Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.565
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Med ; 54(3)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38963051

RESUMEN

Lipid metabolism disorders are a major cause of several chronic metabolic diseases which seriously affect public health. Salusin­α, a vasoactive peptide, has been shown to attenuate lipid metabolism disorders, although its mechanism of action has not been reported. To investigate the effects and potential mechanisms of Salusin­α on lipid metabolism, Salusin­α was overexpressed or knocked down using lentiviral vectors. Hepatocyte steatosis was induced by free fatty acid (FFA) after lentiviral transfection into HepG2 cells. The degree of lipid accumulation was assessed using Oil Red O staining and by measuring several biochemical indices. Subsequently, bioinformatics was used to analyze the signaling pathways that may have been involved in lipid metabolism disorders. Finally, semi­quantitative PCR and western blotting were used to verify the involvement of the liver kinase B1 (LKB1)/AMPK pathway. Compound C, an inhibitor of AMPK, was used to confirm this mechanism's involvement further. The results showed that Salusin­α significantly attenuated lipid accumulation, inflammation and oxidative stress. In addition, Salusin­α increased the levels of LKB1 and AMPK, which inhibited the expression of sterol regulatory element binding protein­1c, fatty acid synthase and acetyl­CoA carboxylase. The addition of Compound C abrogated the Salusin­α­mediated regulation of AMPK on downstream signaling molecules. In summary, overexpression of Salusin­α activated the LKB1/AMPK pathway, which in turn inhibited lipid accumulation in HepG2 cells. This provides insights into the potential mechanism underlying the mechanism by which Salusin­α ameliorates lipid metabolism disorders while identifying a potential therapeutic target.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Lipogénesis , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Humanos , Lipogénesis/genética , Lipogénesis/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Células Hep G2 , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/efectos de los fármacos , Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Trastornos del Metabolismo de los Lípidos/metabolismo , Trastornos del Metabolismo de los Lípidos/genética , Trastornos del Metabolismo de los Lípidos/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Estrés Oxidativo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos
2.
FASEB J ; 38(13): e23788, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38963329

RESUMEN

Intermittent hypoxia (IH) is an independent risk factor for metabolic dysfunction-associated fatty liver disease (MAFLD). Copper deficiency can disrupt redox homeostasis, iron, and lipid metabolism. Here, we investigated whether hepatic copper deficiency plays a role in IH-associated MAFLD and explored the underlying mechanism(s). Male C57BL/6 mice were fed a western-type diet with adequate copper (CuA) or marginally deficient copper (CuD) and were exposed separately to room air (RA) or IH. Hepatic histology, plasma biomarkers, copper-iron status, and oxidative stress were assessed. An in vitro HepG2 cell lipotoxicity model and proteomic analysis were used to elucidate the specific targets involved. We observed that there were no differences in hepatic phenotypes between CuA-fed and CuD-fed mice under RA. However, in IH exposure, CuD-fed mice showed more pronounced hepatic steatosis, liver injury, and oxidative stress than CuA-fed mice. IH induced copper accumulation in the brain and heart and exacerbated hepatic copper deficiency and secondary iron deposition. In vitro, CuD-treated cells with IH exposure showed elevated levels of lipid accumulation, oxidative stress, and ferroptosis susceptibility. Proteomic analysis identified 360 upregulated and 359 downregulated differentially expressed proteins between CuA and CuD groups under IH; these proteins were mainly enriched in citrate cycle, oxidative phosphorylation, fatty acid metabolism, the peroxisome proliferator-activated receptor (PPAR)α pathway, and ferroptosis. In IH exposure, CuD significantly upregulated the ferroptosis-promoting factor arachidonyl-CoA synthetase long chain family member (ACSL)4. ACSL4 knockdown markedly eliminated CuD-induced ferroptosis and lipid accumulation in IH exposure. In conculsion, IH can lead to reduced hepatic copper reserves and secondary iron deposition, thereby inducing ferroptosis and subsequent MAFLD progression. Insufficient dietary copper may worsen IH-associated MAFLD.


Asunto(s)
Cobre , Ferroptosis , Hipoxia , Ratones Endogámicos C57BL , Animales , Cobre/metabolismo , Cobre/deficiencia , Masculino , Ratones , Hipoxia/metabolismo , Humanos , Células Hep G2 , Hígado/metabolismo , Hígado/patología , Estrés Oxidativo , Metabolismo de los Lípidos , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/etiología , Hierro/metabolismo , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , PPAR alfa/metabolismo , PPAR alfa/genética
3.
Proc Natl Acad Sci U S A ; 121(28): e2322066121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968125

RESUMEN

The Wnt/Wingless signaling pathway plays critical roles in metazoan development and energy metabolism, but its role in regulating lipid homeostasis remains not fully understood. Here, we report that the activation of canonical Wnt/Wg signaling promotes lipolysis while concurrently inhibiting lipogenesis and fatty acid ß-oxidation in both larval and adult adipocytes, as well as cultured S2R+ cells, in Drosophila. Using RNA-sequencing and CUT&RUN (Cleavage Under Targets & Release Using Nuclease) assays, we identified a set of Wnt target genes responsible for intracellular lipid homeostasis. Notably, active Wnt signaling directly represses the transcription of these genes, resulting in decreased de novo lipogenesis and fatty acid ß-oxidation, but increased lipolysis. These changes lead to elevated free fatty acids and reduced triglyceride (TG) accumulation in adipocytes with active Wnt signaling. Conversely, downregulation of Wnt signaling in the fat body promotes TG accumulation in both larval and adult adipocytes. The attenuation of Wnt signaling also increases the expression of specific lipid metabolism-related genes in larval adipocytes, wing discs, and adult intestines. Taken together, these findings suggest that Wnt signaling-induced transcriptional repression plays an important role in regulating lipid homeostasis by enhancing lipolysis while simultaneously suppressing lipogenesis and fatty acid ß-oxidation.


Asunto(s)
Proteínas de Drosophila , Vía de Señalización Wnt , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Adipocitos/metabolismo , Movilización Lipídica , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Lipólisis , Lipogénesis/genética , Triglicéridos/metabolismo , Metabolismo de los Lípidos/genética , Larva/metabolismo , Larva/genética , Transcripción Genética , Homeostasis
4.
Cancer Immunol Immunother ; 73(9): 171, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954021

RESUMEN

In the intricate landscape of the tumor microenvironment, tumor-associated macrophages (TAMs) emerge as a ubiquitous cellular component that profoundly affects the oncogenic process. The microenvironment of hepatocellular carcinoma (HCC) is characterized by a pronounced infiltration of TAMs, underscoring their pivotal role in modulating the trajectory of the disease. Amidst the evolving therapeutic paradigms for HCC, the strategic reprogramming of metabolic pathways presents a promising avenue for intervention, garnering escalating interest within the scientific community. Previous investigations have predominantly focused on elucidating the mechanisms of metabolic reprogramming in cancer cells without paying sufficient attention to understanding how TAM metabolic reprogramming, particularly lipid metabolism, affects the progression of HCC. In this review article, we intend to elucidate how TAMs exert their regulatory effects via diverse pathways such as E2F1-E2F2-CPT2, LKB1-AMPK, and mTORC1-SREBP, and discuss correlations of TAMs with these processes and the characteristics of relevant pathways in HCC progression by consolidating various studies on TAM lipid uptake, storage, synthesis, and catabolism. It is our hope that our summary could delineate the impact of specific mechanisms underlying TAM lipid metabolic reprogramming on HCC progression and provide useful information for future research on HCC and the development of new treatment strategies.


Asunto(s)
Carcinoma Hepatocelular , Metabolismo de los Lípidos , Neoplasias Hepáticas , Microambiente Tumoral , Macrófagos Asociados a Tumores , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/inmunología , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Microambiente Tumoral/inmunología , Animales , Reprogramación Celular , Transducción de Señal , Reprogramación Metabólica
5.
FASEB J ; 38(13): e23766, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38967214

RESUMEN

Dysbiosis of gut microbiota may account for pathobiology in simple fatty liver (SFL), metabolic dysfunction-associated steatohepatitis (MASH), fibrotic progression, and transformation to MASH-associated hepatocellular carcinoma (MASH-HCC). The aim of the present study is to investigate gut dysbiosis in this progression. Fecal microbial rRNA-16S sequencing, absolute quantification, histopathologic, and biochemical tests were performed in mice fed high fat/calorie diet plus high fructose and glucose in drinking water (HFCD-HF/G) or control diet (CD) for 2, 16 weeks, or 14 months. Histopathologic examination verified an early stage of SFL, MASH, fibrotic, or MASH-HCC progression with disturbance of lipid metabolism, liver injury, and impaired gut mucosal barrier as indicated by loss of occludin in ileum mucosa. Gut dysbiosis occurred as early as 2 weeks with reduced α diversity, expansion of Kineothrix, Lactococcus, Akkermansia; and shrinkage in Bifidobacterium, Lactobacillus, etc., at a genus level. Dysbiosis was found as early as MAHS initiation, and was much more profound through the MASH-fibrotic and oncogenic progression. Moreover, the expansion of specific species, such as Lactobacillus johnsonii and Kineothrix alysoides, was confirmed by an optimized method for absolute quantification. Dynamic alterations of gut microbiota were characterized in three stages of early SFL, MASH, and its HCC transformation. The findings suggest that the extent of dysbiosis was accompanied with MASH progression and its transformation to HCC, and the shrinking or emerging of specific microbial species may account at least in part for pathologic, metabolic, and immunologic alterations in fibrogenic progression and malignant transition in the liver.


Asunto(s)
Carcinoma Hepatocelular , Disbiosis , Microbioma Gastrointestinal , Neoplasias Hepáticas , Ratones Endogámicos C57BL , Animales , Ratones , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/microbiología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/etiología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/microbiología , Neoplasias Hepáticas/etiología , Disbiosis/microbiología , Masculino , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/microbiología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Metabolismo de los Lípidos , Hígado/metabolismo , Hígado/patología
6.
Commun Biol ; 7(1): 821, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38969726

RESUMEN

Algal biomass is a viable source of chemicals and metabolites for various energy, nutritional, medicinal and agricultural uses. While stresses have commonly been used to induce metabolite accumulation in microalgae in attempts to enhance high-value product yields, this is often very detrimental to growth. Therefore, understanding how to modify metabolism without deleterious consequences is highly beneficial. We demonstrate that low-doses (1-5 Gy) of ionizing radiation in the X-ray range induces a non-toxic, hormetic response in microalgae to promote metabolic activation. We identify specific radiation exposure parameters that give reproducible metabolic responses in Chlorella sorokiniana caused by transcriptional changes. This includes up-regulation of >30 lipid metabolism genes, such as genes encoding an acetyl-CoA carboxylase subunit, phosphatidic acid phosphatase, lysophosphatidic acid acyltransferase, and diacylglycerol acyltransferase. The outcome is an increased lipid yield in stationary phase cultures by 25% in just 24 hours, without any negative effects on cell viability or biomass.


Asunto(s)
Chlorella , Hormesis , Metabolismo de los Lípidos , Chlorella/metabolismo , Chlorella/efectos de la radiación , Chlorella/crecimiento & desarrollo , Metabolismo de los Lípidos/efectos de la radiación , Hormesis/efectos de la radiación , Radiación Ionizante , Biomasa
7.
J Transl Med ; 22(1): 623, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965596

RESUMEN

BACKGROUND: Obesity is a worldwide epidemic characterized by adipose tissue (AT) inflammation. AT is also a source of extracellular vesicles (EVs) that have recently been implicated in disorders related to metabolic syndrome. However, our understanding of mechanistic aspect of obesity's impact on EV secretion from human AT remains limited. METHODS: We investigated EVs from human Simpson Golabi Behmel Syndrome (SGBS) adipocytes, and from AT as well as plasma of subjects undergoing bariatric surgery. SGBS cells were treated with TNFα, palmitic acid, and eicosapentaenoic acid. Various analyses, including nanoparticle tracking analysis, electron microscopy, high-resolution confocal microscopy, and gas chromatography-mass spectrometry, were utilized to study EVs. Plasma EVs were analyzed with imaging flow cytometry. RESULTS: EVs from mature SGBS cells differed significantly in size and quantity compared to preadipocytes, disagreeing with previous findings in mouse adipocytes and indicating that adipogenesis promotes EV secretion in human adipocytes. Inflammatory stimuli also induced EV secretion, and altered EV fatty acid (FA) profiles more than those of cells, suggesting the role of EVs as rapid responders to metabolic shifts. Visceral AT (VAT) exhibited higher EV secretion compared to subcutaneous AT (SAT), with VAT EV counts positively correlating with plasma triacylglycerol (TAG) levels. Notably, the plasma EVs of subjects with obesity contained a higher number of adiponectin-positive EVs than those of lean subjects, further demonstrating higher AT EV secretion in obesity. Moreover, plasma EV counts of people with obesity positively correlated with body mass index and TNF expression in SAT, connecting increased EV secretion with AT expansion and inflammation. Finally, EVs from SGBS adipocytes and AT contained TAGs, and EV secretion increased despite signs of less active lipolytic pathways, indicating that AT EVs could be involved in the mobilization of excess lipids into circulation. CONCLUSIONS: We are the first to provide detailed FA profiles of human AT EVs. We report that AT EV secretion increases in human obesity, implicating their role in TAG transport and association with adverse metabolic parameters, thereby emphasizing their role in metabolic disorders. These findings promote our understanding of the roles that EVs play in human AT biology and metabolic disorders.


Asunto(s)
Adipocitos , Tejido Adiposo , Vesículas Extracelulares , Inflamación , Obesidad , Humanos , Vesículas Extracelulares/metabolismo , Obesidad/metabolismo , Obesidad/patología , Adipocitos/metabolismo , Inflamación/patología , Inflamación/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Metabolismo de los Lípidos , Femenino , Masculino , Adulto , Ácidos Grasos/metabolismo
8.
BMC Biol ; 22(1): 146, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956599

RESUMEN

BACKGROUND: Metabolic associated fatty liver disease (MAFLD), a prevalent liver disorder affecting one-third of the global population, encompasses a spectrum ranging from fatty liver to severe hepatic steatosis. Both genetic and lifestyle factors, particularly diet and nutrition, contribute to its etiology. Folate deficiency, a frequently encountered type of malnutrition, has been associated with the pathogenesis of MAFLD and shown to impact lipid deposition. However, the underlying mechanisms of this relationship remain incompletely understood. We investigated the impact of disturbed folate-mediated one-carbon metabolism (OCM) on hepatic lipid metabolism both in vitro using human hepatoma cells and in vivo using transgenic fluorescent zebrafish displaying extent-, stage-, and duration-controllable folate deficiency upon induction. RESULTS: Disturbed folate-mediated one-carbon metabolism, either by inducing folate deficiency or adding anti-folate drug, compromises autophagy and causes lipid accumulation in liver cells. Disturbed folate status down-regulates cathepsin L, a key enzyme involved in autophagy, through inhibiting mTOR signaling. Interfered mitochondrial biology, including mitochondria relocation and increased fusion-fission dynamics, also occurs in folate-deficient hepatocytes. Folate supplementation effectively mitigated the impaired autophagy and lipid accumulation caused by the inhibition of cathepsin L activity, even when the inhibition was not directly related to folate deficiency. CONCLUSIONS: Disruption of folate-mediated OCM diminishes cathepsin L expression and impedes autophagy via mTOR signaling, leading to lipid accumulation within hepatocytes. These findings underscore the crucial role of folate in modulating autophagic processes and regulating lipid metabolism in the liver.


Asunto(s)
Autofagia , Ácido Fólico , Hepatocitos , Homeostasis , Metabolismo de los Lípidos , Pez Cebra , Autofagia/fisiología , Ácido Fólico/metabolismo , Humanos , Hepatocitos/metabolismo , Animales , Deficiencia de Ácido Fólico/metabolismo
9.
Artículo en Chino | MEDLINE | ID: mdl-38964904

RESUMEN

Objective: To investigate the mechanism of Sulfo-N-succinimidyloleate (SSO) regulating lipid metabolism disorder induced by silicon dioxide (SiO(2)) . Methods: In March 2023, Rat alveolar macrophages NR8383 were cultured in vitro and randomly divided into control group (C), SSO exposure group (SSO), SiO(2) exposure group (SiO(2)) and SiO(2)+SSO exposure group (SiO(2)+SSO). NR8383 cells were exposure separately or jointly by SSO and SiO(2) for 36 h to construct cell models. Immunofluorescence and BODIPY 493/ 503 staining were used to detect cluster of differentiation (CD36) and intracellular lipid levels, the protein expression levels of CD36, liver X receptors (LXR), P-mammalian target of rapamycin (P-mTOR) and cholinephosphotransferase 1 (CHPT1) were detected by Western blot, respectively, and lipid metabolomics was used to screen for different lipid metabolites and enrichment pathways. Single-factor ANOVA was used for multi-group comparison, and LSD test was used for pair-to-group comparison. Results: SiO(2) caused the expression of CD36 and P-mTOR to increase (P=0.012, 0.020), the expression of LXR to decrease (P=0.005), and the intracellular lipid level to increase. After SSO treatment, CD36 expression decreased (P=0.023) and LXR expression increased (P=0.000) in SiO(2)+SSO exposure group compared with SiO(2) exposure group. Metabolomics identified 87 different metabolites in the C group and SiO(2) exposure group, 19 different metabolites in the SiO(2) exposure group and SiO(2)+SSO group, and 5 overlaps of different metabolites in the two comparison groups, they are PS (22∶1/14∶0), DG (O-16∶0/18∶0/0∶0), PGP (i-13∶0/i-20∶0), PC (18∶3/16∶0), and Sphinganine. In addition, the differential metabolites of the two comparison groups were mainly concentrated in the glycerophospholipid metabolism and sphingolipid metabolism pathways. The differential gene CHPT1 in glycerophospholipid metabolic pathway was verified, and the expression of CHPT1 decreased after SiO(2) exposure. Conclusion: SSO may improve SiO(2)-induced lipid metabolism disorders by regulating PS (22∶1/14∶0), DG (O-16∶0/18∶0/0∶0), PGP (i-13∶0/i-20∶0), PC (18∶3/16∶0), SPA, glycerophospholipid metabolism and sphingolipid metabolism pathways.


Asunto(s)
Antígenos CD36 , Metabolismo de los Lípidos , Dióxido de Silicio , Animales , Ratas , Dióxido de Silicio/toxicidad , Metabolismo de los Lípidos/efectos de los fármacos , Antígenos CD36/metabolismo , Metabolómica , Trastornos del Metabolismo de los Lípidos/metabolismo , Trastornos del Metabolismo de los Lípidos/inducido químicamente , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Receptores X del Hígado/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Lípidos
10.
Theranostics ; 14(9): 3470-3485, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948063

RESUMEN

Background: Sorafenib is the standard treatment for advanced hepatocellular carcinoma (HCC), but acquired resistance during the treatment greatly limits its clinical efficiency. Lipid metabolic disorder plays an important role in hepatocarcinogenesis. However, whether and how lipid metabolic reprogramming regulates sorafenib resistance of HCC cells remains vague. Methods: Sorafenib resistant HCC cells were established by continuous induction. UHPLC-MS/MS, proteomics, and flow cytometry were used to assess the lipid metabolism. ChIP and western blot were used to reflect the interaction of signal transducer and activator of transcription 3 (STAT3) with glycerol-3-phosphate acyltransferase 3 (GPAT3). Gain- and loss-of function studies were applied to explore the mechanism driving sorafenib resistance of HCC. Flow cytometry and CCK8 in vitro, and tumor size in vivo were used to evaluate the sorafenib sensitivity of HCC cells. Results: Our metabolome data revealed a significant enrichment of triglycerides in sorafenib-resistant HCC cells. Further analysis using proteomics and genomics techniques demonstrated a significant increase in the expression of GPAT3 in the sorafenib-resistant groups, which was found to be dependent on the activation of STAT3. The restoration of GPAT3 resensitized HCC cells to sorafenib, while overexpression of GPAT3 led to insensitivity to sorafenib. Mechanistically, GPAT3 upregulation increased triglyceride synthesis, which in turn stimulated the NF-κB/Bcl2 signaling pathway, resulting in apoptosis tolerance upon sorafenib treatment. Furthermore, our in vitro and in vivo studies revealed that pan-GPAT inhibitors effectively reversed sorafenib resistance in HCC cells. Conclusions: Our data demonstrate that GPAT3 elevation in HCC cells reprograms triglyceride metabolism which contributes to acquired resistance to sorafenib, which suggests GPAT3 as a potential target for enhancing the sensitivity of HCC to sorafenib.


Asunto(s)
Carcinoma Hepatocelular , Resistencia a Antineoplásicos , Neoplasias Hepáticas , Factor de Transcripción STAT3 , Sorafenib , Sorafenib/farmacología , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Animales , Factor de Transcripción STAT3/metabolismo , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Metabolismo de los Lípidos/efectos de los fármacos , Apoptosis/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
11.
Lipids Health Dis ; 23(1): 202, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937739

RESUMEN

BACKGROUND: Digestive system cancers represent a significant global health challenge and are attributed to a combination of demographic and lifestyle changes. Lipidomics has emerged as a pivotal area in cancer research, suggesting that alterations in lipid metabolism are closely linked to cancer development. However, the causal relationship between specific lipid profiles and digestive system cancer risk remains unclear. METHODS: Using a two-sample Mendelian randomization (MR) approach, we elucidated the causal relationships between lipidomic profiles and the risk of five types of digestive system cancer: stomach, liver, esophageal, pancreatic, and colorectal cancers. The aim of this study was to investigate the effect impact of developing lipid profiles on the risk of digestive system cancers utilizing data from public databases such as the GWAS Catalog and the UK Biobank. The inverse‒variance weighted (IVW) method and other strict MR methods were used to evaluate the potential causal links. In addition, we performed sensitivity analyses and reverse MR analyses to ensure the robustness of the results. RESULTS: Significant causal relationships were identified between certain lipidomic traits and the risk of developing digestive system cancers. Elevated sphingomyelin (d40:1) levels were associated with a reduced risk of developing gastric cancer (odds ratio (OR) = 0.68, P < 0.001), while elevated levels of phosphatidylcholine (16:1_20:4) increased the risk of developing esophageal cancer (OR = 1.31, P = 0.02). Conversely, phosphatidylcholine (18:2_0:0) had a protective effect against colorectal cancer (OR = 0.86, P = 0.036). The bidirectional analysis did not suggest reverse causality between cancer risk and lipid levels. Strict MR methods demonstrated the robustness of the above causal relationships. CONCLUSION: Our findings underscore the significant causal relationships between specific lipidomic traits and the risk of developing various digestive system cancers, highlighting the potential of lipid profiles in informing cancer prevention and treatment strategies. These results reinforce the value of MR in unraveling complex lipid-cancer interactions, offering new avenues for research and clinical application.


Asunto(s)
Neoplasias del Sistema Digestivo , Análisis de la Aleatorización Mendeliana , Humanos , Neoplasias del Sistema Digestivo/genética , Neoplasias del Sistema Digestivo/epidemiología , Neoplasias del Sistema Digestivo/sangre , Estudio de Asociación del Genoma Completo , Metabolismo de los Lípidos/genética , Lípidos/sangre , Lípidos/genética , Factores de Riesgo , Lipidómica , Predisposición Genética a la Enfermedad , Esfingomielinas/sangre , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/epidemiología
12.
BMC Cancer ; 24(1): 768, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926671

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a 'difficult-to-treat' entity. To forecast its prognosis, we introduced a new biomarker, SARIFA (stroma areactive invasion front areas), which are areas at the tumour invasion front lacking desmoplastic stroma reaction upon malignant invasion in the surrounding tissue, leading to direct contact between tumour cells and adipocytes. SARIFA showed its significance in gastric and colorectal carcinoma, revealing lipid metabolism alternations that promote tumour progression. METHODS: We reviewed the SARIFA status of 166 PDAC cases on all available H&E-stained tumour slides from archival Whipple-resection specimens. SARIFA positivity was defined as SARIFA detection in at least 66% of the available slides. To investigate alterations in tumour metabolism and microenvironment, we performed immunohistochemical staining for FABP4, CD36 and CD68. To verify and quantify a supposed delipidation of adipocytes, adipose tissue was digitally morphometrised. RESULTS: In total, 53 cases (32%) were classified as SARIFA positive and 113 (68%) as SARIFA negative. Patients with SARIFA-positive PDAC showed a significantly worse overall survival compared with SARIFA-negative cases (median overall survival: 11.0 months vs. 22.0 months, HR: 1.570 (1.082-2.278), 95% CI, p = 0.018), which was independent from other prognostic markers (p = 0.014). At the invasion front of SARIFA-positive PDAC, we observed significantly higher expression of FABP4 (p < 0.0001) and higher concentrations of CD68+ macrophages (p = 0.031) related to a higher risk of tumour progression. CD36 staining showed no significant expression differences. The adipocyte areas at the invasion front were significantly smaller, with mean values of 4021 ± 1058 µm2 and 1812 ± 1008 µm2 for the SARIFA-negative and -positive cases, respectively (p < 0.001). CONCLUSIONS: SARIFA is a promising prognostic biomarker for PDAC. Its assessment is characterised by simplicity and low effort. The mechanisms behind SARIFA suggest a tumour-promoting increased lipid metabolism and altered immune background, both showing new therapeutic avenues.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Ductal Pancreático , Proteínas de Unión a Ácidos Grasos , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidad , Femenino , Masculino , Biomarcadores de Tumor/metabolismo , Pronóstico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Anciano , Persona de Mediana Edad , Proteínas de Unión a Ácidos Grasos/metabolismo , Invasividad Neoplásica , Microambiente Tumoral , Metabolismo de los Lípidos , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Células del Estroma/metabolismo , Células del Estroma/patología , Antígenos CD36/metabolismo , Adipocitos/metabolismo , Adipocitos/patología , Adulto , Anciano de 80 o más Años , Molécula CD68
13.
Genes (Basel) ; 15(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38927745

RESUMEN

Brain lipid homeostasis is an absolute requirement for proper functionality of nerve cells and neurological performance. Current evidence demonstrates that lipid alterations are linked to neurodegenerative diseases, especially Alzheimer's disease (AD). The complexity of the brain lipidome and its metabolic regulation has hampered the identification of critical processes associated with the onset and progression of AD. While most experimental studies have focused on the effects of known factors on the development of pathological hallmarks in AD, e.g., amyloid deposition, tau protein and neurofibrillary tangles, neuroinflammation, etc., studies addressing the causative effects of lipid alterations remain largely unexplored. In the present study, we have used a multifactor approach combining diets containing different amounts of polyunsaturated fatty acids (PUFAs), estrogen availabilities, and genetic backgrounds, i.e., wild type (WT) and APP/PS1 (FAD), to analyze the lipid phenotype of the frontal cortex in middle-aged female mice. First, we observed that severe n-3 PUFA deficiency impacts the brain n-3 long-chain PUFA (LCPUFA) composition, yet it was notably mitigated by hepatic de novo synthesis. n-6 LCPUFAs, ether-linked fatty acids, and saturates were also changed by the dietary condition, but the extent of changes was dependent on the genetic background and hormonal condition. Likewise, brain cortex phospholipids were mostly modified by the genotype (FAD>WT) with nuanced effects from dietary treatment. Cholesterol (but not sterol esters) was modified by the genotype (WT>FAD) and dietary condition (higher in DHA-free conditions, especially in WT mice). However, the effects of estrogen treatment were mostly observed in relation to phospholipid remodeling in a genotype-dependent manner. Analyses of lipid-derived variables indicate that nerve cell membrane biophysics were significantly affected by the three factors, with lower membrane microviscosity (higher fluidity) values obtained for FAD animals. In conclusion, our multifactor analyses revealed that the genotype, diet, and estrogen status modulate the lipid phenotype of the frontal cortex, both as independent factors and through their interactions. Altogether, the outcomes point to potential strategies based on dietary and hormonal interventions aimed at stabilizing the brain cortex lipid composition in Alzheimer's disease neuropathology.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Modelos Animales de Enfermedad , Estrógenos , Ácidos Grasos Omega-3 , Lóbulo Frontal , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/dietoterapia , Animales , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/farmacología , Ratones , Lóbulo Frontal/metabolismo , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/patología , Femenino , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Estrógenos/metabolismo , Estrógenos/farmacología , Ratones Transgénicos , Presenilina-1/genética , Presenilina-1/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Humanos
14.
Neoplasia ; 54: 101009, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38850836

RESUMEN

BACKGROUND: Lipid metabolism and regulated cell death (RCD) play a role in the remodeling of tumor immune microenvironment and regulation of cancer progression. Since the underlying immune mechanisms of colon cancer remain elusive, this study aims to identify potential therapeutic target genes. METHODS: Differential genes related to lipid metabolism and RCD in COAD patients were identified using R language and online tools. Based on the expression of genes, two groups were classified using consensus clustering. CIBERSORT and ssGSEA were used to detect immune infiltration in both groups. Prognostic signature genes for colon cancer were screened using machine learning algorithms. KEGG, GO and GSEA for gene pathway enrichment. In addition, interacting genes in the immune module were obtained using a weighted gene co-expression network (WGCNA). Finally, expression and mutation of key in colon cancer genes were detected using TIMER, HPR, cBioPortal website and qPCR. RESULTS: The consensus clustering analysis revealed that 231 relevant differential genes were highly associated with immune infiltration. A series of machine learning and website analyses identified AGT as a hub gene linked to lipid metabolism and regulated cell death, which is overexpressed in colon cancer. CONCLUSION: AGT, as a signature gene of lipid metabolism and regulated cell death, plays a critical role in the development of COAD and is associated with tumor immune infiltration.


Asunto(s)
Neoplasias del Colon , Regulación Neoplásica de la Expresión Génica , Metabolismo de los Lípidos , Microambiente Tumoral , Humanos , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Metabolismo de los Lípidos/genética , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Pronóstico , Muerte Celular/genética , Biomarcadores de Tumor/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Transcriptoma
15.
Clin Exp Med ; 24(1): 136, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916672

RESUMEN

Dysregulated lipid metabolism in the bone marrow microenvironment (BMM) plays a vital role in multiple myeloma (MM) development, progression, and drug resistance. However, the exact mechanism by which lipid metabolism impacts the BMM, promotes tumorigenesis, and triggers drug resistance remains to be fully elucidated.By analyzing the bulk sequencing and single-cell sequencing data of MM patients, we identified lipid metabolism-related genes differential expression significantly associated with MM prognosis, referred to as LMRPgenes. Using a cohort of ten machine learning algorithms and 117 combinations, LMRPgenes predictive models were constructed. Further exploration of the effects of the model risk score (RS) on the survival status, immune status of patients with BMM, and response to immunotherapy was conducted. The study also facilitated the identification of personalized therapeutic strategies targeting specified risk categories within patient cohorts.Analysis of the scRNA-seq data revealed increased lipid metabolism-related gene enrichment scores (LMESs) in erythroblasts and progenitor, malignant, and Tprolif cells but decreased LMESs in lymphocytes. LMESs were also strongly correlated with most of the 50 hallmark pathways within these cell populations. An elevated malignant cell ratio and reduced lymphocytes were observed in the high LMES group. Moreover, the LMRPgenes predictive model, consisting of 14 genes, showed great predictive power. The risk score emerged as an independent indicator of poor outcomes. Inverse relationships between the RS and immune status were noted, and a high RS was associated with impaired immunotherapy responses. Drug sensitivity assays indicated the effectiveness of bortezomib, buparlisib, dinaciclib, staurosporine, rapamycin, and MST-312 in the high-RS group, suggesting their potential for treating patients with high-RS values and poor response to immunotherapy. Ultimately, upon verification via qRT-PCR, we observed a significant upregulation of ACBD6 in NDMM group compared to the control group.Our research enhances the knowledge base regarding the association between lipid metabolism-related genes (LMRGs) and the BMM in MM patients, offering substantive insights into the mechanistic effects of the BMM mediated by LMRGs.


Asunto(s)
Metabolismo de los Lípidos , Mieloma Múltiple , Microambiente Tumoral , Humanos , Metabolismo de los Lípidos/genética , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Mieloma Múltiple/tratamiento farmacológico , Médula Ósea/metabolismo , Médula Ósea/patología , Transcriptoma , Perfilación de la Expresión Génica , Pronóstico , Regulación Neoplásica de la Expresión Génica
16.
Biochem Soc Trans ; 52(3): 1539-1548, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38864432

RESUMEN

Mitochondria are essential organelles of eukaryotic cells and thus mitochondrial proteome is under constant quality control and remodelling. Yme1 is a multi-functional protein and subunit of the homo-hexametric complex i-AAA proteinase. Yme1 plays vital roles in the regulation of mitochondrial protein homeostasis and mitochondrial plasticity, ranging from substrate degradation to the regulation of protein functions involved in mitochondrial protein biosynthesis, energy production, mitochondrial dynamics, and lipid biosynthesis and signalling. In this mini review, we focus on discussing the current understanding of the roles of Yme1 in mitochondrial protein import via TIM22 and TIM23 pathways, oxidative phosphorylation complex function, as well as mitochondrial lipid biosynthesis and signalling, as well as a brief discussion of the role of Yme1 in modulating mitochondrial dynamics.


Asunto(s)
Mitocondrias , Dinámicas Mitocondriales , Proteínas Mitocondriales , Fosforilación Oxidativa , Transporte de Proteínas , Proteostasis , Humanos , Proteínas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Animales , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Lípidos/biosíntesis , Lípidos/química , Metabolismo de los Lípidos , Homeostasis , Transducción de Señal , Proteasas ATP-Dependientes/metabolismo
17.
Cell Death Dis ; 15(6): 411, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866777

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive cancer characterized by a poor prognosis and resistance to chemotherapy. In this study, utilizing scRNA-seq, we discovered that the tetra-transmembrane protein mal, T cell differentiation protein 2 (MAL2), exhibited specific enrichment in ICC cancer cells and was strongly associated with a poor prognosis. The inhibition of MAL2 effectively suppressed cell proliferation, invasion, and migration. Transcriptomics and metabolomics analyses suggested that MAL2 promoted lipid accumulation in ICC by stabilizing EGFR membrane localization and activated the PI3K/AKT/SREBP-1 axis. Molecular docking and Co-IP proved that MAL2 interacted directly with EGFR. Based on constructed ICC organoids, the downregulation of MAL2 enhanced apoptosis and sensitized ICC cells to cisplatin. Lastly, we conducted a virtual screen to identify sarizotan, a small molecule inhibitor of MAL2, and successfully validated its ability to inhibit MAL2 function. Our findings highlight the tumorigenic role of MAL2 and its involvement in cisplatin sensitivity, suggesting the potential for novel combination therapeutic strategies in ICC.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Receptores ErbB , Metabolismo de los Lípidos , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Colangiocarcinoma/tratamiento farmacológico , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Metabolismo de los Lípidos/efectos de los fármacos , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Animales , Cisplatino/farmacología , Cisplatino/uso terapéutico , Transducción de Señal , Proliferación Celular , Análisis de la Célula Individual , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/metabolismo , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito/genética , Ratones , Regulación Neoplásica de la Expresión Génica , Análisis de Secuencia de ARN , Apoptosis/efectos de los fármacos , Masculino
18.
Cancer Lett ; 595: 217006, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-38823763

RESUMEN

Driver genomic mutations in tumors define specific molecular subtypes that display distinct malignancy competence, therapeutic resistance and clinical outcome. Although TP53 mutation has been identified as the most common mutation in hepatocellular carcinoma (HCC), current understanding on the biological traits and therapeutic strategies of this subtype has been largely unknown. Here, we reveal that fatty acid ß oxidation (FAO) is remarkable repressed in TP53 mutant HCC and which links to poor prognosis in HCC patients. We further demonstrate that carnitine palmitoyltransferase 1 (CPT1A), the rate-limiting enzyme of FAO, is universally downregulated in liver tumor tissues, and which correlates with poor prognosis in HCC and promotes HCC progression in the de novo liver tumor and xenograft tumor models. Mechanically, hepatic Cpt1a loss disrupts lipid metabolism and acetyl-CoA production. Such reduction in acetyl-CoA reduced histone acetylation and epigenetically reprograms branched-chain amino acids (BCAA) catabolism, and leads to the accumulation of cellular BCAAs and hyperactivation of mTOR signaling. Importantly, we reveal that genetic ablation of CPT1A renders TP53 mutant liver cancer mTOR-addicted and sensitivity to mTOR inhibitor AZD-8055 treatment. Consistently, Cpt1a loss in HCC directs tumor cell therapeutic response to AZD-8055. CONCLUSION: Our results show genetic evidence for CPT1A as a metabolic tumor suppressor in HCC and provide a therapeutic approach for TP53 mutant HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Carnitina O-Palmitoiltransferasa , Neoplasias Hepáticas , Mutación , Proteína p53 Supresora de Tumor , Humanos , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Animales , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Metabolismo de los Lípidos/genética , Transducción de Señal , Acetilcoenzima A/metabolismo , Regulación Neoplásica de la Expresión Génica , Masculino
19.
Prostaglandins Other Lipid Mediat ; 173: 106840, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38830399

RESUMEN

We have previously demonstrated that the glucocorticoid receptor ß (GRß) isoform induces hepatic steatosis in mice fed a normal chow diet. The GRß isoform inhibits the glucocorticoid-binding isoform GRα, reducing responsiveness and inducing glucocorticoid resistance. We hypothesized that GRß regulates lipids that cause metabolic dysfunction. To determine the effect of GRß on hepatic lipid classes and molecular species, we overexpressed GRß (GRß-Ad) and vector (Vec-Ad) using adenovirus delivery, as we previously described. We fed the mice a normal chow diet for 5 days and harvested the livers. We utilized liquid chromatography-mass spectrometry (LC-MS) analyses of the livers to determine the lipid species driven by GRß. The most significant changes in the lipidome were monoacylglycerides and cholesterol esters. There was also increased gene expression in the GRß-Ad mice for lipogenesis, eicosanoid synthesis, and inflammatory pathways. These indicate that GRß-induced glucocorticoid resistance may drive hepatic fat accumulation, providing new therapeutic advantages.


Asunto(s)
Eicosanoides , Glucocorticoides , Inflamación , Lipogénesis , Hígado , Receptores de Glucocorticoides , Animales , Ratones , Hígado/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Eicosanoides/metabolismo , Glucocorticoides/metabolismo , Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Metabolismo de los Lípidos
20.
Aging (Albany NY) ; 16(12): 10203-10215, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942607

RESUMEN

Down Syndrome (DS) is a common genetic disorder characterized by an extra copy of chromosome 21, leading to dysregulation of various metabolic pathways. Oxidative stress in DS is associated with neurodevelopmental defects, neuronal dysfunction, and a dementia onset resembling Alzheimer's disease. Additionally, chronic oxidative stress contributes to cardiovascular diseases and certain cancers prevalent in DS individuals. This study investigates the impact of ageing on oxidative stress and liver fibrosis using a DS murine model (Ts2Cje mice). Our results show that DS mice show increased liver oxidative stress and impaired antioxidant defenses, as evidenced by reduced glutathione levels and increased lipid peroxidation. Therefore, DS liver exhibits an altered inflammatory response and mitochondrial fitness as we showed by assaying the expression of HMOX1, CLPP, and the heat shock proteins Hsp90 and Hsp60. DS liver also displays dysregulated lipid metabolism, indicated by altered expression of PPARα, PPARγ, FATP5, and CTP2. Consistently, these changes might contribute to non-alcoholic fatty liver disease development, a condition characterized by liver fat accumulation. Consistently, histological analysis of DS liver reveals increased fibrosis and steatosis, as showed by Col1a1 increased expression, indicative of potential progression to liver cirrhosis. Therefore, our findings suggest an increased risk of liver pathologies in DS individuals, particularly when combined with the higher prevalence of obesity and metabolic dysfunctions in DS patients. These results shed a light on the liver's role in DS-associated pathologies and suggest potential therapeutic strategies targeting oxidative stress and lipid metabolism to prevent or mitigate liver-related complications in DS individuals.


Asunto(s)
Envejecimiento , Modelos Animales de Enfermedad , Síndrome de Down , Cirrosis Hepática , Estrés Oxidativo , Animales , Síndrome de Down/metabolismo , Síndrome de Down/patología , Síndrome de Down/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Envejecimiento/metabolismo , Ratones , Hígado/metabolismo , Hígado/patología , Metabolismo de los Lípidos , Masculino , Peroxidación de Lípido , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA