Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Parasit Vectors ; 17(1): 192, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654385

RESUMEN

BACKGROUND: Infection with Angiostrongylus cantonensis (AC) in humans or mice can lead to severe eosinophilic meningitis or encephalitis, resulting in various neurological impairments. Developing effective neuroprotective drugs to improve the quality of life in affected individuals is critical. METHODS: We conducted a Gene Ontology enrichment analysis on microarray gene expression (GSE159486) in the brains of AC-infected mice. The expression levels of melanin-concentrating hormone (MCH) were confirmed through real-time quantitative PCR (RT-qPCR) and immunofluorescence. Metabolic parameters were assessed using indirect calorimetry, and mice's energy metabolism was evaluated via pathological hematoxylin and eosin (H&E) staining, serum biochemical assays, and immunohistochemistry. Behavioral tests assessed cognitive and motor functions. Western blotting was used to measure the expression of synapse-related proteins. Mice were supplemented with MCH via nasal administration. RESULTS: Postinfection, a marked decrease in Pmch expression and the encoded MCH was observed. Infected mice exhibited significant weight loss, extensive consumption of sugar and white fat tissue, reduced movement distance, and decreased speed, compared with the control group. Notably, nasal administration of MCH countered the energy imbalance and dyskinesia caused by AC infection, enhancing survival rates. MCH treatment also increased the expression level of postsynaptic density protein 95 (PSD95) and microtubule-associated protein-2 (MAP2), as well as upregulated transcription level of B cell leukemia/lymphoma 2 (Bcl2) in the cortex. CONCLUSIONS: Our findings suggest that MCH improves dyskinesia by reducing loss of synaptic proteins, indicating its potential as a therapeutic agent for AC infection.


Asunto(s)
Angiostrongylus cantonensis , Metabolismo Energético , Hormonas Hipotalámicas , Melaninas , Hormonas Hipofisarias , Infecciones por Strongylida , Animales , Femenino , Masculino , Ratones , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/parasitología , Encéfalo/patología , Hormonas Hipotalámicas/metabolismo , Hormonas Hipotalámicas/farmacología , Melaninas/metabolismo , Melaninas/farmacología , Hormonas Hipofisarias/metabolismo , Hormonas Hipofisarias/farmacología , Infecciones por Strongylida/patología
2.
Medicina (Kaunas) ; 59(12)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38138165

RESUMEN

Background and Objectives: Cancer is the second-most-important deadly disease in the world, leading to severe socioeconomic consequences and posing a public threat. Consequently, breast and colorectal cancers are significant cancer types that affect women and men more commonly, respectively. Treatment failure or recurrent diseases frequently occur due to resistance, in addition to the side effects of the currently available anticancer agents. Therefore, in this study, herbal melanin anticancer activity was investigated against human breast adenocarcinoma (MDA-MB-231) and human colorectal (HCT 116) cell proliferation and the expression of downregulated anti-apoptotic proteins and upregulated pro-apoptotic p53. Materials and Methods: MDA-MB-231 and HCT 116 cells were monitored for their real-time proliferation properties using Xcelligence. Herbal melanin of various concentrations significantly inhibited MDA-MB-231 and HCT 116 cell proliferation. Then, the expression of proapoptotic and anti-apoptotic proteins such as p53, Bcl-2 and Bcl-xl was studied using Western blotting. Results: The Bcl-2 and Bcl-xl expressions were downregulated, while the p53 expression was upregulated after treatment with herbal melanin. Similarly, the expression of apoptotic proteins such as Bcl-2, Bcl-xl, XIAP, Survivin, Bid, Bax, p53, Cytochrome C, PARP genes and mRNA was studied after herbal melanin treatment using real-time PCR, which revealed the downregulation of Bcl-2, Bcl-xl, XIAP and Survivin and the upregulation of Bid, Bax, p53, Cytochrome C and PARP apoptotic protein expression. Also, caspase 3 and 9 expressions were monitored after the treatment with herbal melanin, which revealed the upregulation of both the MDA-MB-231 and HCT 116 cell types. Conclusions: Overall, herbal melanin can be used as an alternative anticancer agent against the MDA-MB-231 and HCT 116 cell types.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Femenino , Humanos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/farmacología , Proteínas Reguladoras de la Apoptosis/uso terapéutico , Células HCT116 , Proteína p53 Supresora de Tumor/genética , Survivin/metabolismo , Survivin/farmacología , Survivin/uso terapéutico , Melaninas/metabolismo , Melaninas/farmacología , Melaninas/uso terapéutico , Apoptosis , Proteína X Asociada a bcl-2/genética , Citocromos c/metabolismo , Citocromos c/farmacología , Citocromos c/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proliferación Celular , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/genética , Línea Celular Tumoral
3.
Microbiol Spectr ; 11(3): e0068523, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37036370

RESUMEN

Blocking of nutrient uptake and amino acid biosynthesis are considered potential targets for next-generation antifungal drugs against pathogenic fungi, including Cryptococcus neoformans. In this regard, the sulfate assimilation pathway is particularly attractive, as it is only present in eukaryotes such as plants and fungi, yet not in mammals. Here, we demonstrated that the adenylyl sulfate kinase (Met14) in the sulfate assimilation pathway is not essential yet is required for the viability of C. neoformans due to its involvement in biosynthesis of two sulfur-containing amino acids, cysteine and methionine. Met14-dependent cysteine and methionine biosynthesis was found to significantly contribute to a diverse range of pathobiological processes in C. neoformans. Met14-dependent cysteine rather than methionine biosynthesis was also found to play pivotal roles in cell growth and tolerance to environmental stresses and antifungal drugs. In contrast, the Met14-dependent methionine biosynthesis was found to be more important than cysteine biosynthesis for the production of major cryptococcal virulence factors of melanin pigments and polysaccharide capsules. Finally, we also found that despite its attenuated virulence in an insect model, Galleria mellonella, the met14Δ mutant yielded no difference in virulence in a murine model of systemic cryptococcosis. Hence, clinical inhibition of Met14-dependent amino acid biosynthetic pathways may not be advantageous for the treatment of systemic cryptococcosis. IMPORTANCE Current antifungal drugs have several limitations, such as drug resistance, severe side effects, and a narrow spectrum. Therefore, novel antifungal targets are urgently needed. To this end, fungal sulfur amino acid biosynthetic pathways are considered potential targets for development of new antifungal agents. Here, we demonstrated that Met14 in the sulfate assimilation pathway promotes growth, stress response, and virulence factor production in C. neoformans via synthesis of sulfur-containing amino acids methionine and cysteine. Met14-dependent cysteine rather than methionine synthesis was found to be critical for growth and stress responses, whereas Met14-dependent methionine synthesis was more important for the production of antiphagocytic capsules and antioxidant melanin in C. neoformans. Surprisingly, deletion of the MET14 gene was found to attenuate cryptococcal virulence in an insect model, yet not in a murine model. Collectively, our results showed that Met14-dependent cysteine and methionine biosynthesis play roles that are distinct from each other in C. neoformans. Moreover, Met14 is unlikely to be a suitable anticryptococcal drug target.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Animales , Ratones , Cryptococcus neoformans/genética , Cisteína/metabolismo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Modelos Animales de Enfermedad , Melaninas/metabolismo , Melaninas/farmacología , Cápsulas/metabolismo , Cápsulas/farmacología , Criptococosis/microbiología , Factores de Virulencia/metabolismo , Metionina/metabolismo , Metionina/farmacología , Azufre/metabolismo , Sulfatos/metabolismo , Sulfatos/farmacología , Mamíferos
4.
J Mol Med (Berl) ; 101(5): 581-593, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37032347

RESUMEN

UVB exposure accelerates skin aging and pigmentation. Melatonin effectively regulates tyrosinase (TYR) activity and aging. The purpose of this study was to determine the association between premature senescence and pigmentation, and the mechanism of melanin synthesis effected by melatonin. Primary melanocytes were extracted and identified from the male foreskin. To inhibit TYR expression, primary melanocytes were transduced with the lentivirus pLKD-CMV-EGFP-2A-Puro-U6-TYR. The wild-type TYR(+/+) and TYR(-/-) or TYR(+/-) knockout C57BL/6 J mice were used to determine the role of TYR on melanin synthesis in vivo. Results showed that UVB-induced melanin synthesis is dependent on TYR in primary melanocytes and mice. Furthermore, in primary melanocytes pretreated with Nutlin-3 or PFT-α to up or downregulate p53, results showed that premature senescence and melanin synthesis increased in primary melanocytes after UVB irradiation at 80 mJ/cm2, and further increased after being treated with Nutlin-3, while significantly decreased with PFT-α. In addition, melatonin inhibited UVB-induced premature senescence associated with inactivation of p53 and phosphorylation of p53 on Ser15 (ser-15), a decrease of melanin synthesis accompanied by reduced TYR expression. Moreover, skin erythema and pigmentation induced by UVB were reduced in the dorsal and ear skin of mice topically pretreated with 2.5% melatonin. These indicate that melatonin inhibits UVB-induced senescence-associated pigmentation via the p53-TYR pathway in primary melanocytes and prevents pigmentation obviously in the dorsal and ear skin of C57BL/6 J mice after UVB irradiation. KEY MESSAGES: P53 links UVB irradiation-induced senescence and senescence-associated pigmentation and regulates TYR in primary melanocytes after UVB irradiation. Melatonin inhibits senescence-associated pigmentation through the p53-TYR pathway in primary melanocytes. Melatonin prevents skin erythema and melanin pigmentation induced by UVB irradiation in the dorsal and ear skin of C57BL/6J mice.


Asunto(s)
Melaninas , Melatonina , Humanos , Masculino , Animales , Ratones , Melaninas/metabolismo , Melaninas/farmacología , Melatonina/farmacología , Melatonina/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pigmentación de la Piel , Ratones Endogámicos C57BL , Melanocitos/metabolismo , Melanocitos/efectos de la radiación , Eritema/metabolismo
5.
Int J Biol Macromol ; 237: 124176, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37023589

RESUMEN

Application of Combined photodynamic therapy (PDT) and photothermal therapy (PTT) has become one of the most promising strategy to replace antibiotics and avoid the epidemic of drug-resistant strains during wound healing. However, high amount of reactive oxygen species (ROS) and high temperature cause severe stress response to normal tissues, leading to potential risks of wound healing. Herein, a three-dimension chitosan hydrogel melanin-glycine-C60 nanoparticles (MGC NPs) were prepared to realized effective anti-bacterial activity, immune activation and macrophage autophagy promotion in three-dimensional wound space without triggering stress response. MGC NP is a composite polymer material composed of natural melanin polymer, oligopeptide and carbon-based material, which showed excellent biological safety. By regulating the peptide length between melanin and C60 and nanoparticle content, a high ROS/heat environment at the upper wound site and a low ROS/heat environment at the lower region adjacent to the wound tissue were established to obtain a three-dimension hydrogel with precise PDT and PTT efficiency in different regions. Highly effective PDT/PTT was used to kill microorganisms in upper region, thus providing a barrier to reduce microbial infection. Mild PDT/PTT in lower region promoted the polarization of M1 macrophage to M2 macrophage and activated autophagy of M2 macrophages, regulating the immune microenvironment and promoting wound repair. In conclusion, the novel three-dimensional PDT/PTT therapy based on natural macromolecules proposed in this study accelerates wound healing through dual pathways on the premise of avoiding wound stress response, which is of great significance for the development of clinical strategies for phototherapy.


Asunto(s)
Quitosano , Nanopartículas , Fotoquimioterapia , Quitosano/farmacología , Melaninas/farmacología , Hidrogeles/farmacología , Especies Reactivas de Oxígeno/farmacología , Nanopartículas/química , Macrófagos , Cicatrización de Heridas , Antibacterianos/farmacología
6.
An Acad Bras Cienc ; 95(1): e20211581, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36946809

RESUMEN

Ectothermic animals present melanin-containing cells in their integument and viscera. Besides cutaneous melanophores, amphibians have melanomacrophages in the hepatic parenchyma and melanocytes in the viscera, which are also present in their testicular stroma. The native melanocyte stimulating hormone (α-MSH) is the main hormone that modulates the color change in melanophores. However, we still know too little about how the α-MSH acts in vivo on visceral melanin-containing cells. In this study, we collected 30 adult males of Physalaemus nattereri (Anura, Leptodactylidae) to evaluate the short-term effects of α-MSH on melanophores, melanocytes and melanomacrophages under light microscopy. For this, we injected 0.05 ml of a single intraperitoneal dose containing 2.5x10-7 mmol/10g of α-MSH, diluted in ringer solution, in five experimental groups with five individuals each one. The different groups were analyzed after 1, 3, 6, 12 and 24h. The control group with five other individuals received only 0.05 ml of ringer solution. The skin pigmentation increased quickly after animals received the hormone α-MSH with the consequent darkening of the body (body darkness). Melanophores, melanocytes and melanomacrophages responded similarly to the test, with an increase in the area containing melanin. However, melanophores and melanomacrophages reached their darkest pigmentation in a shorter period of time in comparison to the testicular melanocytes, probably due to specific metabolic characteristics of each organ. Thus, we verified that the three types of cells, although present in different organs, are responsive to the native hormone α-MSH, which enables us to treat them as a pigmentary system.


Asunto(s)
Melaninas , alfa-MSH , Masculino , Animales , Melaninas/metabolismo , Melaninas/farmacología , alfa-MSH/farmacología , alfa-MSH/metabolismo , Anuros , Solución de Ringer/farmacología , Piel
7.
Acta Cir Bras ; 37(10): e371002, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36542040

RESUMEN

PURPOSE: The active melanocytes in the skin were affected by hormones and ultraviolet (UV) irradiation. Licorice zinc has a whitening effect, which may have a prominent potential in the treatment of pigmented skin disease. METHODS: Modeling chloasma C57BL/6J mice by daily progesterone injection (15 mg/kg) and ultraviolet B (UVB) irradiation (λ = 312 nm, 2 h/day) for 30 days. Then, mice were given 0.65, 1.3, and 2.6 (g/kg) of licorice zinc and tranexamic acid 250 mg daily by oral administration for 14 days, respectively. Hematoxylin and eosin and Fontana-Masson staining, and Western blotting (WB) were performed to test the inhibitory of melanogenesis and activation of c-Jun-N-terminal (JNK)/p38 mitogen-activated protein kinases (MAPK) for licorice zinc. Melanogenesis was induced by α-melanocyte-stimulating hormone in vitro. Cell counting kit-8, melanin content determination, and WB were performed to verify the inhibitory effect of licorice zinc on melanogenesis. RESULTS: The present study showed that licorice zinc decreased melanin formation, cutaneous tissue injury, and the phosphorylation of JNK and P38MAPK, which was caused by UVB irradiation in vivo. In vitro, licorice zinc showed opposite effects from JNK/p38 activator. Meanwhile, tyrosinase-related protein-1, tyrosinase, and microphthalmia-associated transcription factor were decreased too. CONCLUSIONS: Licorice zinc induced a decrease in melanin synthesis by inhibiting the JNK and the P38MAPK signaling pathway, suggesting licorice zinc is a potential agent of anti-chloasma.


Asunto(s)
Glycyrrhiza , Melaninas , Animales , Ratones , Melaninas/metabolismo , Melaninas/farmacología , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas p38 Activadas por Mitógenos , Glycyrrhiza/metabolismo , Zinc/farmacología , Ratones Endogámicos C57BL , Línea Celular Tumoral
8.
Biomed Res ; 43(2): 31-39, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431290

RESUMEN

Silibinin is a flavonolignan isolated from milk thistle (Silybum marianum). Silibinin has been reported to possess multiple biological activities; however, its effect on melanogenesis remains unclear. This study investigated the effect of silibinin on melanogenesis in melanoma cells and the associated molecular mechanism. Our findings demonstrated that silibinin markedly increased melanin content in murine B16-F1 and human HMV-II melanoma cells. Silibinin activated intracellular tyrosinase activity and expression of tyrosinase, tyrosinase-related protein (TRP)-1, TRP-2, and microphthalmia-associated transcription factor (MITF). Furthermore, silibinin enhanced the phosphorylation of cyclic AMP-responsive element-binding protein (CREB), protein kinase A (PKA), and p38 mitogen-activated protein kinase (MAPK) but not of Akt and extracellular signal-regulated kinase (ERK). The specific PKA (H-89) and p38 (SB203580) inhibitors significantly attenuated silibinin-mediated melanin synthesis. These results suggest that silibinin is an effective stimulator of melanogenesis through upregulation of the protein expression of melanogenic enzymes activated by the PKA and p38 pathways, leading to CREB phosphorylation and MITF expression. Therefore, silibinin may have potential for use in the treatment of hypopigmentation disorders.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Melanoma , Animales , Línea Celular Tumoral , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/farmacología , Humanos , Sistema de Señalización de MAP Quinasas , Melaninas/metabolismo , Melaninas/farmacología , Melanoma/tratamiento farmacológico , Ratones , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/farmacología , Fosforilación , Silibina/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
Planta Med ; 88(13): 1199-1208, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35211932

RESUMEN

Magnoliae Flos is a traditional herbal medicine used to treat nasal congestion associated with headache, empyema, and allergic rhinitis. In our preliminary screening of crude drugs used in Japanese Kampo formulas for melanin synthesis, the methanol extract of Magnoliae Flos was found to exhibit strong melanin synthesis activity. However, there have been no studies evaluating the effects of Magnoliae Flos or its constituents on melanogenesis. The present study aimed to isolate the active compounds from Magnoliae Flos that activate melanin synthesis in melanoma cells and three-dimensional human skin equivalent, and to investigate the molecular mechanism underlying melanin induction. The methanol extract of Magnoliae Flos induced an increase of melanin content in both B16-F1 and HMV-II cells. A comparison of melanin induction by three fractions prepared from the extract showed that the ethyl acetate fraction markedly induced melanin synthesis. Bioassay-guided separation of the ethyl acetate fraction resulted in the isolation of seven lignans (1:  - 7: ). Among them, (+)-magnolin (5: ) strongly induced melanin synthesis and intracellular tyrosinase activity. Furthermore, the ethyl acetate fraction and 5: clearly induced melanin content in a three-dimensional human skin equivalent. Molecular analysis revealed that 5: triggered the protein expression of tyrosinase, tyrosinase-related protein-1, and tyrosinase-related protein-2. Further analysis of transcriptional factors and signaling pathways demonstrated that 5: induces the protein expression of tyrosinase, tyrosinase-related protein-1, and tyrosinase-related protein-2 activated by the protein kinase A- and p38 mitogen-activated protein kinase-dependent pathways, leading to cAMP-responsive element-binding protein phosphorylation and microphthalmia-associated transcription factor expression. These findings demonstrate the potential of 5: as a potent therapeutic agent for hypopigmentation.


Asunto(s)
Lignanos , Melanoma Experimental , Melanoma , Humanos , Animales , Factor de Transcripción Asociado a Microftalmía/metabolismo , Melaninas/metabolismo , Melaninas/farmacología , Monofenol Monooxigenasa , Metanol , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Lignanos/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Transducción de Señal , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma Experimental/tratamiento farmacológico , Línea Celular Tumoral
10.
Immun Inflamm Dis ; 10(1): 70-77, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34614305

RESUMEN

INTRODUCTION: Imiquimod plays an important role in the management of condyloma and premalignant lesions. Successively, an increase of hypopigmented lesions following imiquimod application has been reported. However, the mechanisms of imiquimod on melanocytes remain unclear. This study was designed to assess the effect of Imiquimod on the functions of melanocytes in vitro. METHODS: Primary cultured melanocytes were isolated from normal control skin tissue. After incubation with imiquimod for 48 h in vitro, cell viability was analyzed by cell counting kit-8 assay. Apoptosis was detected using the Annexin V-fluorescein-5-isothiocyanate flow cytometry assay. Melanin content and tyrosinase activity in melanocytes were measured by colorimetric method and the modified dopachrome method. The production of inflammatory cytokine interleukin 8 (IL-8), IL-6, and soluble ICAM-1 (soluble Intercellular Adhesion Molecule-1[sICAM-1]) in melanocytes were measured by enzyme-linked immunosorbent assay (ELISA). Toll-like receptor 7 (TLR7), toll-like receptor 9 (TLR9) protein, and autophagy-related proteins microtubule-associated protein 1A/1B-light chain 3 (LC3-II), p62, mechanistic target of rapamycin (mTOR), and Atg5 were assessed using western blot analysis. RESULTS: Imiquimod significantly inhibited the activity of tyrosinase activity and decreased melanin content in melanocytes and significantly increased apoptosis and IL-6, IL-8, and sICAM-1 production in melanocytes. Moreover, the expression of TLR7 and TLR9 proteins were significantly increased, and the expression of mTOR, p62 protein were markedly decreased, but the expression of LC3II/I and Atg5 protein were significantly increased in melanocytes after incubating with imiquimod. CONCLUSIONS: This study shows that imiquimod directly inhibits melanogenesis and increases melanocyte apoptosis rates. These effects combined with the upregulation of TLR7 and TLR9 together with increased autophagy activity and inflammatory cytokines production, might be the main reasons leading to hypopigmented lesions after imiquimod application.


Asunto(s)
Vitíligo , Apoptosis , Humanos , Imiquimod/metabolismo , Imiquimod/farmacología , Melaninas/metabolismo , Melaninas/farmacología , Melanocitos/metabolismo , Melanocitos/patología , Vitíligo/inducido químicamente , Vitíligo/metabolismo , Vitíligo/patología
11.
Adv Sci (Weinh) ; 8(20): e2100505, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34414693

RESUMEN

The efficacy of cardiac regenerative strategies for myocardial infarction (MI) treatment is greatly limited by the cardiac microenvironment. The combination of reactive oxygen species (ROS) scavenging to suppress the oxidative stress damage and macrophage polarization to regenerative M2 phenotype in the MI microenvironment can be desirable for MI treatment. Herein, melanin nanoparticles (MNPs)/alginate (Alg) hydrogels composed of two marine-derived natural biomaterials, MNPs obtained from cuttlefish ink and alginate extracted from ocean algae, are proposed. Taking advantage of the antioxidant property of MNPs and mechanical support from injectable alginate hydrogels, the MNPs/Alg hydrogel is explored for cardiac repair by regulating the MI microenvironment. The MNPs/Alg hydrogel is found to eliminate ROS against oxidative stress injury of cardiomyocytes. More interestingly, the macrophage polarization to regenerative M2 macrophages can be greatly promoted in the presence of MNPs/Alg hydrogel. An MI rat model is utilized to evaluate the feasibility of the as-prepared MNPs/Alg hydrogel for cardiac repair in vivo. The antioxidant, anti-inflammatory, and proangiogenesis effects of the hydrogel are investigated in detail. The present study opens up a new way to utilize natural biomaterials for MI treatment and allows to rerecognize the great value of natural biomaterials in cardiac repair.


Asunto(s)
Antioxidantes/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Nanopartículas/química , Alginatos/química , Alginatos/farmacología , Animales , Antioxidantes/química , Polaridad Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Macrófagos/metabolismo , Melaninas/química , Melaninas/farmacología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo
12.
Sci Rep ; 11(1): 16649, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404820

RESUMEN

A soluble melanin pigment produced by Streptomyces sp. ZL-24 was purified and named StrSM. The elemental analysis of StrSM showed it consists of carbon, hydrogen, and oxygen. The spectrum analysis, including ultraviolet-visible absorption spectrum, Fourier-transform infrared spectrum, and pyrolysis-gas chromatography-mass spectrometry, indicated that StrSM might be pyomelanin. High performance liquid chromatography and liquid chromatography-mass spectra analysis of intermediate metabolite showed the presence of homogentisic acid (HGA). Moreover, the enzyme 4-hydroxyphenylpyruvate dioxygenase, involved in HGA biosynthesis, showed high activity during melanin production. Subsequently, a tyrosinase gene (melC2) and hydroxyphenylpyruvate dioxygenase gene double mutant demonstrated StrSM is pyomelanin. In vitro bioactivity assay showed that StrSM had excellent protective capability against SH-SY5Y cell oxidative injury. To our knowledge, the results firstly provide comprehensive data on Streptomyces pyomelanin identification and a promising candidate compound to treat oxidative injury of neurocytes.


Asunto(s)
Peróxido de Hidrógeno/toxicidad , Melaninas/farmacología , Estrés Oxidativo/efectos de los fármacos , Streptomyces/metabolismo , 4-Hidroxifenilpiruvato Dioxigenasa/genética , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión/métodos , Humanos , Espectrometría de Masas/métodos , Melaninas/biosíntesis , Melaninas/aislamiento & purificación , Espectroscopía Infrarroja por Transformada de Fourier/métodos
13.
Exp Oncol ; 43(1): 7-14, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33785718

RESUMEN

BACKGROUND: Toll-like receptor 4 (TLR4) is known to be involved in carcinogenesis and cancer progression. Changes in TLR4 expression are associated with changes in the expression of key cellular cytokines (transforming growth factor-ß (TGF-ß), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ)), which affect cancer progression and metastasis. AIM: To study changes in the expression of TLR4, TGF-ß, TNF-α, IFN-γ genes, the level of apoptosis and cell cycle distribution in human invasive urothelial carcinoma T24/83 cells under the treatment with polyphenolic adjuvant compound of fungal origin melanin, cytotoxic drug cisplatin, and combination of both. MATERIALS AND METHODS: T24/83 cells were incubated with cisplatin (0.05 mM), melanin (5 µg/ml), or their combination. The expression level of TLR-4, TGF-ß, INF-γ, TNF-α was evaluated by the real time polymerase chain reaction. The flow cytometry was used to study cell cycle distribution, proliferative activity and level of apoptosis. Morphological analysis of the Т24/83 cells was performed as well. RESULTS: Melanin, cisplatin, and their combination downregulate TLR4 expression (2.67; 1.28; and 2.73-fold decrease, respectively) and TNF-α expression (6.5; 1.4; and 1.7-fold decrease, respectively). Melanin did not affect TGF-ß expression while cisplatin caused 13-fold downregulation of TGF-ß. The combined use of cisplatin and melanin decreased TGF-ß expression by 6.5 times. The upregulation of IFN-γ by melanin, cisplatin, and their combination was demonstrated (4.3; 6.7; and 2-fold increase, respectively). All treatment modalities increased the level of apoptosis in T24/83 cells. Melanin treatment increased significantly the proportion of fibroblast-like cells in T24/83 culture with decreased cell adhesion to the substrate. CONCLUSIONS: Melanin, cisplatin, and combination of both agents affect significantly TLR4, TNF-α, TGF-ß, INF-γ expression, cell cycle distribution and morphology in T24/83 cells suggesting their transition to less aggressive phenotype.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Células Transicionales/patología , Cisplatino/farmacología , Melaninas/farmacología , Neoplasias de la Vejiga Urinaria/patología , Carcinoma de Células Transicionales/metabolismo , Línea Celular Tumoral , Humanos , Interferón gamma/efectos de los fármacos , Receptor Toll-Like 4/efectos de los fármacos , Factor de Crecimiento Transformador beta/efectos de los fármacos , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Neoplasias de la Vejiga Urinaria/metabolismo
14.
J Biomed Mater Res B Appl Biomater ; 109(10): 1534-1551, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33559310

RESUMEN

E. coli has become an important factor that can lead to cancer because of its ability to cause diverse intestinal changes. Nano-polymer materials provide ideal drug delivery systems for preparing antibacterial and anti-cancer drugs because of their unique structure, easy modification, and high drug loading. The modified natural melanin has the potential to be an excellent nano-carrier. By improving the water-solubility and biocompatibility of the loaded natural drug quercetin, the antibacterial effect of quercetin can be fully played. Here, natural melanin was extracted from frozen squid to synthesize carrier polydopamine (PDA) nanoparticles, and the natural drug quercetin (Q) was modified on the surface of PDA by π-π bond and covalent bond action to produce melanin-quercetin (PDA-Q). We also developed human small intestinal cancer cells (HIC) membrane-camouflaged melanin-Quercetin (PDA-Q) nanoparticles as an anti-cancer platform in vivo. The potential bacteriostatic mechanism was likely driven by the penetration of PDA-Q in E. coli cells, damaging the integrity of the membranes of E. coli and inducing cell death. The mice wound experiment and bacteremia model experiment revealed that C@PDA-Q had a strong inhibitory effect on E. coli in vivo. In addition, the results of the in vitro tumor test also revealed that C@PDA-Q had strong anti-tumor activity against HIC cells of human small intestinal cancer, and the IC50 value was 12.3 ± 0.7 µg/ml, which was slightly better than that for cisplatin. As both melanin nanoparticles and HIC membrane are natural biomaterials, the synthesized C@PDA-Q nano-polymer material shows great potential for use in anti-cancer nano-drug loading.


Asunto(s)
Antibacterianos/química , Antineoplásicos/química , Indoles/química , Melaninas/química , Sistema de Administración de Fármacos con Nanopartículas/química , Polímeros/química , Quercetina/química , Antibacterianos/farmacología , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Materiales Biocompatibles , Membrana Celular , Permeabilidad de la Membrana Celular , Escherichia coli/efectos de los fármacos , Humanos , Indoles/farmacología , Neoplasias Intestinales/tratamiento farmacológico , Intestino Delgado , Melaninas/farmacología , Polímeros/farmacología , Quercetina/farmacología , Solubilidad , Staphylococcus aureus/efectos de los fármacos , Agua
15.
J Photochem Photobiol B ; 216: 112126, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33516151

RESUMEN

Prolonged exposure to Ultra Violet Radiation (UVR) adversely alters the functions of many skin cell types causing skin cancer and photoaging, which had led to increase in demand for more safe and natural sunscreens against UVR. The present study focuses on production, structural characterization and evaluation of photoprotective nature of melanin pigment derived from lime dwelling Pseudomonas sp. Melanin was characterized by solubility, UV-Vis, FT-IR, 13C-CPMAS, ESI-MS spectroscopy, including particle size, melting point and elemental analyses. In vitro cytotoxicity and photo-protective effect of Pseudomonas derived melanin (Mel-P) against UV-B (Broad Band-BB) radiations were assessed on mouse fibroblasts NIH 3 T3 cell lines. Reactive Oxygen Species (ROS) generated in NIH 3 T3 cells upon UV-B (BB) exposure was determined and quantified by Fluorescent microscopic and Flow cytometric analyses. A natural melanin obtained from Pseudomonas sp. contains 5,6- dihydroxy indole 2-carboxyic acid (DHICA) as its basic constituent and possess typical properties of eumelanin as revealed by the characterization studies. Mel-P has shown cell viability of 61.33 ± 6.58% at the concentration of 500 µg/mL proving its non-cytotoxic effect. Owing to its anti-oxidant property, melanin efficiently protected the mouse fibroblast cells from UV-B (BB) irradiation in a dose dependant manner demonstrating its potential as an active photoprotective agent.


Asunto(s)
Compuestos de Calcio/química , Melaninas/química , Óxidos/química , Sustancias Protectoras/química , Pseudomonas/efectos de la radiación , Neoplasias Cutáneas/prevención & control , Protectores Solares/química , Células 3T3 , Animales , Antioxidantes/química , Antioxidantes/metabolismo , Compuestos de Calcio/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de la radiación , Humanos , Melaninas/metabolismo , Melaninas/farmacología , Ratones , Óxidos/metabolismo , Sustancias Protectoras/farmacología , Pseudomonas/metabolismo , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo , Piel , Solubilidad , Protectores Solares/metabolismo , Rayos Ultravioleta
16.
Nanomedicine ; 32: 102340, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33227540

RESUMEN

Copper(II) diethyldithiocarbamate complex (CuET), the metabolite of disulfiram complexed with copper, is the component responsible for cancer treatment efficacy of disulfiram. But the hydrophobic property of CuET limits its use in vivo, and an appropriate drug delivery system needs to be developed. Ultrasmall melanin nanoparticle (M-Dot) with excellent biosafety and biocompatibility properties has been synthesized in our previous studies. Herein we prepared CuET loaded with M-Dots through hydrophobic interaction, which could enhance the water solubility significantly. After the administration of M-Dots-CuET in mice tumor models, the nanoparticles showed good tumor accumulation as evidenced by the enhanced photoacoustic signal in tumor regions. M-Dots-CuET also displayed excellent tumor inhibition capability, and the tumor growth inhibition value (TGI) was 45.1%. When combined with photothermal therapy, the TGI reached up to 78.6%. In summary, M-Dots-CuET provide a new potential strategy for cancer theranostics.


Asunto(s)
Cobre/farmacología , Disulfiram/farmacología , Melaninas/farmacología , Neoplasias/terapia , Nanomedicina Teranóstica , Animales , Línea Celular Tumoral , Ditiocarba/química , Femenino , Hipertermia Inducida , Ratones , Ratones Endogámicos BALB C , Células 3T3 NIH , Nanopartículas/química , Nanopartículas/ultraestructura , Técnicas Fotoacústicas , Fototerapia
17.
World J Microbiol Biotechnol ; 36(10): 159, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32974753

RESUMEN

Melanin pigment has been produced and extracted from a wide variety of living forms ranging from microorganisms to higher organisms. Owing to the therapeutic nature of the pigment, various microbial populations have been explored for its production. Hence, we isolated a melanin producing yeast from the insect Bombyx mori gut microflora and identified it as Cryptococcus rajasthanensis based on the molecular characterization. The isolated yeast produced enhanced melanin pigment when cultured in the minimal L-tyrosine broth as compared to the Saboraud medium. The pigment was extracted and characterized as melanin based on UV-Visible spectroscopy, FTIR (Fourier-transform infrared) spectroscopy and 1H NMR (Nuclear magnetic resonance). The melanin pigment was evaluated as a potent bioactive molecule with bioactivity like antimicrobial, antioxidant, anti-inflammatory, and anticancer activity that describes the therapeutic nature of the extracted melanin pigment. Distinct from the biologically active role the melanin pigment isolated from the yeast, the Cryptococcus extract also exhibited killer toxin activity against the pathogenic yeast Candida albicans.


Asunto(s)
Basidiomycota/aislamiento & purificación , Bombyx/microbiología , Melaninas/aislamiento & purificación , Melaninas/farmacología , Animales , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Basidiomycota/crecimiento & desarrollo , Basidiomycota/metabolismo , Candida albicans/efectos de los fármacos , Medios de Cultivo/química , ADN de Hongos/genética , ADN Ribosómico/genética , Microbioma Gastrointestinal , ARN Ribosómico 18S/genética , Espectroscopía Infrarroja por Transformada de Fourier , Tirosina/metabolismo
18.
Nanomedicine ; 29: 102248, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32574686

RESUMEN

Melanin is a group of natural pigments found in living organism. It can be used for positron emission tomography (PET) imaging due to its inherent chelating ability to radioactive cupric ion. This study was to prepare 64Cu-labeled PEGylated melanin nanoparticles (64Cu-PEG-MNPs), and to further take advantage of the enhanced permeability and retention (EPR) effect of radiolabeled nanoparticles to realize the integration of tumor diagnosis and treatment. We successfully synthesized PEG-MNPs. Saline and serum stability experiments demonstrated good stability. PET/CT showed high tumor aggregation. Moreover, 64Cu-PEG-MNPs resulted in a therapeutic effect on the A431 tumor-bearing mice in the treatment group. The pathological results further confirmed that the therapeutic doses of 64Cu-PEG-MNPs cause pathological changes of tumor tissues while showing minimal toxicity to normal tissues. Our data successfully demonstrate the good imaging performance of 64Cu-PEG-MNPs on A431 tumors and further proved its therapeutic effect, highlighting a great potential in targeted radionuclide therapy.


Asunto(s)
Melaninas/farmacología , Nanopartículas/química , Neoplasias/radioterapia , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Animales , Línea Celular Tumoral , Radioisótopos de Cobre/farmacología , Humanos , Melaninas/química , Ratones , Nanopartículas/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Ensayos Antitumor por Modelo de Xenoinjerto
19.
BMC Complement Med Ther ; 20(1): 154, 2020 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-32448225

RESUMEN

BACKGROUND: Herbal melanin (HM) is a dark pigment extracted from the seed coat of Nigella sativa L. and known to exert biological effects via toll-like receptor 4 (TLR4). Recently, TLR4 was described as involved in natural programmed cell death (apoptosis). Tumor and embryonic cells are used as in vitro cellular models for drug and anti-cancer agent screening. To date, no cytotoxic studies have been reported of HM in TLR4-positive acute monocytic leukemia THP-1 cells compared to TLR4-negative human embryonic kidney HEK293 cells. METHODS: We studied the anti-proliferative effects of several HM concentrations on THP-1 and HEK293 cells by evaluating cell viability using the CellTiter-Glo® luminescent assay, assessing the TLR4 expression level, determining the apoptotic status, and analyzing the cell cycle distribution using flow cytometry. Apoptotic pathways were investigated using mitochondrial transition pore opening, caspase activity assays and immunoblot technology. RESULTS: Low HM concentrations did not affect THP-1 cell viability, but high HM concentrations (62.5-500 µg/mL) did decrease THP-1 cell viability and induced G0/G1 phase cell cycle arrest. Only at the highest concentration (500 µg/mL), HM slightly increased the TLR4 expression on the THP-1 cell surface, concomitantly upregulated TLR4 whole protein and gene expression, and induced apoptosis in THP-1 cells via activation of the extrinsic and intrinsic pathways. No change of apoptotic status was noticed in TLR4-negative HEK293 cells, although HM decreased HEK293 cell viability and induced cell growth arrest in the G2 phase. CONCLUSION: HM exerts distinct anti-proliferative effects on human acute monocytic leukemia and embryonic kidney cells mainly through cell cycle interference in a TLR4-independent manner and through apoptosis induction in a TLR4-dependent manner, as observed in only the THP-1 cells.


Asunto(s)
Leucemia Monocítica Aguda/patología , Melaninas/farmacología , Nigella sativa/química , Extractos Vegetales/farmacología , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Leucemia Monocítica Aguda/tratamiento farmacológico , Semillas/química , Células THP-1 , Receptor Toll-Like 4/metabolismo
20.
Acta Biomater ; 105: 26-43, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-32014585

RESUMEN

Melanin is a biopolymer of easy and cheap availability that can be found among the living organisms and excels for its biocompatibility and biodegradability properties, along with scavenging abilities, metal chelation and electronic conductance. This biomaterial can act as a nanocarrier or agent itself to be used in diverse biomedical applications, such as imaging, controlled drug release, bioengineering and bioelectronics, antioxidant applications and theranostics. In this review, the melanin source and structure, its physicochemical properties, melanin-like polymers as well as the differences among those will be elucidated. The focus will be the discussion of the current approaches that apply melanin nanoparticles (MNPs) and melanin-like nanoparticles (MLNPs) in the biomedical field, to which promising capabilities have been attributed, regarding optoelectronic, photoconductivity and photoacoustic. The use of these nanoparticles, in the last 10 years, in topics as drug delivery or theranostics will be detailed and the major achievements will be discussed. Overall, we anticipate that melanin can drive us toward a new paradigm in medical diagnostics and treatments, since applying melanin features possibly its use as a theranostics nanocarrier agent, not only for diagnostics, but also for photothermal therapy and controlled drug release through chemotherapy. STATEMENT OF SIGNIFICANCE: We present here a timely and opportune review article focusing the significant potential of melanin nanoparticles in biomedical applications, which will be discussed thoroughly. This biomaterial presents multiple capabilities that may be taken into consideration towards cancer theranostics, expecting a high future impact in the nanosized-platforms design and performance.


Asunto(s)
Tecnología Biomédica , Melaninas/farmacología , Nanopartículas/química , Animales , Antioxidantes/farmacología , Sistemas de Liberación de Medicamentos , Humanos , Melaninas/química , Nanomedicina Teranóstica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA