Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Extracell Vesicles ; 13(10): e12524, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39400457

RESUMEN

Bacterial infections, especially those caused by multidrug-resistant pathogens, pose a significant threat to public health. Vaccines are a crucial tool in fighting these infections; however, no clinically available vaccine exists for the most common bacterial infections, such as those caused by Pseudomonas aeruginosa. Herein, a multiantigenic antibacterial nanovaccine (AuNP@HMV@SPs) is reported to combat P. aeruginosa infections. This nanovaccine utilizes the hybrid membrane vesicles (HMVs) created by fusing macrophage membrane vesicles (MMVs) with bacterial outer membrane vesicles (OMVs). The HMVs mitigate the toxic effects of both OMVs and bacterial secreted toxins (SP) adsorbed on the surface of MMVs, while preserving their stimulating properties. Gold nanoparticles (AuNPs) are utilized as adjuvant to enhance immune response without comprising safety. The nanovaccine AuNP@HMV@SPs induces robust humoral and cellular immune responses, leading to destruction of bacterial cells and neutralization of their secreted toxins. In murine models of septicemia and pneumonia caused by P. aeruginosa, AuNP@HMV@SPs exhibits superior prophylactic efficacy compared to control groups including OMVs, or MMVs@SPs and HMV@SPs, achieving 100% survival in septicemia and > 99.9% reduction in lung bacterial load in pneumonia. This study highlights AuNP@HMV@SPs as a safe and effective antibacterial nanovaccine, targeting both bacteria and their secreted toxins, and offers a promising platform for developing multiantigenic antibacterial vaccines against multidrug-resistant pathogens.


Asunto(s)
Oro , Nanopartículas del Metal , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/efectos de los fármacos , Ratones , Oro/farmacología , Oro/química , Nanopartículas del Metal/química , Antibacterianos/farmacología , Vesículas Extracelulares/inmunología , Vacunas Bacterianas/inmunología , Femenino , Membrana Externa Bacteriana/inmunología , Macrófagos/inmunología , Nanovacunas
2.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2258-2269, 2024 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-39044589

RESUMEN

This study aims to prepare bacterial outer membrane vesicles (OMVs) with anti-glypican-3 (GPC3) single-chain antibody and analyze their targeting effects on Hep G2 hepatocellular carcinoma (HCC) cells and tissue. The recombinant plasmid pET28a-Hbp-hGC 33-scFv was constructed by ligating Hbp-hGC 33-scFv to pET28a. Western blotting was employed to determine the prokaryotic expression of the fusion protein Hbp-hGC 33-scFv, on the basis of which the optimal induction conditions were determined. Hbp-hGC 33-OMVs secreted from the recombinant expressing strains were collected by ultrafiltration concentration and then characterized. The localization of Hbp-hGC 33-scFv in bacteria and Hbp-hGC 33-OMVs was analyzed by immune electron microscopy. The binding of Hbp-hGC 33-scFv to Hep G2 cells was observed by immunofluorescence. The Hep G2 tumor-bearing mouse model was established, and the targeted retention of Hbp-hGC 33-OMVs in the tumor site of mice was observed by a fluorescence imaging system in vivo. The results showed that the actual molecular weight of the fusion protein was 175.3 kDa, and the optimal induction conditions were as follows: OD600=0.5, IPTG added at a final concentration of 0.5 mmol/L, and overnight induction at 16 ℃. The prepared Hbp-hGC 33-OMVs were irregular spherical structures with an average particle size of (112.3±4.6) nm, expressing OmpC, OmpA, and the fusion protein Hbp-hGC 33-scFv. The Hbp-hGC 33-OMVs prepared in this study demonstrated stronger ability of binding to Hep G2 cells than the wild-type OMVs (P=0.008). All the data indicated that Hbp-hGC 33-OMVs with anti-GPC3 single-chain antibody were successfully prepared and could be used for research on the targeted therapy of hepatocellular carcinoma.


Asunto(s)
Membrana Externa Bacteriana , Carcinoma Hepatocelular , Glipicanos , Neoplasias Hepáticas , Anticuerpos de Cadena Única , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/química , Animales , Ratones , Humanos , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/metabolismo , Membrana Externa Bacteriana/metabolismo , Membrana Externa Bacteriana/inmunología , Células Hep G2 , Glipicanos/inmunología , Glipicanos/metabolismo , Glipicanos/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/biosíntesis , Escherichia coli/genética , Escherichia coli/metabolismo , Sistemas de Liberación de Medicamentos , Ratones Desnudos
3.
Adv Sci (Weinh) ; 11(33): e2400049, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38952055

RESUMEN

In recent years, cancer immunotherapy has undergone a transformative shift toward personalized and targeted therapeutic strategies. Bacteria-derived outer membrane vesicles (OMVs) have emerged as a promising and adaptable platform for cancer immunotherapy due to their unique properties, including natural immunogenicity and the ability to be engineered for specific therapeutic purposes. In this review, a comprehensive overview is provided of state-of-the-art techniques and methodologies employed in the engineering of versatile OMVs for cancer immunotherapy. Beginning by exploring the biogenesis and composition of OMVs, unveiling their intrinsic immunogenic properties for therapeutic appeal. Subsequently, innovative approaches employed to engineer OMVs are delved into, ranging from the genetic engineering of parent bacteria to the incorporation of functional molecules. The importance of rational design strategies is highlighted to enhance the immunogenicity and specificity of OMVs, allowing tailoring for diverse cancer types. Furthermore, insights into clinical studies and potential challenges utilizing OMVs as cancer vaccines or adjuvants are also provided, offering a comprehensive assessment of the current landscape and future prospects. Overall, this review provides valuable insights for researchers involved in the rapidly evolving field of cancer immunotherapy, offering a roadmap for harnessing the full potential of OMVs as a versatile and adaptable platform for cancer treatment.


Asunto(s)
Membrana Externa Bacteriana , Inmunoterapia , Neoplasias , Inmunoterapia/métodos , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Membrana Externa Bacteriana/inmunología , Vacunas contra el Cáncer/inmunología , Vesículas Extracelulares/inmunología , Bacterias/inmunología , Bacterias/genética , Animales
4.
Drug Des Devel Ther ; 18: 1833-1853, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828018

RESUMEN

Purpose: Given the potent immunostimulatory effects of bacterial outer membrane vesicles (OMVs) and the significant anti-colon tumor properties of Parabacteroides distasonis (Pd), this study aimed to elucidate the role and potential mechanisms of Pd-derived OMVs (Pd-OMVs) against colon cancer. Methods: This study isolated and purified Pd-OMVs from Pd cultures and assessed their characteristics. The effects of Pd-OMVs on CT26 cell uptake, proliferation, and invasion were investigated in vitro. In vivo, a CT26 colon tumor model was used to investigate the anti-colon tumor effects and underlying mechanisms of Pd-OMVs. Finally, we evaluated the biosafety of Pd-OMVs. Results: Purified Pd-OMVs had a uniform cup-shaped structure with an average size of 165.5 nm and a zeta potential of approximately -9.56 mV, and their proteins were associated with pathways related to immunity and apoptosis. In vitro experiments demonstrated that CT26 cells internalized the Pd-OMVs, resulting in a significant decrease in their proliferation and invasion abilities. Further in vivo studies confirmed the accumulation of Pd-OMVs in tumor tissues, which significantly inhibited the growth of colon tumors. Mechanistically, Pd-OMVs increased the expression of CXCL10, promoting infiltration of CD8+ T cells into tumor tissues and expression of pro-inflammatory factors TNF-α, IL-1ß, and IL-6. Notably, Pd-OMVs demonstrated a high level of biosafety. Conclusion: This paper elucidates that Pd-OMVs can exert significant anti-colon tumor effects by upregulating the expression of the chemokine CXCL10, thereby increasing the infiltration of CD8+ T cells into tumors and enhancing antitumor immune responses. This suggests that Pd-OMVs may be developed as a novel nanoscale potent immunostimulant with great potential for application in tumor immunotherapy. As well as developed as a novel nano-delivery carrier for combination with other antitumor drugs.


Asunto(s)
Antineoplásicos , Membrana Externa Bacteriana , Linfocitos T CD8-positivos , Quimiocina CXCL10 , Neoplasias del Colon , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Membrana Externa Bacteriana/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/inmunología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/inmunología , Ensayos de Selección de Medicamentos Antitumorales , Ratones Endogámicos BALB C , Células Tumorales Cultivadas
5.
J Transl Med ; 22(1): 378, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649894

RESUMEN

BACKGROUND: Bacteria-based cancer therapy have demonstrated innovative strategies to combat tumors. Recent studies have focused on gram-negative bacterial outer membrane vesicles (OMVs) as a novel cancer immunotherapy strategy due to its intrinsic properties as a versatile carrier. METHOD: Here, we developed an Human Papillomavirus (HPV)-associated E7 antigen displaying Salmonella-derived OMV vaccine, utilizing a Poly(L-arginine) cell penetrating peptide (CPP) to enhance HPV16 E7 (aa49-67) H-2 Db and OMV affinity, termed SOMV-9RE7. RESULTS: Due to OMV's intrinsic immunogenic properties, SOMV-9RE7 effectively activates adaptive immunity through antigen-presenting cell uptake and antigen cross-presentation. Vaccination of engineered OMVs shows immediate tumor suppression and recruitment of infiltrating tumor-reactive immune cells. CONCLUSION: The simplicity of the arginine coating strategy boasts the versatility of immuno-stimulating OMVs that can be broadly implemented to personalized bacterial immunotherapeutic applications.


Asunto(s)
Arginina , Vacunas contra el Cáncer , Proteínas E7 de Papillomavirus , Proteínas E7 de Papillomavirus/inmunología , Vacunas contra el Cáncer/inmunología , Humanos , Animales , Membrana Externa Bacteriana/inmunología , Ratones Endogámicos C57BL , Femenino
6.
ACS Appl Mater Interfaces ; 15(3): 3744-3759, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36630299

RESUMEN

Inducing immunogenic cell death (ICD) is a critical strategy for enhancing cancer immunotherapy. However, inefficient and risky ICD inducers along with a tumor hypoxia microenvironment seriously limit the immunotherapy efficacy. Non-specific delivery is also responsible for this inefficiency. In this work, we report a drug-free bacteria-derived outer membrane vesicle (OMV)-functionalized Fe3O4-MnO2 (FMO) nanoplatform that realized neutrophil-mediated targeted delivery and photothermally enhanced cancer immunotherapy. In this system, modification of OMVs derived from Escherichia coli enhanced the accumulation of FMO NPs at the tumor tissue through neutrophil-mediated targeted delivery. The FMO NPs underwent reactive decomposition in the tumor site, generating manganese and iron ions that induced ICD and O2 that regulated the tumor hypoxia environment. Moreover, OMVs are rich in pathogen-associated pattern molecules that can overcome the tumor immunosuppressive microenvironment and effectively activate immune cells, thereby enhancing specific immune responses. Photothermal therapy (PTT) caused by MnO2 and Fe3O4 can not only indirectly stimulate systemic immunity by directly destroying tumor cells but also promote the enrichment of neutrophil-equipped nanoparticles by enhancing the inflammatory response at the tumor site. Finally, the proposed multi-modal treatment system with targeted delivery capability realized effective tumor immunotherapy to prevent tumor growth and recurrence.


Asunto(s)
Bioingeniería , Inmunoterapia , Nanopartículas Multifuncionales , Neoplasias , Humanos , Línea Celular Tumoral , Inmunoterapia/métodos , Nanopartículas Multifuncionales/uso terapéutico , Neoplasias/terapia , Microambiente Tumoral/inmunología , Vesículas Transportadoras/química , Vesículas Transportadoras/inmunología , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/inmunología , Escherichia coli
7.
J Extracell Vesicles ; 10(9): e12120, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34262675

RESUMEN

Bacterial outer membrane vesicles (OMV) have gained attention as a promising new cancer vaccine platform for efficiently provoking immune responses. However, OMV induce severe toxicity by activating the innate immune system. In this study, we applied a simple isolation approach to produce artificial OMV that we have named Synthetic Bacterial Vesicles (SyBV) that do not induce a severe toxic response. We also explored the potential of SyBV as an immunotherapy combined with tumour extracellular vesicles to induce anti-tumour immunity. Bacterial SyBV were produced with high yield by a protocol including lysozyme and high pH treatment, resulting in pure vesicles with very few cytosolic components and no RNA or DNA. These SyBV did not cause systemic pro-inflammatory cytokine responses in mice compared to naturally released OMV. However, SyBV and OMV were similarly effective in activation of mouse bone marrow-derived dendritic cells. Co-immunization with SyBV and melanoma extracellular vesicles elicited tumour regression in melanoma-bearing mice through Th-1 type T cell immunity and balanced antibody production. Also, the immunotherapeutic effect of SyBV was synergistically enhanced by anti-PD-1 inhibitor. Moreover, SyBV displayed significantly greater adjuvant activity than other classical adjuvants. Taken together, these results demonstrate a safe and efficient strategy for eliciting specific anti-tumour responses using immunotherapeutic bacterial SyBV.


Asunto(s)
Membrana Externa Bacteriana/inmunología , Escherichia coli/inmunología , Vesículas Extracelulares/inmunología , Inmunoterapia , Melanoma Experimental/inmunología , Adyuvantes Inmunológicos/metabolismo , Animales , Células Artificiales/inmunología , Membrana Externa Bacteriana/metabolismo , Línea Celular Tumoral , Citocinas/metabolismo , Células Dendríticas , Vesículas Extracelulares/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunización , Melanoma Experimental/terapia , Ratones , Ratones Endogámicos C57BL , Células TH1/inmunología
8.
J Bacteriol ; 203(15): e0008221, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-33972353

RESUMEN

Treponema pallidum, an obligate human pathogen, has an outer membrane (OM) whose physical properties, ultrastructure, and composition differ markedly from those of phylogenetically distant Gram-negative bacteria. We developed structural models for the outer membrane protein (OMP) repertoire (OMPeome) of T. pallidum Nichols using solved Gram-negative structures, computational tools, and small-angle X-ray scattering (SAXS) of selected recombinant periplasmic domains. The T. pallidum "OMPeome" harbors two "stand-alone" proteins (BamA and LptD) involved in OM biogenesis and four paralogous families involved in the influx/efflux of small molecules: 8-stranded ß-barrels, long-chain-fatty-acid transporters (FadLs), OM factors (OMFs) for efflux pumps, and T. pallidum repeat proteins (Tprs). BamA (TP0326), the central component of a ß-barrel assembly machine (BAM)/translocation and assembly module (TAM) hybrid, possesses a highly flexible polypeptide-transport-associated (POTRA) 1-5 arm predicted to interact with TamB (TP0325). TP0515, an LptD ortholog, contains a novel, unstructured C-terminal domain that models inside the ß-barrel. T. pallidum has four 8-stranded ß-barrels, each containing positively charged extracellular loops that could contribute to pathogenesis. Three of five FadL-like orthologs have a novel α-helical, presumptively periplasmic C-terminal extension. SAXS and structural modeling further supported the bipartite membrane topology and tridomain architecture of full-length members of the Tpr family. T. pallidum's two efflux pumps presumably extrude noxious small molecules via four coexpressed OMFs with variably charged tunnels. For BamA, LptD, and OMFs, we modeled the molecular machines that deliver their substrates into the OM or external milieu. The spirochete's extended families of OM transporters collectively confer a broad capacity for nutrient uptake. The models also furnish a structural road map for vaccine development. IMPORTANCE The unusual outer membrane (OM) of T. pallidum, the syphilis spirochete, is the ultrastructural basis for its well-recognized capacity for invasiveness, immune evasion, and persistence. In recent years, we have made considerable progress in identifying T. pallidum's repertoire of OMPs. Here, we developed three-dimensional (3D) models for the T. pallidum Nichols OMPeome using structural modeling, bioinformatics, and solution scattering. The OM contains three families of OMP transporters, an OMP family involved in the extrusion of noxious molecules, and two "stand-alone" proteins involved in OM biogenesis. This work represents a major advance toward elucidating host-pathogen interactions during syphilis; understanding how T. pallidum, an extreme auxotroph, obtains a wide array of biomolecules from its obligate human host; and developing a vaccine with global efficacy.


Asunto(s)
Membrana Externa Bacteriana/química , Vacunas Bacterianas/química , Sífilis/prevención & control , Treponema pallidum/inmunología , Membrana Externa Bacteriana/inmunología , Vacunas Bacterianas/genética , Vacunas Bacterianas/inmunología , Humanos , Modelos Estructurales , Conformación Proteica , Sífilis/microbiología , Treponema pallidum/química , Treponema pallidum/genética , Difracción de Rayos X
9.
mBio ; 12(2)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653893

RESUMEN

Multiple studies have implicated microbes in the development of inflammation, but the mechanisms remain unknown. Bacteria in the genus Fusobacterium have been identified in the intestinal mucosa of patients with digestive diseases; thus, we hypothesized that Fusobacterium nucleatum promotes intestinal inflammation. The addition of >50 kDa F. nucleatum conditioned media, which contain outer membrane vesicles (OMVs), to colonic epithelial cells stimulated secretion of the proinflammatory cytokines interleukin-8 (IL-8) and tumor necrosis factor (TNF). In addition, purified F. nucleatum OMVs, but not compounds <50 kDa, stimulated IL-8 and TNF production; which was decreased by pharmacological inhibition of Toll-like receptor 4 (TLR4). These effects were linked to downstream effectors p-ERK, p-CREB, and NF-κB. F. nucleatum >50-kDa compounds also stimulated TNF secretion, p-ERK, p-CREB, and NF-κB activation in human colonoid monolayers. In mice harboring a human microbiota, pretreatment with antibiotics and a single oral gavage of F. nucleatum resulted in inflammation. Compared to mice receiving vehicle control, mice treated with F. nucleatum showed disruption of the colonic architecture, with increased immune cell infiltration and depleted mucus layers. Analysis of mucosal gene expression revealed increased levels of proinflammatory cytokines (KC, TNF, IL-6, IFN-γ, and MCP-1) at day 3 and day 5 in F. nucleatum-treated mice compared to controls. These proinflammatory effects were absent in mice who received F. nucleatum without pretreatment with antibiotics, suggesting that an intact microbiome is protective against F. nucleatum-mediated immune responses. These data provide evidence that F. nucleatum promotes proinflammatory signaling cascades in the context of a depleted intestinal microbiome.IMPORTANCE Several studies have identified an increased abundance of Fusobacterium in the intestinal tracts of patients with colon cancer, liver cirrhosis, primary sclerosing cholangitis, gastroesophageal reflux disease, HIV infection, and alcoholism. However, the direct mechanism(s) of action of Fusobacterium on pathophysiological within the gastrointestinal tract is unclear. These studies have identified that F. nucleatum subsp. polymorphum releases outer membrane vesicles which activate TLR4 and NF-κB to stimulate proinflammatory signals in vitro Using mice harboring a human microbiome, we demonstrate that F. nucleatum can promote inflammation, an effect which required antibiotic-mediated alterations in the gut microbiome. Collectively, these results suggest a mechanism by which F. nucleatum may contribute to intestinal inflammation.


Asunto(s)
Membrana Externa Bacteriana/inmunología , Vesículas Extracelulares/inmunología , Fusobacterium nucleatum/inmunología , Fusobacterium nucleatum/metabolismo , Inflamación/microbiología , Animales , Células Cultivadas , Colon/citología , Medios de Cultivo/farmacología , Citocinas/análisis , Citocinas/inmunología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Femenino , Fusobacterium nucleatum/patogenicidad , Microbioma Gastrointestinal , Células HT29 , Humanos , Inflamación/inmunología , Intestinos/inmunología , Intestinos/microbiología , Intestinos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/inmunología , Transducción de Señal , Receptor Toll-Like 4/inmunología
10.
J Extracell Vesicles ; 10(4): e12066, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33643549

RESUMEN

Because of their potent adjuvanticity, ease of manipulation and simplicity of production Gram-negative Outer Membrane Vesicles OMVs have the potential to become a highly effective vaccine platform. However, some optimization is required, including the reduction of the number of endogenous proteins, the increase of the loading capacity with respect to heterologous antigens, the enhancement of productivity in terms of number of vesicles per culture volume. In this work we describe the use of Synthetic Biology to create Escherichia coli BL21(DE3)Δ60, a strain releasing OMVs (OMVsΔ60) deprived of 59 endogenous proteins. The strain produces large quantities of vesicles (> 40 mg/L under laboratory conditions), which can accommodate recombinant proteins to a level ranging from 5% to 30% of total OMV proteins. Moreover, also thanks to the absence of immune responses toward the inactivated endogenous proteins, OMVsΔ60 decorated with heterologous antigens/epitopes elicit elevated antigens/epitopes-specific antibody titers and high frequencies of epitope-specific IFN-γ-producing CD8+ T cells. Altogether, we believe that E. coli BL21(DE3)Δ60 have the potential to become a workhorse factory for novel OMV-based vaccines.


Asunto(s)
Membrana Externa Bacteriana/inmunología , Membrana Externa Bacteriana/metabolismo , Vacunas Bacterianas , Escherichia coli/inmunología , Escherichia coli/metabolismo , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Animales , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Linfocitos T CD8-positivos/inmunología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Humanos , Interleucina-6/metabolismo , Ratones , Proteoma/metabolismo , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Biología Sintética/métodos , Receptor Toll-Like 2/metabolismo , Desarrollo de Vacunas/métodos
11.
mSphere ; 6(1)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627508

RESUMEN

Neutrophils, the first line of defense against pathogens, are critical in the host response to acute and chronic infections. In Gram-negative pathogens, the bacterial outer membrane (OM) is a key mediator of pathogen detection; nonetheless, the effects of variations in its molecular structure on the neutrophil migratory response to bacteria remain largely unknown. Here, we developed a quantitative microfluidic assay that precludes physical contact between bacteria and neutrophils while maintaining chemical communication, thus allowing investigation of both transient and steady-state responses of neutrophils to a library of Salmonella enterica serovar Typhimurium OM-related mutants at single-cell resolution. Using single-cell quantitative metrics, we found that transient neutrophil chemokinesis is highly gradated based upon OM structure, while transient and steady-state chemotaxis responses differ little between mutants. Based on our finding of a lack of correlation between chemokinesis and chemotaxis, we define "stimulation score" as a metric that comprehensively describes the neutrophil response to pathogens. Complemented with a killing assay, our results provide insight into how OM modifications affect neutrophil recruitment and pathogen survival. Altogether, our platform enables the discovery of transient and steady-state migratory responses and provides a new path for quantitative interrogation of cell decision-making processes in a variety of host-pathogen interactions.IMPORTANCE Our findings provide insights into the previously unexplored effects of Salmonella envelope defects on fundamental innate immune cell behavior, which advance the knowledge in pathogen-host cell biology and potentially inspire the rational design of attenuated strains for vaccines or immunotherapeutic strains for cancer therapy. Furthermore, the microfluidic assay platform and analytical tools reported herein enable high-throughput, sensitive, and quantitative screening of microbial strains' immunogenicity in vitro This approach could be particularly beneficial for rapid in vitro screening of engineered microbial strains (e.g., vaccine candidates) as the quantitative ranking of the overall strength of the neutrophil response, reported by "stimulation score," agrees with in vivo cytokine response trends reported in the literature.


Asunto(s)
Membrana Externa Bacteriana/química , Quimiotaxis , Interacciones Huésped-Patógeno/inmunología , Infiltración Neutrófila , Neutrófilos/fisiología , Salmonella typhimurium/inmunología , Salmonella typhimurium/metabolismo , Membrana Externa Bacteriana/inmunología , Membrana Externa Bacteriana/patología , Técnicas Analíticas Microfluídicas , Neutrófilos/inmunología , Salmonella typhimurium/química , Salmonella typhimurium/genética , Serogrupo , Virulencia
12.
Front Immunol ; 11: 581165, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33312172

RESUMEN

Bacteria-released components can modulate host innate immune response in the absence of direct host cell-bacteria interaction. In particular, bacteria-derived outer membrane vesicles (OMVs) were recently shown to activate host caspase-11-mediated non-canonical inflammasome pathway via deliverance of OMV-bound lipopolysaccharide. However, further precise understanding of innate immune-modulation by bacterial OMVs remains elusive. Here, we present evidence that flagellated bacteria-released OMVs can trigger NLRC4 canonical inflammasome activation via flagellin delivery to the cytoplasm of host cells. Salmonella typhimurium-derived OMVs caused a robust NLRC4-mediated caspase-1 activation and interleukin-1ß secretion in macrophages in an endocytosis-dependent, but guanylate-binding protein-independent manner. Notably, OMV-associated flagellin is crucial for Salmonella OMV-induced inflammasome response. Flagellated Pseudomonas aeruginosa-released OMVs consistently promoted robust NLRC4 inflammasome activation, while non-flagellated Escherichia coli-released OMVs induced NLRC4-independent non-canonical inflammasome activation leading to NLRP3-mediated interleukin-1ß secretion. Flagellin-deficient Salmonella OMVs caused a weak interleukin-1ß production in a NLRP3-dependent manner. These findings indicate that Salmonella OMV triggers NLRC4 inflammasome activation via OMV-associated flagellin in addition to a mild induction of non-canonical inflammasome signaling via OMV-bound lipopolysaccharide. Intriguingly, flagellated Salmonella-derived OMVs induced more rapid inflammasome response than flagellin-deficient Salmonella OMV and non-flagellated Escherichia coli-derived OMVs. Supporting these in vitro results, Nlrc4-deficient mice showed significantly reduced interleukin-1ß production after intraperitoneal challenge with Salmonella-released OMVs. Taken together, our results here propose that NLRC4 inflammasome machinery is a rapid sensor of bacterial OMV-bound flagellin as a host defense mechanism against bacterial pathogen infection.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/inmunología , Membrana Externa Bacteriana/inmunología , Proteínas de Unión al Calcio/inmunología , Flagelina/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/deficiencia , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Bacterianas/inmunología , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Caspasa 1/metabolismo , Citosol/inmunología , Endocitosis , Activación Enzimática , Flagelina/administración & dosificación , Proteínas de Unión al GTP/deficiencia , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/inmunología , Interacciones Microbiota-Huesped/inmunología , Inmunidad Innata , Inflamasomas/inmunología , Interleucina-1beta/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Inmunológicos , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Salmonella typhimurium/inmunología , Transducción de Señal/inmunología
13.
Microbiome ; 8(1): 88, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32513301

RESUMEN

BACKGROUND: Bacteroides thetaiotaomicron (Bt) is a prominent member of the human intestinal microbiota that, like all gram-negative bacteria, naturally generates nanosized outer membrane vesicles (OMVs) which bud off from the cell surface. Importantly, OMVs can cross the intestinal epithelial barrier to mediate microbe-host cell crosstalk involving both epithelial and immune cells to help maintain intestinal homeostasis. Here, we have examined the interaction between Bt OMVs and blood or colonic mucosa-derived dendritic cells (DC) from healthy individuals and patients with Crohn's disease (CD) or ulcerative colitis (UC). RESULTS: In healthy individuals, Bt OMVs stimulated significant (p < 0.05) IL-10 expression by colonic DC, whereas in peripheral blood-derived DC they also stimulated significant (p < 0.001 and p < 0.01, respectively) expression of IL-6 and the activation marker CD80. Conversely, in UC Bt OMVs were unable to elicit IL-10 expression by colonic DC. There were also reduced numbers of CD103+ DC in the colon of both UC and CD patients compared to controls, supporting a loss of regulatory DC in both diseases. Furthermore, in CD and UC, Bt OMVs elicited a significantly lower proportion of DC which expressed IL-10 (p < 0.01 and p < 0.001, respectively) in blood compared to controls. These alterations in DC responses to Bt OMVs were seen in patients with inactive disease, and thus are indicative of intrinsic defects in immune responses to this commensal in inflammatory bowel disease (IBD). CONCLUSIONS: Overall, our findings suggest a key role for OMVs generated by the commensal gut bacterium Bt in directing a balanced immune response to constituents of the microbiota locally and systemically during health which is altered in IBD patients. Video Abstract.


Asunto(s)
Membrana Externa Bacteriana , Bacteroides thetaiotaomicron , Células Dendríticas , Enfermedades Inflamatorias del Intestino , Membrana Externa Bacteriana/inmunología , Colitis Ulcerosa , Enfermedad de Crohn , Células Dendríticas/microbiología , Vesículas Extracelulares/inmunología , Femenino , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Mucosa Intestinal , Masculino
14.
Microb Cell Fact ; 19(1): 119, 2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493405

RESUMEN

BACKGROUND: The well-known fact that avian pathogenic Escherichia coli (APEC) is harder to prevent due to its numerous serogroups has promoted the development of biological immunostimulatory materials as new vaccine candidates in poultry farms. Bacterial outer membrane vesicles (OMVs), known as spherical nanovesicles enriched with various immunostimulants, are naturally secreted by Gram-negative bacteria, and have gained much attention for developing effective vaccine candidates. Recent report has demonstrated that OMVs of APEC O78 can induce protective immunity in chickens. Here, a novel multi-serogroup OMVs (MOMVs) vaccine was developed to achieve cross-protection against APEC infection in broiler chickens. RESULTS: In this study, OMVs produced by three APEC strains were isolated, purified and prepared into MOMVs by mixing these three OMVs. By using SDS-PAGE and LC-MS/MS, 159 proteins were identified in MOMVs and the subcellular location and biological functions of 20 most abundant proteins were analyzed. The immunogenicity of MOMVs was evaluated, and the results showed that MOMVs could elicit innate immune responses, including internalization by chicken macrophage and production of immunomodulatory cytokines. Vaccination with MOMVs induced specific broad-spectrum antibodies as well as Th1 and Th17 immune responses. The animal experiment has confirmed that immunization with an appropriate dose of MOMVs could not cause any adverse effect and was able to reduce bacteria loads and pro-inflammatory cytokines production, thus providing effective cross-protection against lethal infections induced by multi-serogroup APEC strains in chickens. Further experiments indicated that, although vesicular proteins were able to induce stronger protective efficiency than lipopolysaccharide, both vesicular proteins and lipopolysaccharide are crucial in MOMVs-mediated protection. CONCLUSIONS: The multi-serogroup nanovesicles produced by APEC strains will open up a new way for the development of next generation vaccines with low toxicity and broad protection in the treatment and control of APEC infection.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Membrana Externa Bacteriana/inmunología , Pollos/inmunología , Protección Cruzada , Vacunas contra Escherichia coli/inmunología , Enfermedades de las Aves de Corral/prevención & control , Animales , Anticuerpos Antibacterianos/inmunología , Citocinas/inmunología , Escherichia coli/inmunología , Macrófagos/inmunología
15.
Nat Commun ; 11(1): 1126, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32111847

RESUMEN

The efficacy of nano-mediated drug delivery has been impeded by multiple biological barriers such as the mononuclear phagocyte system (MPS), as well as vascular and interstitial barriers. To overcome the abovementioned obstacles, we report a nano-pathogenoid (NPN) system that can in situ hitchhike circulating neutrophils and supplement photothermal therapy (PTT). Cloaked with bacteria-secreted outer membrane vesicles inheriting pathogen-associated molecular patterns of native bacteria, NPNs are effectively recognized and internalized by neutrophils. The neutrophils migrate towards inflamed tumors, extravasate across the blood vessels, and penetrate through the tumors. Then NPNs are rapidly released from neutrophils in response to inflammatory stimuli and subsequently taken up by tumor cells to exert anticancer effects. Strikingly, due to the excellent targeting efficacy, cisplatin-loaded NPNs combined with PTT completely eradicate tumors in all treated mice. Such a nano-platform represents an efficient and generalizable strategy towards in situ cell hitchhiking as well as enhanced tumor targeted delivery.


Asunto(s)
Quimiotaxis de Leucocito , Sistemas de Liberación de Medicamentos , Nanopartículas/administración & dosificación , Neoplasias/terapia , Neutrófilos/fisiología , Fototerapia , Animales , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/inmunología , Materiales Biomiméticos/administración & dosificación , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacocinética , Cisplatino/administración & dosificación , Cisplatino/química , Cisplatino/farmacocinética , Liberación de Fármacos , Vesículas Extracelulares/química , Vesículas Extracelulares/inmunología , Inmunoterapia Adoptiva , Inflamación/etiología , Ratones , Nanopartículas/química , Nanopartículas/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Activación Neutrófila , Infiltración Neutrófila , Neutrófilos/inmunología , Neutrófilos/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Fototerapia/efectos adversos , Microambiente Tumoral/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Sci Rep ; 9(1): 13797, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31551511

RESUMEN

The capsular group B meningococcal (MenB) four component vaccine (4CMenB) has been licensed for the prevention of invasive disease caused by MenB. The vaccine causes fever in infants, particularly when given in combination (concomitant) with other routinely-administered vaccines (routine), such as the standard diphtheria, tetanus, pertussis (DTP)-containing vaccine. To assess the suitability of a mouse immunisation model to study this phenomenon, we monitored temperature in mice after a second dose of routine vaccines, with or without 4CMenB, and compared the results with those in humans. Using this mouse model, we explored the reactogenicity of 4CMenB components by measuring changes in temperature, cytokines, and gene expression induced by 4CMenB, one of its components, wild-type or attenuated endotoxin outer membrane vesicles (OMVs), or lipopolysaccharide (LPS). A significant rise (p < 0.01) in temperature was observed in mice immunised with 4CMenB, wild-type OMVs, and LPS. RNA-sequencing of mouse whole blood revealed a gene signature shared by the 4CMenB, OMV, and LPS groups consisting of bacterial pattern recognition receptors and neutrophil activation marker genes. Sequencing of neutrophils isolated after concomitant 4CMenB identified cells expressing the OMV-associated genes Plek and Lcp1. Immunisation with 4CMenB or OMVs led to increased IL-6 in serum and significant upregulation (p < 0.0001) of prostaglandin-synthesising enzymes on brain tissue. These data demonstrate the suitability of a mouse model for assessing vaccine reactogenicity and strongly indicate that the fever following vaccination with 4CMenB in human infants is induced by endotoxin contained in the OMV component of the vaccine.


Asunto(s)
Membrana Externa Bacteriana/inmunología , Endotoxinas/inmunología , Infecciones Meningocócicas/inmunología , Vacunas Meningococicas/inmunología , Transcriptoma/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Femenino , Inmunización/métodos , Esquemas de Inmunización , Interleucina-6/inmunología , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Determinación de Anticuerpos Séricos Bactericidas/métodos , Vacunación/métodos
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(10): 1503-1513, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31163264

RESUMEN

Outer membrane vesicles (OMVs) are secreted by Gram-negative bacteria and induce a stronger inflammatory response than pure LPS. After endocytosis of OMVs by macrophages, lipopolysaccharide (LPS) is released from early endosomes to activate its intracellular receptors followed by non-canonical inflammasome activation and pyroptosis, which are critically involved in sepsis development. Previously, we could show that the synthetic anti-endotoxin peptide Pep19-2.5 neutralizes inflammatory responses induced by intracellular LPS. Here, we aimed to investigate whether Pep19-2.5 is able to suppress cytoplasmic LPS-induced inflammation under more physiological conditions by using OMVs which naturally transfer LPS to the cytosol. Isothermal titration calorimetry revealed an exothermic reaction between Pep19-2.5 and Escherichia coli OMVs and the Limulus Amebocyte Lysate assay indicated a strong endotoxin blocking activity. In THP-1 macrophages and primary human macrophages Pep19-2.5 and polymyxin B reduced interleukin (IL)-1ß and tumor necrosis factor (TNF) release as well as pyroptosis induced by OMVs, while the Toll-like receptor 4 signaling inhibitor TAK-242 suppressed OMV-induced TNF and IL-1ß secretion, but not pyroptosis. Internalization of Pep19-2.5 was at least partially mediated by the P2X7 receptor in macrophages but not in monocytes. Additionally, a cell-dependent difference in the neutralization efficiency of Pep19-2.5 became evident in macrophages and monocytes, indicating a critical role for peptide-mediated IL-1ß secretion via the P2X7 receptor. In conclusion, we provide evidence that LPS-neutralizing peptides inhibit OMV-induced activation of the inflammasome/IL-1 axis and give new insights into the mechanism of peptide-mediated neutralization of cytoplasmic LPS suggesting an essential and cell-type specific role for the P2X7 receptor.


Asunto(s)
Antiinflamatorios/farmacología , Membrana Externa Bacteriana/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Lipopolisacáridos/antagonistas & inhibidores , Macrófagos/efectos de los fármacos , Péptidos/farmacología , Membrana Externa Bacteriana/inmunología , Línea Celular , Escherichia coli/inmunología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/microbiología , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Piroptosis/efectos de los fármacos
18.
J Innate Immun ; 11(4): 316-329, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30844806

RESUMEN

Influenza A virus (IAV) poses a constant worldwide threat to human health. Although conventional vaccines are available, their protective efficacy is type or strain specific, and their production is time-consuming. For the control of an influenza pandemic in particular, agents that are immediately effective against a wide range of virus variants should be developed. Although pretreatment of various Toll-like receptor (TLR) ligands have already been reported to be effective in the defense against subsequent IAV infection, the efficacy was limited to specific subtypes, and safety concerns were also raised. In this study, we investigated the protective effect of an attenuated bacterial outer membrane vesicle -harboring modified lipid A moiety of lipopolysaccharide (fmOMV) against IAV infection and the underlying mechanisms. Administration of fmOMV conferred significant protection against a lethal dose of pandemic H1N1, PR8, H5N2, and highly pathogenic H5N1 viruses; this broad antiviral activity was dependent on macrophages but independent of neutrophils. fmOMV induced recruitment and activation of macrophages and elicited type I IFNs. Intriguingly, fmOMV showed a more significant protective effect than other TLR ligands tested in previous reports, without exhibiting any adverse effect. These results show the potential of fmOMV as a prophylactic agent for the defense against influenza virus infection.


Asunto(s)
Membrana Externa Bacteriana/inmunología , Virus de la Influenza A/fisiología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Lípido A/inmunología , Macrófagos/inmunología , Infecciones por Orthomyxoviridae/inmunología , Vesículas Secretoras/inmunología , Animales , Escherichia coli/genética , Femenino , Humanos , Interferón Tipo I/metabolismo , Ligandos , Lípido A/genética , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Receptores Toll-Like/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA