultivo Condicionados/farmacología , Preparaciones de Acción Retardada
7.
Acta Histochem ; 126(5-7): 152191, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39216306

RESUMEN

Tumour endothelial cells (TECs) are genetically and phenotypically distinct from their normal, healthy counterparts and provide various pro-tumourigenic effects. This study aimed to investigate the impact of conditioned media (CM) from non-tumourigenic MCF-12A breast epithelial cells as well as from MCF-7 and MDA-MB-231 breast cancer cells on human umbilical vein endothelial cells (HUVECs). Significant increases in cell viability were observed across all breast CM groups compared to controls, with notable differences between the MCF-12A, MCF-7, and MDA-MB-231 groups. Despite increased viability, no significant differences in MCM2 expression, a marker of cell proliferation, were detected. Morphological changes in HUVECs, including elongation, lumen formation, and branching, were more pronounced in breast cancer CM groups, especially in the MDA-MB-231 CM group. qPCR and Western blot analyses showed increased expression of TEC markers such as MDR1, LOX, and TEM8 in HUVECs treated with MCF-12A CM. The MCF-7 CM group significantly enhanced HUVEC migratory activity compared to MCF-12A CM, as evidenced by a scratch assay. These findings underscore distinct angiogenic responses elicited by non-tumourigenic and tumourigenic breast epithelial cells, with tumourigenic cells inducing a hyperactivated angiogenic response. The study highlights the differential effects of breast cancer cell paracrine signalling on endothelial cells and suggests the need for further investigation into TEC markers' role in both physiological and tumour angiogenesis.


Asunto(s)
Neoplasias de la Mama , Células Endoteliales de la Vena Umbilical Humana , Comunicación Paracrina , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Medios de Cultivo Condicionados/farmacología , Fenotipo , Células MCF-7 , Proliferación Celular , Línea Celular Tumoral , Movimiento Celular , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Supervivencia Celular
8.
Int Immunopharmacol ; 141: 112883, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153305

RESUMEN

Ectodermal mesenchymal stem cells-derived conditioned medium (EMSCs-CM) has been reported to protect against ulcerative colitis (UC) in mice, but its underlying mechanism in alleviating UC need to be further elucidated. Here, it is reported that EMSCs-CM could attenuate pro-inflammatory response of LPS-induced IEC-6 cells and regulate the polarization of macrophages towards anti-inflammatory type in vitro. Furthermore, PLGA microspheres prepared by the double emulsion method were constructed for oral delivery of EMSCs-CM (EMSCs-CM-PLGA), which are beneficial for colon-targeted adhesion of EMSCs-CM to the damaged colon mucosa. The results showed that orally-administered of EMSCs-CM-PLGA microspheres reduced inflammatory cells infiltration and maintained the intestinal mucosal barrier. Further investigation found that EMSCs-CM-PLGA microspheres treatment gradually inhibited the activation of NF-κB pathway to regulate M1/M2 polarization balance in colon tissue macrophages, thereby alleviating DSS-induced UC. These results of this study will provide a theoretical basis for clinical application of EMSCs-CM in UC repair.


Asunto(s)
Colitis Ulcerosa , Macrófagos , Células Madre Mesenquimatosas , Microesferas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Animales , Colitis Ulcerosa/terapia , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/inmunología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Medios de Cultivo Condicionados/farmacología , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Ratones , Colon/patología , Colon/efectos de los fármacos , FN-kappa B/metabolismo , Sulfato de Dextran , Masculino , Línea Celular , Mucosa Intestinal/patología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Modelos Animales de Enfermedad , Ratas , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Ratones Endogámicos C57BL , Humanos
9.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119821, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39159684

RESUMEN

Resistance to endocrine therapy is a major clinical challenge in estrogen receptor (ER)-positive breast cancer. Obesity is associated with the clinical response to ER-positive breast cancers; however, the mechanism underlying obesity-induced resistance to endocrine therapy in ER-positive breast cancers remains unclear. In this study, we investigated the molecular mechanisms underlying obesity-induced resistance to tamoxifen (TAM), an anti-estrogen agent, in the ER-positive breast cancer cell line MCF-7 using differentiated adipocyte-conditioned medium (D-CM). Treatment of the cells with D-CM promoted TAM resistance by reducing TAM-induced apoptosis. The expression levels of the ERα target genes were higher in D-CM-treated cells than those in untreated ones. In contrast, when the cells were cultured in the presence of TAM, the expression levels were decreased, with or without D-CM. Moreover, the expression of the markers for cancer stem-like cells (CSCs) and mammosphere formation was enhanced by co-treating with D-CM and TAM, compared with TAM alone. The phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway was activated in MCF-7 cells by D-CM treatment, even in the presence of TAM. Inhibition of the PI3K/Akt/mTOR pathway decreased the expression levels of the CSC markers, suppressed mammosphere formation, and resensitized to TAM via inducing apoptosis in D-CM-treated cells. These results indicate that the conditioned medium of differentiated adipocytes promoted TAM resistance by inducing the CSC phenotype through activation of the PI3K/Akt/mTOR pathway in ER-positive breast cancer cells. Thus, the PI3K/Akt/mTOR pathway may be a therapeutic target in obese patients with ER-positive breast cancers.


Asunto(s)
Adipocitos , Neoplasias de la Mama , Resistencia a Antineoplásicos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Tamoxifeno , Humanos , Tamoxifeno/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Medios de Cultivo Condicionados/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Células MCF-7 , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Estrógenos/metabolismo , Apoptosis/efectos de los fármacos , Antineoplásicos Hormonales/farmacología
10.
Anticancer Res ; 44(9): 3867-3874, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39197931

RESUMEN

BACKGROUND/AIM: Macrophages prevail in the microenvironment of several tumors, including non-small-cell lung cancer (NSCLC), where they secrete pro-tumorigenic factors that contribute to cancer progression. This study investigated the role of macrophages on the resistance of epidermal growth factor receptor (EGFR)-mutated NSCLC cells to tyrosine kinase inhibitors (TKIs). MATERIALS AND METHODS: EGFR-mutated cell lines PC-9 and HCC827 were cocultured with macrophages and treated with TKIs (erlotinib and gefitinib). The effects of the macrophage-conditioned medium (macrophage CM) on gefitinib resistance and cell migration were also evaluated. RESULTS: Co-culture with macrophages significantly enhanced the resistance to erlotinib and gefitinib in PC-9 and HCC827 cells compared to that in cells cultured independently. Macrophage CM markedly induced gefitinib resistance in PC-9 cells, with maximum resistance observed at 50% CM concentration. This resistance persisted for up to 48 h post-CM removal. Macrophage CM inhibited gefitinib-induced apoptosis, as evidenced by the decreased expression of cleaved caspase-3, PARP, and BIM. Additionally, macrophage CM increased the migration ability of PC-9 cells, as shown by the wound healing and transwell migration assays. Studies have shown that TonEBP is crucial in cancer metastasis and drug resistance; we found that inhibition of TonEBP/NFAT5 expression reduced gefitinib resistance and migration in macrophage CM-induced PC-9 cells, indicating its role as mediator of these effects. CONCLUSION: Macrophages contribute to TKI resistance and enhance the migration of EGFR-mutated NSCLC cells through mechanisms involving TonEBP/NFAT5. Therefore, targeting TonEBP/NFAT5 represents a potential therapeutic strategy for overcoming macrophage-induced TKI resistance in NSCLC cells.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Movimiento Celular , Resistencia a Antineoplásicos , Gefitinib , Neoplasias Pulmonares , Macrófagos , Humanos , Gefitinib/farmacología , Movimiento Celular/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Línea Celular Tumoral , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Apoptosis/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Antineoplásicos/farmacología , Medios de Cultivo Condicionados/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Técnicas de Cocultivo , Clorhidrato de Erlotinib/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
11.
Stem Cell Res Ther ; 15(1): 250, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135129

RESUMEN

BACKGROUND: In the repair of massive tissue defects using expanded large skin flaps, the incidence of complications increases with the size of the expanded area. Currently, stem cell therapy has limitations to solve this problem. We hypothesized that conditioned medium of adipose-derived stem cells (ADSC-CM) collected following mechanical pretreatment can assist skin expansion. METHODS: Rat aortic endothelial cells and fibroblasts were cultured with ADSC-CM collected under 0%, 10%, 12%, and 15% stretching force. Ten-milliliter cylindrical soft tissue expanders were subcutaneously implanted into the backs of 36 Sprague-Dawley rats. The 0% and 10% stretch groups were injected with ADSC-CM collected under 0% and 10% stretching force, respectively, while the control group was not injected. After 3, 7, 14, and 30 days of expansion, expanded skin tissue was harvested for staining and qPCR analyses. RESULTS: Endothelial cells had the best lumen formation and highest migration rate, and fibroblasts secreted the most collagen upon culture with ADSC-CM collected under 10% stretching force. The skin expansion rate was significantly increased in the 10% stretch group. After 7 days of expansion, the number of blood vessels in the expanded area, expression of the angiogenesis-associated proteins vascular endothelial growth factor, basic fibroblast growth factor, and hepatocyte growth factor, and collagen deposition were significantly increased in the 10% stretch group. CONCLUSIONS: The optimal mechanical force upregulates specific paracrine proteins in ADSCs to increase angiogenesis and collagen secretion, and thereby promote skin regeneration and expansion. This study provides a new auxiliary method to expand large skin flaps.


Asunto(s)
Tejido Adiposo , Comunicación Paracrina , Ratas Sprague-Dawley , Piel , Animales , Ratas , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Piel/metabolismo , Fibroblastos/metabolismo , Fibroblastos/citología , Células Endoteliales/metabolismo , Células Endoteliales/citología , Medios de Cultivo Condicionados/farmacología , Expansión de Tejido/métodos , Masculino , Células Madre/metabolismo , Células Madre/citología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Células Cultivadas , Neovascularización Fisiológica , Estrés Mecánico
12.
J Wound Care ; 33(Sup8a): clxxxii-cxciii, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39163155

RESUMEN

Alternative 3-dimensional (3D) skin models that replicate in vivo human skin are required to investigate important events during wound healing, such as collective cell migration, epidermal layer formation, dermal substrate formation, re-epithelialisation and collagen production. In this study, a matched human 3D skin equivalent model (3D-SEM) was developed from human skin cells (fibroblast and keratinocytes), characterised using haematoxylin and eosin, immunofluorescence staining and microRNA profiling. The 3D-SEM was then functionally tested for its use in wound healing studies. Mesenchymal stem cells (MSCs) were isolated and characterised according to the criteria stipulated by the International Society for Cell Therapy. Cytokine and growth factor secretions were analysed by enzyme-linked immunosorbent assay. MSC-conditioned medium (MSC-CM) was then tested for wound healing capacity using the developed 3D-SEM at different timepoints i.e., at one, two and four weeks. The constructed 3D-SEM showed consistent development of skin-like structures composed of dermal layers and epidermal layers, with the ability to express epidermal differentiation markers and full stratification. They also showed prolonged longevity in culture media, retaining full differentiation and stratification within the four weeks. MicroRNA profiling revealed a strong correlation in microRNA expression between the developed 3D-SEM and the original native skin (p<0.001; R=0.64). Additionally, MSC-CM significantly enhanced migration, proliferation and differentiation of epidermal cells in the wounded models compared to control models at the different timepoints. In conclusion, in this study, the developed 3D-SEM mimicked native skin at the cellular and molecular levels, and clearly showed the important stages of skin regeneration during the healing process. MSC secretome contains growth factors that play a pivotal role in the healing process and could be used as a therapeutic option to accelerate skin healing.


Asunto(s)
Células Madre Mesenquimatosas , Cicatrización de Heridas , Humanos , Medios de Cultivo Condicionados/farmacología , Cicatrización de Heridas/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Piel/lesiones , Piel/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas
13.
Arch Dermatol Res ; 316(8): 527, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153095

RESUMEN

BACKGROUND AND OBJECTIVE: Adipose-derived mesenchymal stem cells (ADSCs) can accelerate wound healing, reduce scar formation, and inhibit hypertrophic scar (HTS). ADSCs can secrete a large amount of CCL5, and CCL5 has been proved to be pro-inflammatory and pro-fibrotic. CXCL12 (SDF-1) is a key chemokine that promotes stem cell migration and survival. Therefore, this study selected normal skin and HTS conditioned medium to simulate different microenvironments, and analyzed the effects of different microenvironments on the expression of CCL5 and CXCL12 in human ADSCs (hADSCs). MATERIALS AND METHODS: hADSCs with silenced expression of CCL5 and CXCL12 were co-cultured with hypertrophic scar fibroblasts to verify the effects of CCL5 and CXCL12 in hADSCs on the proliferation ability of hypertrophic scar fibroblasts. A mouse model of hypertrophic scar was established to further confirm the effect of CCL5 and CXCL12 in hADSCs on hypertrophic scar formation. RESULTS: CCL5 level was found to be significantly high in hADSCs cultured in HTS conditioned medium. CXCL12 in HTS group was prominently lowly expressed compared with the normal group. Inhibition of CCL5 in hADSCs enhanced the effects of untreated hADSCs on proliferation of HTS fibroblasts while CXCL12 knockdown exerted the opposite function. Inhibition of CCL5 in hADSCs increased the percentage of HTS fibroblasts in the G0/G1 phase while down-regulation of CXCL12 decreased those. Meanwhile, the down-regulated levels of fibroblast markers including collagen I, collagen III, and α-SMA induced by CCL5 knockdown were significantly up-regulated by CXCL12 inhibition. hADSCs alleviate the HTS of mice through CCL5 and CXCL12. CONCLUSION: In summary, our results demonstrated that hADSCs efficiently cured HTS by suppressing proliferation of HTS fibroblasts, which may be related to the inhibition of CXCL12 and elevation of CCL5 in hADSCs, suggesting that hADSCs may provide an alternative therapeutic approach for the treatment of HTS.


Asunto(s)
Proliferación Celular , Quimiocina CCL5 , Quimiocina CXCL12 , Cicatriz Hipertrófica , Fibroblastos , Células Madre Mesenquimatosas , Quimiocina CCL5/metabolismo , Fibroblastos/metabolismo , Humanos , Cicatriz Hipertrófica/patología , Cicatriz Hipertrófica/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Quimiocina CXCL12/metabolismo , Ratones , Modelos Animales de Enfermedad , Células Cultivadas , Femenino , Medios de Cultivo Condicionados/farmacología , Técnicas de Cocultivo , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Adulto , Cicatrización de Heridas , Tejido Adiposo/citología
14.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125748

RESUMEN

Mesenchymal stem-cell-derived extracellular vesicles (MSC-EVs) have been increasingly investigated for cancer therapy and drug delivery, and they offer an advanced cell-free therapeutic option. However, their overall effects and efficacy depend on various factors, including the MSC source and cargo content. In this study, we isolated EVs from the conditioned medium of human immature dental pulp stem cells (hIDPSC-EVs) and investigated their effects on two papillary thyroid cancer (PTC) cell lines (BCPAP and TPC1). We observed efficient uptake of hIDPSC-EVs by both PTC cell lines, with a notable impact on gene regulation, particularly in the Wnt signaling pathway in BCPAP cells. However, no significant effects on cell proliferation were observed. Conversely, hIDPSC-EVs significantly reduced the invasive capacity of both PTC cell lines after 120 h of treatment. These in vitro findings suggest the therapeutic potential of hIDPSC-EVs in cancer management and emphasize the need for further research to develop novel and effective treatment strategies. Furthermore, the successful internalization of hIDPSC-EVs by PTC cell lines underscores their potential use as nanocarriers for anti-cancer agents.


Asunto(s)
Proliferación Celular , Pulpa Dental , Vesículas Extracelulares , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Pulpa Dental/citología , Vesículas Extracelulares/metabolismo , Cáncer Papilar Tiroideo/terapia , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/metabolismo , Neoplasias de la Tiroides/terapia , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Línea Celular Tumoral , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Vía de Señalización Wnt , Medios de Cultivo Condicionados/farmacología
15.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39126063

RESUMEN

Small extracellular vesicles (EVs) play a pivotal role in intercellular communication across various physiological and pathological contexts. Despite their growing significance as disease biomarkers and therapeutic targets in biomedical research, the lack of reliable isolation techniques remains challenging. This study characterizes vesicles that were isolated from conditioned culture media (CCM) sourced from three myeloma cell lines (MM.1S, ANBL-6, and ALMC-1), and from the plasma of healthy donors and multiple myeloma patients. We compared the efficacy, reproducibility, and specificity of isolating small EVs using sucrose cushion ultracentrifugation (sUC) vs. ultrafiltration combined with size-exclusion chromatography (UF-SEC). Our results demonstrate that UF-SEC emerges as a more practical, efficient, and consistent method for EV isolation, outperforming sUC in the yield of EV recovery and exhibiting lower variability. Additionally, the comparison of EV characteristics among the three myeloma cell lines revealed distinct biomarker profiles. Finally, our results suggest that HBS associated with Tween 20 improves EV recovery and preservation over PBS. Standardization of small EV isolation methods is imperative, and our comparative evaluation represents a significant step toward achieving this goal.


Asunto(s)
Cromatografía en Gel , Vesículas Extracelulares , Mieloma Múltiple , Sacarosa , Ultracentrifugación , Mieloma Múltiple/patología , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Ultracentrifugación/métodos , Cromatografía en Gel/métodos , Línea Celular Tumoral , Reproducibilidad de los Resultados , Medios de Cultivo Condicionados/química
16.
Acta Biomater ; 186: 141-155, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39142531

RESUMEN

Macrophages and osteocytes are important regulators of inflammation, osteogenesis and osteoclastogenesis. However, their interactions under adverse conditions, such as biomaterial-associated infection (BAI) are not fully understood. We aimed to elucidate how factors released from macrophages modulate osteocyte responses in an in vitro indirect 3D co-culture model. Human monocyte-derived macrophages were cultured on etched titanium disks and activated with either IL-4 cytokine (anti-inflammatory M2 phenotype) or Staphylococcus aureus secreted virulence factors to simulate BAI (pro-inflammatory M1 phenotype). Primary osteocytes in collagen gels were then stimulated with conditioned media (CM) from these macrophages. The osteocyte response was analyzed by gene expression, protein secretion, and immunostaining. M1 phenotype macrophages were confirmed by IL-1ß and TNF-α secretion, and M2 macrophages by ARG-1 and MRC-1.Osteocytes receiving M1 CM revealed bone inhibitory effects, denoted by reduced secretion of bone formation osteocalcin (BGLAP) and increased secretion of the bone inhibitory sclerostin (SOST). These osteocytes also downregulated the pro-mineralization gene PHEX and upregulated the anti-mineralization gene MEPE. Additionally, exhibited pro-osteoclastic potential by upregulating pro-osteoclastic gene RANKL expression. Nonetheless, M1-stimulated osteocytes expressed a higher level of the potent pro-osteogenic factor BMP-2 in parallel with the downregulation of the bone inhibitor genes DKK1 and SOST, suggesting a compensatory feedback mechanisms. Conversely, M2-stimulated osteocytes mainly upregulated anti-osteoclastic gene OPG expression, suggesting an anti-catabolic effect. Altogether, our findings demonstrate a strong communication between M1 macrophages and osteocytes under M1 (BAI)-simulated conditions, suggesting that the BAI adverse effects on osteoblastic and osteoclastic processes in vitro are partly mediated via this communication. STATEMENT OF SIGNIFICANCE: Biomaterial-associated infections are major challenges and the underlying mechanisms in the cellular interactions are missing, especially among the major cells from the inflammatory side (macrophages as the key cell in bacterial clearance) and the regenerative side (osteocyte as main regulator of bone). We evaluated the effect of macrophage polarization driven by the stimulation with bacterial virulence factors on the osteocyte function using an indirect co-culture model, hence mimicking the scenario of a biomaterial-associated infection. The results suggest that at least part of the adverse effects of biomaterial associated infection on osteoblastic and osteoclastic processes in vitro are mediated via macrophage-to-osteocyte communication.


Asunto(s)
Comunicación Celular , Macrófagos , Osteocitos , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Macrófagos/microbiología , Osteocitos/metabolismo , Osteocitos/efectos de los fármacos , Técnicas de Cocultivo , Infecciones Relacionadas con Prótesis/patología , Infecciones Relacionadas con Prótesis/metabolismo , Infecciones Relacionadas con Prótesis/microbiología , Medios de Cultivo Condicionados/farmacología , Modelos Biológicos , Osteogénesis/efectos de los fármacos
17.
Sci Rep ; 14(1): 18043, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103466

RESUMEN

In osteoarthritis (OA), extracellular matrix (ECM) digestion by cartilage-degrading enzymes drives cartilage destruction and generates ECM fragments, such as proteoglycan aggrecan (PG) peptides. PG peptides have been shown to induce immunological functions of chondrocytes. However, the role of PG peptides in stimulating catabolic mediators from chondrocytes has not been investigated. Therefore, we aim to determine the effects and its mechanism by which PG peptides induce chondrocytes to produce catabolic mediators in OA. Human chondrocytes were stimulated with IFNγ and various PG peptides either (i) with or (ii) without TLR2 blockade or (iii) with Lactobacillus species-conditioned medium (LCM), a genus of bacteria with anti-inflammatory properties. Transcriptomic analysis, cartilage-degrading enzyme production and TLR2-intracellular signaling activation were investigated. Chondrocytes treated with PG peptides p16-31 and p263-280 increased expression levels of genes associated with chondrocyte hypertrophy, cartilage degradation and proteolytic enzyme production. TLR2 downstream signaling proteins (STAT3, IkBα and MAPK9) were significantly phosphorylated in p263-280 peptide-stimulated chondrocytes. MMP-1 and ADAMTS-4 were significantly reduced in p263-280 peptides-treated condition with TLR2 blockade or LCM treatment. Phosphorylation levels of IkBa, ERK1/2 and MAPK9 were significantly decreased with TLR2 blockade, but only phosphorylation levels of MAPK9 was significantly decreased with LCM treatment. Our study showed that PG peptide stimulation via TLR2 induced cartilage-degrading enzyme production via activation of MAPK, NFκB and STAT3 pathways.


Asunto(s)
Agrecanos , Condrocitos , Lactobacillus , Receptor Toll-Like 2 , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Humanos , Receptor Toll-Like 2/metabolismo , Agrecanos/metabolismo , Medios de Cultivo Condicionados/farmacología , Lactobacillus/metabolismo , Transducción de Señal/efectos de los fármacos , Osteoartritis/metabolismo , Osteoartritis/patología , Células Cultivadas , Proteína ADAMTS4/metabolismo , Factor de Transcripción STAT3/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Proteoglicanos/metabolismo , Proteoglicanos/farmacología , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 1 de la Matriz/genética , Inhibidor NF-kappaB alfa/metabolismo
18.
Biomolecules ; 14(8)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39199315

RESUMEN

Endothelial dysfunction plays a central role in the severity of COVID-19, since the respiratory, thrombotic and myocardial complications of the disease are closely linked to vascular endothelial damage. To address this issue, we evaluate here the effect of conditioned media from spike S1-activated macrophages (CM_S1) on the proliferation of human umbilical endothelial cells (HUVECs), focusing on the specific role of interleukin-1-beta (IL-1ß), interleukin-6 (IL-6), interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Results obtained demonstrate that the incubation with CM_S1 for 72 h hinders endothelial cell proliferation and induces signs of cytotoxicity. Comparable results are obtained upon exposure to IFN-γ + TNF-α, which are thus postulated to play a pivotal role in the effects observed. These events are associated with an increase in p21 protein and a decrease in Rb phosphorylation, as well as with the activation of IRF-1 and NF-kB transcription factors. Overall, these findings further sustain the pivotal role of a hypersecretion of inflammatory cytokines as a trigger for endothelial activation and injury in the immune-mediated effects of COVID-19.


Asunto(s)
COVID-19 , Proliferación Celular , Citocinas , Células Endoteliales de la Vena Umbilical Humana , Macrófagos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Macrófagos/metabolismo , Macrófagos/virología , COVID-19/virología , COVID-19/metabolismo , COVID-19/patología , COVID-19/inmunología , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interferón gamma/metabolismo , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/genética , Interleucina-6/metabolismo , Interleucina-1beta/metabolismo , Medios de Cultivo Condicionados/farmacología , FN-kappa B/metabolismo , Activación de Macrófagos
19.
Biomolecules ; 14(8)2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39199411

RESUMEN

M2-like macrophages promote tumor growth and cancer immune evasion. This study used an in vitro model to investigate how hypoxia and tumor metabolism affect macrophage polarization. Liver cancer cells (HepG2 and VX2) and macrophages (THP1) were cultured under hypoxic (0.1% O2) and normoxic (21% O2) conditions with varying glucose levels (2 g/L or 4.5 g/L). Viability assays and extracellular pH (pHe) measurements were conducted over 96 hours. Macrophages were exposed to the tumor-conditioned medium (TCM) from the cancer cells, and polarization was assessed using arginase and nitrite assays. GC-MS-based metabolic profiling quantified TCM meta-bolites and correlated them with M2 polarization. The results showed that pHe in TCMs decreased more under hypoxia than normoxia (p < 0.0001), independent of glucose levels. The arginase assay showed hypoxia significantly induced the M2 polarization of macrophages (control group: p = 0.0120,0.1%VX2-TCM group: p = 0.0149, 0.1%HepG2-TCM group: p < 0.0001, 0.1%VX2-TCMHG group: p = 0.0001, and 0.1%HepG2-TCMHG group: p < 0.0001). TCMs also induced M2 polarization under normoxic conditions, but the strongest M2 polarization occurred when both tumor cells and macrophages were incubated under hypoxia with high glucose levels. Metabolomics revealed that several metabolites, particularly lactate, were correlated with hypoxia and M2 polarization. Under normoxia, elevated 2-amino-butanoic acid (2A-BA) strongly correlated with M2 polarization. These findings suggest that targeting tumor hypoxia could mitigate immune evasion in liver tumors. Lactate drives acidity in hypoxic tumors, while 2A-BA could be a therapeutic target for overcoming immunosuppression in normoxic conditions.


Asunto(s)
Neoplasias Hepáticas , Macrófagos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Humanos , Macrófagos/metabolismo , Macrófagos/inmunología , Células Hep G2 , Hipoxia de la Célula , Glucosa/metabolismo , Medios de Cultivo Condicionados/farmacología , Línea Celular Tumoral , Concentración de Iones de Hidrógeno , Arginasa/metabolismo , Supervivencia Celular
20.
Front Immunol ; 15: 1367432, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994364

RESUMEN

Background: Innovative therapies against bacterial infections are needed. One approach is to focus on host-directed immunotherapy (HDT), with treatments that exploit natural processes of the host immune system. The goals of this type of therapy are to stimulate protective immunity while minimizing inflammation-induced tissue damage. We use non-traditional large animal models to explore the potential of the mammosphere-derived epithelial cell (MDEC) secretome, consisting of all bioactive factors released by the cells, to modulate host immune functions. MDEC cultures are enriched for mammary stem and progenitor cells and can be generated from virtually any mammal. We previously demonstrated that the bovine MDEC secretome, collected and delivered as conditioned medium (CM), inhibits the growth of bacteria in vitro and stimulates functions related to tissue repair in cultured endothelial and epithelial cells. Methods: The immunomodulatory effects of the bovine MDEC secretome on bovine neutrophils, an innate immune cell type critical for resolving bacterial infections, were determined in vitro using functional assays. The effects of MDEC CM on neutrophil molecular pathways were explored by evaluating the production of specific cytokines by neutrophils and examining global gene expression patterns in MDEC CM-treated neutrophils. Enzyme linked immunosorbent assays were used to determine the concentrations of select proteins in MDEC CM and siRNAs were used to reduce the expression of specific MDEC-secreted proteins, allowing for the identification of bioactive factors modulating neutrophil functions. Results: Neutrophils exposed to MDEC secretome exhibited increased chemotaxis and phagocytosis and decreased intracellular reactive oxygen species and extracellular trap formation, when compared to neutrophils exposed to control medium. C-X-C motif chemokine 6, superoxide dismutase, peroxiredoxin-2, and catalase, each present in the bovine MDEC secretome, were found to modulate neutrophil functions. Conclusion: The MDEC secretome administered to treat bacterial infections may increase neutrophil recruitment to the site of infection, stimulate pathogen phagocytosis by neutrophils, and reduce neutrophil-produced ROS accumulation. As a result, pathogen clearance might be improved and local inflammation and tissue damage reduced.


Asunto(s)
Células Epiteliales , Neutrófilos , Secretoma , Animales , Bovinos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Secretoma/metabolismo , Femenino , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Citocinas/metabolismo , Fagocitosis , Glándulas Mamarias Animales/inmunología , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Células Cultivadas , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA