Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Arthroscopy ; 37(1): 252-265, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32979500

RESUMEN

PURPOSE: To identify, characterize, and compare the resident progenitor cell populations within the red-red, red-white, and white-white (WW) zones of freshly harvested human cadaver menisci and to characterize the vascularity of human menisci using immunofluorescence and 3-dimensional (3D) imaging. METHODS: Fresh adult human menisci were harvested from healthy donors. Menisci were enzymatically digested, mononuclear cells isolated, and characterized using flow cytometry with antibodies against mesenchymal stem cell surface markers (CD105, CD90, CD44, and CD29). Cells were expanded in culture, characterized, and compared with bone marrow-derived mesenchymal stem cells. Trilineage differentiation potential of cultured cells was determined. Vasculature of menisci was mapped in 3D using a modified uDisco clearing and immunofluorescence against vascular markers CD31, lectin, and alpha smooth muscle actin. RESULTS: There were no significant differences in the clonogenicity of isolated cells between the 3 zones. Flow cytometry showed presence of CD44+CD105+CD29+CD90+ cells in all 3 zones with high prevalence in the WW zone. Progenitors from all zones were found to be potent to differentiate to mesenchymal lineages. Larger vessels in the red-red zone of meniscus were observed spanning toward red-white, sprouting to smaller arterioles and venules. CD31+ cells were identified in all zones using the 3D imaging and co-localization of additional markers of vasculature (lectin and alpha smooth muscle actin) was observed. CONCLUSIONS: The presence of resident mesenchymal progenitors was evident in all 3 meniscal zones of healthy adult donors without injury. In addition, our results demonstrate the presence of vascularization in the WW zone. CLINICAL RELEVANCE: The existence of progenitors and presence of microvasculature in the WW zone of the meniscus suggests the potential for repair and biologic augmentation strategies in that zone of the meniscus in young healthy adults. Further research is necessary to fully define the functionality of the meniscal blood supply and its implications for repair.


Asunto(s)
Menisco/irrigación sanguínea , Células Madre Mesenquimatosas/citología , Cadáver , Diferenciación Celular , Células Cultivadas , Citometría de Flujo , Humanos , Menisco/citología , Células Madre/citología , Adulto Joven
2.
Sci Rep ; 8(1): 8150, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29802356

RESUMEN

Meniscus injuries are extremely common with approximately one million patients undergoing surgical treatment annually in the U.S. alone. Upon injury, the outer zone of the meniscus can be repaired and expected to functionally heal but tears in the inner avascular region are unlikely to heal. To date, no regenerative therapy has been proven successful for consistently promoting healing in inner-zone meniscus tears. Here, we show that controlled applications of connective tissue growth factor (CTGF) and transforming growth factor beta 3 (TGFß3) can induce seamless healing of avascular meniscus tears by inducing recruitment and step-wise differentiation of synovial mesenchymal stem/progenitor cells (syMSCs). A short-term release of CTGF, a selected chemotactic and profibrogenic cue, successfully recruited syMSCs into the incision site and formed an integrated fibrous matrix. Sustain-released TGFß3 then led to a remodeling of the intermediate fibrous matrix into fibrocartilaginous matrix, fully integrating incised meniscal tissues with improved functional properties. Our data may represent a novel clinically relevant strategy to improve healing of avascular meniscus tears by recruiting endogenous stem/progenitor cells.


Asunto(s)
Menisco/lesiones , Menisco/fisiopatología , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos , Cicatrización de Heridas , Animales , Bovinos , Factor de Crecimiento del Tejido Conjuntivo/farmacología , Menisco/irrigación sanguínea , Menisco/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Factor de Crecimiento Transformador beta3/farmacología , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA