Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Development ; 151(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39087588

RESUMEN

The Spalt transcriptional regulators participate in a variety of cell fate specification processes during development, regulating transcription through interactions with DNA AT-rich regions. Spalt proteins also bind to heterochromatic regions, and some of their effects require interactions with the NuRD chromatin remodeling and deacetylase complex. Most of the biological roles of Spalt proteins have been characterized in diploid cells engaged in cell proliferation. Here, we address the function of Drosophila Spalt genes in the development of a larval tissue formed by polyploid cells, the prothoracic gland, the cells of which undergo several rounds of DNA replication without mitosis during larval development. We show that prothoracic glands depleted of Spalt expression display severe changes in the size of the nucleolus, the morphology of the nuclear envelope and the disposition of the chromatin within the nucleus, leading to a failure in the synthesis of ecdysone. We propose that loss of ecdysone production in the prothoracic gland of Spalt mutants is primarily caused by defects in nuclear pore complex function that occur as a consequence of faulty interactions between heterochromatic regions and the nuclear envelope.


Asunto(s)
Proteínas de Drosophila , Ecdisona , Factores de Transcripción , Animales , Nucléolo Celular/metabolismo , Cromatina/metabolismo , Drosophila/metabolismo , Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Ecdisona/metabolismo , Regulación del Desarrollo de la Expresión Génica , Larva/metabolismo , Larva/crecimiento & desarrollo , Larva/genética , Mutación/genética , Membrana Nuclear/metabolismo , Membrana Nuclear/genética , Poro Nuclear/metabolismo , Poro Nuclear/genética , Proteínas Represoras , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
2.
Genetics ; 227(3)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38797871

RESUMEN

Nuclear migration through narrow constrictions is important for development, metastasis, and proinflammatory responses. Studies performed in tissue culture cells have implicated linker of nucleoskeleton and cytoskeleton (LINC) complexes, microtubule motors, the actin cytoskeleton, and nuclear envelope repair machinery as important mediators of nuclear movements through constricted spaces. However, little is understood about how these mechanisms operate to move nuclei in vivo. In Caenorhabditis elegans larvae, six pairs of hypodermal P cells migrate from lateral to ventral positions through a constricted space between the body wall muscles and the cuticle. P-cell nuclear migration is mediated in part by LINC complexes using a microtubule-based pathway and by an independent CDC-42/actin-based pathway. However, when both LINC complex and actin-based pathways are knocked out, many nuclei still migrate, suggesting the existence of additional pathways. Here, we show that FLN-2 functions in a third pathway to mediate P-cell nuclear migration. The predicted N-terminal actin-binding domain in FLN-2 that is found in canonical filamins is dispensable for FLN-2 function; this and structural predictions suggest that FLN-2 does not function as a filamin. The immunoglobulin-like repeats 4-8 of FLN-2 were necessary for P-cell nuclear migration. Furthermore, in the absence of the LINC complex component unc-84, fln-2 mutants had an increase in P-cell nuclear rupture. We conclude that FLN-2 functions to maintain the integrity of the nuclear envelope in parallel with the LINC complex and CDC-42/actin-based pathways to move P-cell nuclei through constricted spaces.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Núcleo Celular , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Actinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Citoesqueleto de Actina/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/genética , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Transducción de Señal , Matriz Nuclear/metabolismo , Proteínas de Unión al GTP
3.
J Clin Invest ; 134(7)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300705

RESUMEN

Stromal interaction molecule 1 (STIM1) is a Ca2+ sensor located in the sarcoplasmic reticulum (SR) of skeletal muscle, where it is best known for its role in store-operated Ca2+ entry (SOCE). Genetic syndromes resulting from STIM1 mutations are recognized as a cause of muscle weakness and atrophy. Here, we focused on a gain-of-function mutation that occurs in humans and mice (STIM1+/D84G mice), in which muscles exhibited constitutive SOCE. Unexpectedly, this constitutive SOCE did not affect global Ca2+ transients, SR Ca2+ content, or excitation-contraction coupling (ECC) and was therefore unlikely to underlie the reduced muscle mass and weakness observed in these mice. Instead, we demonstrate that the presence of D84G STIM1 in the nuclear envelope of STIM1+/D84G muscle disrupted nuclear-cytosolic coupling, causing severe derangement in nuclear architecture, DNA damage, and altered lamina A-associated gene expression. Functionally, we found that D84G STIM1 reduced the transfer of Ca2+ from the cytosol to the nucleus in myoblasts, resulting in a reduction of [Ca2+]N. Taken together, we propose a novel role for STIM1 in the nuclear envelope that links Ca2+ signaling to nuclear stability in skeletal muscle.


Asunto(s)
Debilidad Muscular , Membrana Nuclear , Molécula de Interacción Estromal 1 , Animales , Humanos , Ratones , Calcio/metabolismo , Señalización del Calcio , Debilidad Muscular/genética , Debilidad Muscular/metabolismo , Músculo Esquelético/metabolismo , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteína ORAI1/genética , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
4.
C R Biol ; 346: 89-93, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37779383

RESUMEN

The nucleus has been viewed as a passenger during cell migration that functions merely to protect the genome. However, increasing evidence shows that the nucleus is an active organelle, constantly sensing the surrounding environment and translating extracellular mechanical inputs into intracellular signaling. The nuclear envelope has a large membrane reservoir which serves as a buffer for mechanical inputs as it unfolds without increasing its tension. In contrast, when cells cope with mechanical strain, such as migration through solid tumors or dense interstitial spaces, the nuclear envelope folds stretch, increasing nuclear envelope tension and sometimes causing rupture. Different degrees of nuclear envelope tension regulate cellular behaviors and functions, especially in cells that move and grow within dense matrices. The crosstalk between extracellular mechanical inputs and the cell nucleus is a critical component in the modulation of cell function of cells that navigate within packed microenvironments. Moreover, there is a link between regimes of nuclear envelope unfolding and different cellular behaviors, from orchestrated signaling cascades to cellular perturbations and damage.


Le noyau a longtemps été considéré comme un passager lors de la migration cellulaire, servant simplement à protéger le génome. Cependant, de plus en plus de preuves montrent que le noyau est un organite actif, qui sonde le milieu environnant et traduit les entrées mécaniques extracellulaires en signalisation intracellulaire. L'enveloppe nucléaire possède un grand réservoir membranaire qui sert de tampon face aux entrées mécaniques en se dépliant sans augmenter sa tension. En revanche, lorsque les cellules font face à des contraintes mécaniques, telles que la migration au travers de tumeurs solides ou despaces interstitiels denses, les plis de l'enveloppe nucléaire s'étirent, augmentant sa tension et provoquant parfois sa rupture. Différents degrés de tension de l'enveloppe nucléaire régulent les comportements et les fonctions cellulaires, en particulier des cellules qui se déplacent et se développent dans des matrices denses. La signalisation croisée entre les entrées mécaniques extracellulaires et le noyau cellulaire sont des composants essentiels dans la modulation de la fonction des cellules qui naviguent dans des microenvironnements encombrés. De plus, il existe un lien entre les régimes de déploiement de l'enveloppe nucléaire et les différents comportements cellulaires, allant des cascades de signalisation jusquaux perturbations et dommages cellulaires.


Asunto(s)
Neoplasias , Membrana Nuclear , Humanos , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Membrana Nuclear/patología , Movimiento Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patología , Microambiente Tumoral
5.
Genes (Basel) ; 14(4)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-37107534

RESUMEN

The nuclear envelope (NE) in eukaryotic cells is essential to provide a protective compartment for the genome. Beside its role in connecting the nucleus with the cytoplasm, the NE has numerous important functions including chromatin organization, DNA replication and repair. NE alterations have been linked to different human diseases, such as laminopathies, and are a hallmark of cancer cells. Telomeres, the ends of eukaryotic chromosomes, are crucial for preserving genome stability. Their maintenance involves specific telomeric proteins, repair proteins and several additional factors, including NE proteins. Links between telomere maintenance and the NE have been well established in yeast, in which telomere tethering to the NE is critical for their preservation and beyond. For a long time, in mammalian cells, except during meiosis, telomeres were thought to be randomly localized throughout the nucleus, but recent advances have uncovered close ties between mammalian telomeres and the NE that play important roles for maintaining genome integrity. In this review, we will summarize these connections, with a special focus on telomere dynamics and the nuclear lamina, one of the main NE components, and discuss the evolutionary conservation of these mechanisms.


Asunto(s)
Membrana Nuclear , Telómero , Animales , Humanos , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Telómero/genética , Telómero/metabolismo , Replicación del ADN/genética , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Meiosis , Mamíferos/genética , Mamíferos/metabolismo
6.
Gene ; 870: 147423, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37044185

RESUMEN

Lamin B2 (LMNB2), on the inner side of the nuclear envelope, constitutes the nuclear skeleton by connecting with other nuclear proteins. LMNB2 is involved in a wide range of nuclear functions, including DNA replication and stability, regulation of chromatin, and nuclear stiffness. Moreover, LMNB2 regulates several cellular processes, such as tissue development, cell cycle, cellular proliferation and apoptosis, chromatin localization and stability, and DNA methylation. Besides, the influence of abnormal expression and mutations of LMNB2 has been gradually discovered in cancers and laminopathies. Therefore, this review summarizes the recent advances of LMNB2-associated biological roles in physiological or pathological conditions, with a particular emphasis on cancers and laminopathies, as well as the potential mechanism of LMNB2 in related cancers.


Asunto(s)
Lamina Tipo B , Laminopatías , Neoplasias , Proteínas Nucleares , Humanos , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética , Laminopatías/metabolismo , Neoplasias/metabolismo
7.
J Clin Invest ; 132(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377660

RESUMEN

Mutations in nuclear envelope proteins (NEPs) cause devastating genetic diseases, known as envelopathies, that primarily affect the heart and skeletal muscle. A mutation in the NEP LEM domain-containing protein 2 (LEMD2) causes severe cardiomyopathy in humans. However, the roles of LEMD2 in the heart and the pathological mechanisms responsible for its association with cardiac disease are unknown. We generated knockin (KI) mice carrying the human c.T38>G Lemd2 mutation, which causes a missense amino acid exchange (p.L13>R) in the LEM domain of the protein. These mice represent a preclinical model that phenocopies the human disease, as they developed severe dilated cardiomyopathy and cardiac fibrosis leading to premature death. At the cellular level, KI/KI cardiomyocytes exhibited disorganization of the transcriptionally silent heterochromatin associated with the nuclear envelope. Moreover, mice with cardiac-specific deletion of Lemd2 also died shortly after birth due to heart abnormalities. Cardiomyocytes lacking Lemd2 displayed nuclear envelope deformations and extensive DNA damage and apoptosis linked to p53 activation. Importantly, cardiomyocyte-specific Lemd2 gene therapy via adeno-associated virus rescued cardiac function in KI/KI mice. Together, our results reveal the essentiality of LEMD2 for genome stability and cardiac function and unveil its mechanistic association with human disease.


Asunto(s)
Cardiomiopatías , Membrana Nuclear , Humanos , Ratones , Animales , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Daño del ADN , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
8.
Cancer Metastasis Rev ; 41(4): 953-963, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36205821

RESUMEN

Despite significant advances in our understanding of tumourigenesis and cancer therapeutics, cancer continues to account for 30% of worldwide deaths. Therefore, there remains an unmet need for the development of cancer therapies to improve patient quality of life and survival outcomes. The inner nuclear membrane has an essential role in cell division, cell signalling, transcription, cell cycle progression, chromosome tethering, cell migration and mitosis. Furthermore, expression of several inner nuclear membrane proteins has been shown to be frequently altered in tumour cells, resulting in the dysregulation of cellular pathways to promote tumourigenesis. However, to date, minimal research has been conducted to investigate how targeting these dysregulated and variably expressed proteins may provide a novel avenue for cancer therapies. In this review, we present an overview of the involvement of the inner nuclear membrane proteins within the hallmarks of cancer and how they may be exploited as potent anti-cancer therapeutics.


Asunto(s)
Carcinogénesis , Proteínas de la Membrana , Membrana Nuclear , Proteínas Nucleares , Humanos , Carcinogénesis/patología , Proteínas de la Membrana/metabolismo , Mitosis , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
9.
Semin Cell Dev Biol ; 123: 124-130, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33757694

RESUMEN

The nuclear envelope surrounds the eukaryotic genome and, through the nuclear pore complexes, regulates transport in and out of the nucleus. Correct nucleo-cytoplasm compartmentations are essential for nuclear functions such as DNA replication or repair. During metazoan mitosis, the nuclear envelope disintegrates to allow the segregation of the two copies of DNA between daughter cells. At the end of mitosis, it reforms on each group of chromosomes in the daughter cells. However, nuclear envelope reformation is delayed on lagging chromosomes and DNA bridges. Defects in the coordination between nuclear envelope reformation and chromosome segregation impair the nuclear functions. Mechanical stress to which micronuclei and DNA bridges are subjected to combined with their particular architecture and the altered nuclear functions result in DNA damage. While micronuclei and DNA bridges were considered for more than 100 years as mere indicators of chromosomal instability, rapid technological advances are helping to better understand the biological consequences of these aberrant nuclear morphologies. Recent studies provide interesting evidence that micronuclei and chromatin bridges act as a key platforms for a catastrophic mutational process observed in cancers called chromothripsis and a trigger for the innate immune response. Therefore, they could affect cellular functions by both genetic and non-genetic means.


Asunto(s)
Cromotripsis , Membrana Nuclear , Animales , Núcleo Celular/genética , Cromatina/genética , Cromosomas , Mitosis , Membrana Nuclear/genética
10.
Cell Rep ; 37(6): 109783, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34758324

RESUMEN

Micronuclei are a hallmark of cancer and several other human disorders. Recently, micronuclei were implicated in chromothripsis, a series of massive genomic rearrangements that may drive tumor evolution and progression. Here, we show that Aurora B kinase mediates a surveillance mechanism that integrates error correction during anaphase with spatial control of nuclear envelope reassembly to prevent micronuclei formation. Using high-resolution live-cell imaging of human cancer and non-cancer cells, we uncover that anaphase lagging chromosomes are more frequent than previously anticipated, yet they rarely form micronuclei. Micronuclei formation from anaphase lagging chromosomes is prevented by a midzone-based Aurora B phosphorylation gradient that stabilizes kinetochore-microtubule attachments and assists spindle forces required for anaphase error correction while delaying nuclear envelope reassembly on lagging chromosomes, independently of microtubule density. We propose that a midzone-based Aurora B phosphorylation gradient actively monitors and corrects frequent chromosome segregation errors to prevent micronuclei formation during human cell division.


Asunto(s)
Anafase , Aurora Quinasa B/metabolismo , Segregación Cromosómica , Cinetocoros/enzimología , Micronúcleos con Defecto Cromosómico , Membrana Nuclear/enzimología , Huso Acromático/enzimología , Células HeLa , Humanos , Mecanotransducción Celular , Membrana Nuclear/genética , Fosforilación , Huso Acromático/genética , Factores de Tiempo
11.
Cancer Discov ; 11(12): OF5, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34598943

RESUMEN

Nuclear envelope (NE) disruptions induce DNA damage which increases tumor cell invasion.


Asunto(s)
Daño del ADN , Membrana Nuclear , Humanos , Membrana Nuclear/genética , Membrana Nuclear/patología
12.
J Cell Biol ; 220(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34515734

RESUMEN

Micronuclei, whole or fragmented chromosomes spatially separated from the main nucleus, are associated with genomic instability and have been identified as drivers of tumorigenesis. Paradoxically, Kif18a mutant mice produce micronuclei due to asynchronous segregation of unaligned chromosomes in vivo but do not develop spontaneous tumors. We report here that micronuclei in Kif18a mutant mice form stable nuclear envelopes. Challenging Kif18a mutant mice via deletion of the Trp53 gene led to formation of thymic lymphoma with elevated levels of micronuclei. However, loss of Kif18a had modest or no effect on survival of Trp53 homozygotes and heterozygotes, respectively. Micronuclei in cultured KIF18A KO cells form stable nuclear envelopes characterized by increased recruitment of nuclear envelope components and successful expansion of decondensing chromatin compared with those induced by nocodazole washout or radiation. Lagging chromosomes were also positioned closer to the main chromatin masses in KIF18A KO cells. These data suggest that not all micronuclei actively promote tumorigenesis.


Asunto(s)
Carcinogénesis/genética , Núcleo Celular/genética , Cinesinas/genética , Membrana Nuclear/genética , Animales , Línea Celular , Cromatina/genética , Cromosomas/genética , Daño del ADN/genética , Femenino , Inestabilidad Genómica/genética , Humanos , Masculino , Ratones
13.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34298904

RESUMEN

The dynamic nature of the nuclear envelope (NE) is often underestimated. The NE protects, regulates, and organizes the eukaryote genome and adapts to epigenetic changes and to its environment. The NE morphology is characterized by a wide range of diversity and abnormality such as invagination and blebbing, and it is a diagnostic factor for pathologies such as cancer. Recently, the micronuclei, a small nucleus that contains a full chromosome or a fragment thereof, has gained much attention. The NE of micronuclei is prone to collapse, leading to DNA release into the cytoplasm with consequences ranging from the activation of the cGAS/STING pathway, an innate immune response, to the creation of chromosomal instability. The discovery of those mechanisms has revolutionized the understanding of some inflammation-related diseases and the origin of complex chromosomal rearrangements, as observed during the initiation of tumorigenesis. Herein, we will highlight the complexity of the NE biology and discuss the clinical symptoms observed in NE-related diseases. The interplay between innate immunity, genomic instability, and nuclear envelope leakage could be a major focus in future years to explain a wide range of diseases and could lead to new classes of therapeutics.


Asunto(s)
Inestabilidad Genómica/genética , Inflamación/genética , Membrana Nuclear/genética , Animales , Núcleo Celular/genética , Inestabilidad Cromosómica/genética , ADN/genética , Daño del ADN/genética , Humanos , Inmunidad Innata/genética
14.
Sci Rep ; 11(1): 10099, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980953

RESUMEN

Ataxia telangiectasia (AT) is a rare genetic neurodegenerative disease. To date, there is no available cure for the illness, but the use of glucocorticoids has been shown to alleviate the neurological symptoms associated with AT. While studying the effects of dexamethasone (dex) in AT fibroblasts, by chance we observed that the nucleoplasmic Lamin A/C was affected by the drug. In addition to the structural roles of A-type lamins, Lamin A/C has been shown to play a role in the regulation of gene expression and cell cycle progression, and alterations in the LMNA gene is cause of human diseases called laminopathies. Dex was found to improve the nucleoplasmic accumulation of soluble Lamin A/C and was capable of managing the large chromatin Lamin A/C scaffolds contained complex, thus regulating epigenetics in treated cells. In addition, dex modified the interactions of Lamin A/C with its direct partners lamin associated polypeptide (LAP) 2a, Retinoblastoma 1 (pRB) and E2F Transcription Factor 1 (E2F1), regulating local gene expression dependent on E2F1. These effects were differentially observed in both AT and wild type (WT) cells. To our knowledge, this is the first reported evidence of the role of dex in Lamin A/C dynamics in AT cells, and may represent a new area of research regarding the effects of glucocorticoids on AT. Moreover, future investigations could also be extended to healthy subjects or to other pathologies such as laminopathies since glucocorticoids may have other important effects in these contexts as well.


Asunto(s)
Ataxia Telangiectasia/metabolismo , Proteínas de Unión al ADN/metabolismo , Dexametasona/farmacología , Factor de Transcripción E2F1/metabolismo , Lamina Tipo A/metabolismo , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Salivales Ricas en Prolina/metabolismo , Ataxia Telangiectasia/tratamiento farmacológico , Ataxia Telangiectasia/genética , Proteínas de Unión al ADN/genética , Factor de Transcripción E2F1/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Lamina Tipo A/genética , Proteínas de la Membrana/genética , Membrana Nuclear/efectos de los fármacos , Membrana Nuclear/genética , Unión Proteica/efectos de los fármacos , Proteínas Salivales Ricas en Prolina/genética
15.
Cell Cycle ; 20(7): 647-660, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33678126

RESUMEN

The nuclear envelope (NE) is a critical barrier between the cytosol and nucleus that is key for compartmentalization within the cell and serves an essential role in organizing and protecting genomic DNA. Rupturing of the NE through loss of constitutive NE proteins and/or mechanical force applied to the nucleus results in the unregulated mixing of cytosolic and nuclear compartments, leading to DNA damage and genomic instability. Nuclear rupture has recently gained interest as a mechanism that may participate in various NE-associated diseases as well as cancer. Remarkably, these rupturing events are often transient, with cells being capable of rapidly repairing nuclear ruptures. Recently, we identified Barrier-to-Autointegration Factor (BAF), a DNA-binding protein involved in post-mitotic NE reformation and cytosolic viral regulation, as an essential protein for nuclear rupture repair. During interphase, the highly mobile cytosolic BAF is primed to monitor for a compromised NE by rapidly binding to newly exposed nuclear DNA and subsequently recruiting the factors necessary for NE repair. This review highlights the recent findings of BAF's roles in rupture repair, and offers perspectives on how regulatory factors that control BAF activity may potentially alter the cellular response to nuclear ruptures and how BAF may participate in human disease.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación Missense/fisiología , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Humanos
16.
Sci Rep ; 11(1): 4206, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33603021

RESUMEN

Herpesviruses infect a majority of the human population, establishing lifelong latent infections for which there is no cure. Periodic viral reactivation spreads infection to new hosts while causing various disease states particularly detrimental in the immunocompromised. Efficient viral replication, and ultimately the spread of infection, is dependent on the nuclear egress complex (NEC), a conserved viral heterodimer that helps translocate viral capsids from the nucleus to the cytoplasm where they mature into infectious virions. Here, we have identified peptides, derived from the capsid protein UL25, that are capable of inhibiting the membrane-budding activity of the NEC from herpes simplex virus type 1 in vitro. We show that the inhibitory ability of the peptides depends on their length and the propensity to form an α-helix but not on the exact amino acid sequence. Current therapeutics that target viral DNA replication machinery are rendered ineffective by drug resistance due to viral mutations. Our results establish a basis for the development of an alternative class of inhibitors against nuclear egress, an essential step in herpesvirus replication, potentially expanding the current repertoire of available therapeutics.


Asunto(s)
Núcleo Celular/genética , Herpesvirus Humano 1/genética , Proteínas Nucleares/genética , Péptidos/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Proteínas de la Cápside/genética , Citoplasma/genética , Replicación del ADN/genética , ADN Viral/genética , Mutación/genética , Membrana Nuclear/genética , Conformación Proteica en Hélice alfa/genética , Replicación Viral/genética
17.
Sci Rep ; 11(1): 3021, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542304

RESUMEN

Smart biomaterials are increasingly being used to control stem cell fate in vitro by the recapitulation of the native niche microenvironment. By integrating experimental measurements with numerical models, we show that in mesenchymal stem cells grown inside a 3D synthetic niche both nuclear transport of a myogenic factor and the passive nuclear diffusion of a smaller inert protein are reduced. Our results also suggest that cell morphology modulates nuclear proteins import through a partition of the nuclear envelope surface, which is a thin but extremely permeable annular portion in cells cultured on 2D substrates. Therefore, our results support the hypothesis that in stem cell differentiation, the nuclear import of gene-regulating transcription factors is controlled by a strain-dependent nuclear envelope permeability, probably related to the reorganization of stretch-activated nuclear pore complexes.


Asunto(s)
Transporte Activo de Núcleo Celular/genética , Núcleo Celular/genética , Células Madre Mesenquimatosas/metabolismo , Proteína MioD/genética , Diferenciación Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Poro Nuclear/genética , Nicho de Células Madre/genética
18.
J Mol Biol ; 432(23): 6028-6041, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33058875

RESUMEN

Linker of nucleoskeleton and cytoskeleton (LINC) complexes are molecular tethers that span the nuclear envelope (NE) and physically connect the nucleus to the cytoskeleton. They transmit mechanical force across the NE in processes such as nuclear anchorage, nuclear migration, and homologous chromosome pairing during meiosis. LINC complexes are composed of KASH proteins traversing the outer nuclear membrane, and SUN proteins crossing the inner nuclear membrane. Humans have several SUN- and KASH-containing proteins, yet what governs their proper engagement is poorly understood. To investigate this question, we solved high resolution crystal structures of human SUN2 in complex with the KASH-peptides of Nesprin3, Nesprin4, and KASH5. In comparison to the published structures of SUN2-KASH1/2 we observe alternative binding modes for these KASH peptides. While the core interactions between SUN and the C-terminal residues of the KASH peptide are similar in all five complexes, the extended KASH-peptide adopts at least two different conformations. The much-improved resolution allows for a more detailed analysis of other elements critical for KASH interaction, including the KASH-lid and the cation loop, and a possible self-locked state for unbound SUN. In summary, we observe distinct differences between the examined SUN-KASH complexes. These differences may have an important role in regulating the SUN-KASH network.


Asunto(s)
Proteínas de Ciclo Celular/ultraestructura , Proteínas de la Membrana/ultraestructura , Proteínas de Microfilamentos/ultraestructura , Complejos Multiproteicos/ultraestructura , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Nucléolo Celular/genética , Nucléolo Celular/ultraestructura , Emparejamiento Cromosómico/genética , Cristalografía por Rayos X , Citoesqueleto/genética , Citoesqueleto/ultraestructura , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Meiosis/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Membrana Nuclear/genética , Membrana Nuclear/ultraestructura , Matriz Nuclear/genética , Matriz Nuclear/ultraestructura , Péptidos/química , Péptidos/genética , Conformación Proteica
19.
Nucleus ; 11(1): 205-218, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32835589

RESUMEN

The nuclear envelope compartmentalizes chromatin in eukaryotic cells. The main nuclear envelope components are lamins that associate with a panoply of factors, including the LEM domain proteins. The nuclear envelope of mammalian cells opens up during cell division. It is reassembled and associated with chromatin at the end of mitosis when telomeres tether to the nuclear periphery. Lamins, LEM domain proteins, and DNA binding factors, as BAF, contribute to the reorganization of chromatin. In this context, an emerging role is that of the ESCRT complex, a machinery operating in multiple membrane assembly pathways, including nuclear envelope reformation. Research in this area is unraveling how, mechanistically, ESCRTs link to nuclear envelope associated factors as LEM domain proteins. Importantly, ESCRTs work also during interphase for repairing nuclear envelope ruptures. Altogether the advances in this field are giving new clues for the interpretation of diseases implicating nuclear envelope fragility, as laminopathies and cancer. ABBREVIATIONS: na, not analyzed; ko, knockout; kd, knockdown; NE, nuclear envelope; LEM, LAP2-emerin-MAN1 (LEM)-domain containing proteins; LINC, linker of nucleoskeleton and cytoskeleton complexes; Cyt, cytoplasm; Chr, chromatin; MB, midbody; End, endosomes; Tel, telomeres; INM, inner nuclear membrane; NP, nucleoplasm; NPC, Nuclear Pore Complex; ER, Endoplasmic Reticulum; SPB, spindle pole body.


Asunto(s)
Cromatina/metabolismo , Laminopatías/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Membrana Nuclear/metabolismo , Animales , Cromatina/genética , Cromatina/patología , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Interfase , Laminopatías/genética , Laminopatías/patología , Laminas/genética , Laminas/metabolismo , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patología , Membrana Nuclear/genética , Membrana Nuclear/patología
20.
J Cell Biol ; 219(10)2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32790861

RESUMEN

LINC complexes are transmembrane protein assemblies that physically connect the nucleoskeleton and cytoskeleton through the nuclear envelope. Dysfunctions of LINC complexes are associated with pathologies such as cancer and muscular disorders. The mechanical roles of LINC complexes are poorly understood. To address this, we used genetically encoded FRET biosensors of molecular tension in a nesprin protein of the LINC complex of fibroblastic and epithelial cells in culture. We exposed cells to mechanical, genetic, and pharmacological perturbations, mimicking a range of physiological and pathological situations. We show that nesprin experiences tension generated by the cytoskeleton and acts as a mechanical sensor of cell packing. Moreover, nesprin discriminates between inductions of partial and complete epithelial-mesenchymal transitions. We identify the implicated mechanisms, which involve α-catenin capture at the nuclear envelope by nesprin upon its relaxation, thereby regulating ß-catenin transcription. Our data thus implicate LINC complex proteins as mechanotransducers that fine-tune ß-catenin signaling in a manner dependent on the epithelial-mesenchymal transition program.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Mecanotransducción Celular/genética , Complejos Multiproteicos/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , beta Catenina/genética , Animales , Técnicas Biosensibles , Perros , Transferencia Resonante de Energía de Fluorescencia , Humanos , Células de Riñón Canino Madin Darby , Ratones , Microtúbulos/genética , Células 3T3 NIH , Membrana Nuclear/genética , Matriz Nuclear/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA