Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 514
Filtrar
1.
BMC Genomics ; 25(1): 563, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840042

RESUMEN

BACKGROUND: Broussonetia papyrifera is an economically significant tree with high utilization value, yet its cultivation is often constrained by soil contamination with heavy metals (HMs). Effective scientific cultivation management, which enhances the yield and quality of B. papyrifera, necessitates an understanding of its regulatory mechanisms in response to HM stress. RESULTS: Twelve Metallothionein (MT) genes were identified in B. papyrifera. Their open reading frames ranged from 186 to 372 bp, encoding proteins of 61 to 123 amino acids with molecular weights between 15,473.77 and 29,546.96 Da, and theoretical isoelectric points from 5.24 to 5.32. Phylogenetic analysis classified these BpMTs into three subclasses: MT1, MT2, and MT3, with MT2 containing seven members and MT3 only one. The expression of most BpMT genes was inducible by Cd, Mn, Cu, Zn, and abscisic acid (ABA) treatments, particularly BpMT2e, BpMT2d, BpMT2c, and BpMT1c, which showed significant responses and warrant further study. Yeast cells expressing these BpMT genes exhibited enhanced tolerance to Cd, Mn, Cu, and Zn stresses compared to control cells. Yeasts harboring BpMT1c, BpMT2e, and BpMT2d demonstrated higher accumulation of Cd, Cu, Mn, and Zn, suggesting a chelation and binding capacity of BpMTs towards HMs. Site-directed mutagenesis of cysteine (Cys) residues indicated that mutations in the C domain of type 1 BpMT led to increased sensitivity to HMs and reduced HM accumulation in yeast cells; While in type 2 BpMTs, the contribution of N and C domain to HMs' chelation possibly corelated to the quantity of Cys residues. CONCLUSION: The BpMT genes are crucial in responding to diverse HM stresses and are involved in ABA signaling. The Cys-rich domains of BpMTs are pivotal for HM tolerance and chelation. This study offers new insights into the structure-function relationships and metal-binding capabilities of type-1 and - 2 plant MTs, enhancing our understanding of their roles in plant adaptation to HM stresses.


Asunto(s)
Broussonetia , Metalotioneína , Metales Pesados , Filogenia , Metalotioneína/genética , Metalotioneína/metabolismo , Metalotioneína/química , Metales Pesados/metabolismo , Broussonetia/genética , Broussonetia/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Estrés Fisiológico , Secuencia de Aminoácidos , Unión Proteica
2.
Protein Expr Purif ; 221: 106519, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38830441

RESUMEN

Sinopotamon Henanense expresses two metal‒induced metallothioneins (MTs), Cd‒induced MT and Cu‒induced MT (ShCuMT). The Cd‒induced MT has been characterized as a Cd‒thiolate MT. However, it is unknown whether ShCuMT is a Cu‒thiolate MT. In the present study, ShCuMT was expressed heterologously in Escherichia coli and purified by Ni‒NTA column and superdex‒75 column. And its metal‒binding feature was evaluated by DTNB reaction, circular dichroism spectroscopy (CD), isothermal microtitration (ITC), electrospray flight mass spectrometry (ESI‒TOF‒MS), and matrix‒assisted laser desorption ionization flight mass spectrometry (MALDI‒TOF‒MS). Bioinformatics analysis demonstrated that ShCuMT possessed the cysteine‒triplet motif of a Cu‒specific MT. Expression and purification of ShCuMT illustrated that SUMO tag used as the production system for ShCuMT resulted in a high production yield. The stability order of ShCuMT binding metal ions were Cu (Ⅰ) > Cd (Ⅱ) > Zn (Ⅱ). The CD spectrum indicated that ShCuMT binding with Cu (I) exhibited a compact thiol metal clusters structure. Besides, there emerged no a visible nickel‒thiol absorption after Ni‒NTA column affinity chromatography. The ITC results implied that Cu‒ShCuMT possessed the optimal thermodynamic conformation and the highest stoichiometric number of Cu (Ⅰ). Overall, the results suggested that SUMO fusion system is a robust and inexpensive approach for ShCuMT expression and Ni‒NTA column had no influence on metal binding of ShCuMT and Cu(Ⅰ) was considered its cognate metal ion, and ShCuMT possessed canonical Cu‒thiolate characteristics. The metal binding feature of ShCuMT reported here contributes to elucidating the structure‒function relationship of ShCuMT in S. Henanense.


Asunto(s)
Cobre , Metalotioneína , Metalotioneína/genética , Metalotioneína/química , Metalotioneína/metabolismo , Metalotioneína/aislamiento & purificación , Animales , Cobre/metabolismo , Cobre/química , Braquiuros/genética , Braquiuros/metabolismo , Braquiuros/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/química , Proteínas de Artrópodos/metabolismo , Cadmio/metabolismo , Cadmio/química , Escherichia coli/genética , Escherichia coli/metabolismo , Secuencia de Aminoácidos , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/biosíntesis
3.
Talanta ; 274: 125920, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574532

RESUMEN

Herby, the interaction of metallothioneins with commonly used Pt-based anticancer drugs - cisplatin, carboplatin, and oxaliplatin - was investigated using the combined power of elemental (i.e. LA-ICP-MS, CE-ICP-MS) and molecular (i.e. MALDI-TOF-MS) analytical techniques providing not only required information about the interaction, but also the benefit of low sample consumption. The amount of Cd and Pt incorporated within the protein was determined for protein monomers and dimer/oligomers formed by non-oxidative dimerization. Moreover, fluorescence spectrometry using Zn2+-selective fluorescent indicator - FluoZin3 - was employed to monitor the ability of Pt drugs to release natively occurring Zn from the protein molecule. The investigation was carried out using two protein isoforms (i.e. MT2, MT3), and significant differences in behaviour of these two isoforms were observed. The main attention was paid to elucidating whether the protein dimerization/oligomerization may be the reason for the potential failure of the anticancer therapy based on these drugs. Based on the results, it was demonstrated that the interaction of MT2 (both monomers and dimers) interacted with Pt drugs significantly less compared to MT3 (both monomers and dimers). Also, a significant difference between monomeric and dimeric forms (both MT2 and MT3) was not observed. This may suggest that dimer formation is not the key factor leading to the inactivation of Pt drugs.


Asunto(s)
Metalotioneína , Espectrometría de Fluorescencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Metalotioneína/metabolismo , Metalotioneína/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Fluorescencia/métodos , Carboplatino/farmacología , Oxaliplatino/farmacología , Cisplatino/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/química , Platino (Metal)/química , Metalotioneína 3 , Citostáticos/farmacología , Citostáticos/química , Espectrometría de Masas/métodos , Humanos
4.
Protein J ; 43(3): 503-512, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38488956

RESUMEN

Metallothioneins are a group of cysteine-rich proteins that play an important role in the homeostasis and detoxification of heavy metals. The objective of this research was to explore the significance of metallothionein in Trichoderma harzianum tolerance to zinc. At the inhibitory concentration of 1000 ppm, the fungus adsorbed 16.7 ± 0.4 mg/g of metal. The HPLC and SDS-PAGE electrophoresis data suggested that the fungus production of metallothionein was twice as high in the presence of zinc as in the control group. The examination of the genes; metallothionein expression activator (MEA) and Cu fist revealed that the MEA, with a C2H2 zinc finger domain, increased significantly in the presence of zinc. It was observed that in T. harzianum, the enhanced expression of the metallothionein gene was managed by the metallothionein activator under zinc overload conditions. According to our knowledge, this is the first report on the role of metallothionein in the resistance of T. harzianum to zinc.


Asunto(s)
Proteínas Fúngicas , Metalotioneína , Zinc , Metalotioneína/metabolismo , Metalotioneína/genética , Metalotioneína/química , Zinc/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Hypocreales/metabolismo , Hypocreales/genética , Hypocreales/química , Regulación Fúngica de la Expresión Génica/efectos de los fármacos
5.
Biochim Biophys Acta Proteins Proteom ; 1872(4): 141010, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38490456

RESUMEN

The structures of apo-metallothioneins (apo-MTs) have been relatively elusive due to their fluxional, disordered state which has been difficult to characterize. However, intrinsically disordered protein (IDP) structures are rather diverse, which raises questions about where the structure of apo-MTs fit into the protein structural spectrum. In this paper, the unfolding transitions of apo-MT1a are discussed with respect to the effect of the chemical denaturant GdmCl, temperature conditions, and pH environment. Cysteine modification in combination with electrospray ionization mass spectrometry was used to probe the unfolding transition of apo-MT1a in terms of cysteine exposure. Circular dichroism spectroscopy was also used to monitor the change in secondary structure as a function of GdmCl concentration. For both of these techniques, cooperative unfolding was observed, suggesting that apo-MT1a is not a random coil. More GdmCl was required to unfold the protein backbone than to expose the cysteines, indicating that cysteine exposure is likely an early step in the unfolding of apo-MT1a. MD simulations complement the experimental results, suggesting that apo-MT1a adopts a more compact structure than expected for a random coil. Overall, these results provide further insight into the intrinsically disordered structure of apo-MT.


Asunto(s)
Guanidina , Metalotioneína , Desplegamiento Proteico , Concentración de Iones de Hidrógeno , Humanos , Metalotioneína/química , Metalotioneína/metabolismo , Guanidina/química , Cisteína/química , Dicroismo Circular , Calor , Apoproteínas/química , Apoproteínas/metabolismo , Estructura Secundaria de Proteína , Desnaturalización Proteica , Proteínas Intrínsecamente Desordenadas/química
6.
Chemistry ; 30(22): e202304216, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38356034

RESUMEN

Bismuth is a xenobiotic metal with a high affinity to sulfur that is used in a variety of therapeutic applications. Bi(III) induces the cysteine-rich metallothionein (MT), a protein known to form two-domain cluster structures with certain metals such as Zn(II), Cd(II), or Cu(I). The binding of Bi(III) to MTs has been previously studied, but there are conflicting reports on the stoichiometry and binding pathway, which appear to be highly dependent on pH and initial metal-loading status of the MT. Additionally, domain specificity has not been thoroughly investigated. In this paper, ESI-MS was used to determine the binding constants of [Bi(EDTA)]- binding to apo-MT1a and its individual αMT fragment. The results were compared to previous experiments using ßMT1a and ßαMT3. Domain specificity was investigated using proteolysis methods and the initial cooperatively formed Bi2MT was found to bind to cysteines that spanned across the traditional metal binding domain regions. Titrations of [Bi(EDTA)]- into Zn7MT were performed and were found to result in a maximum stoichiometry of Bi7MT, contrasting the Bi6MT formed when [Bi(EDTA)]- was added to apo-MT. These results show that the initial structure of the apo-MT determines the stoichiometry of new incoming metals and explains the previously observed differences in stoichiometry.


Asunto(s)
Bismuto , Cisteína , Humanos , Ácido Edético , Bismuto/química , Cisteína/química , Metalotioneína/química , Zinc/química , Unión Proteica , Cadmio/química , Sitios de Unión
7.
Anal Chem ; 95(44): 16176-16184, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37879040

RESUMEN

The exploration of cytology mechanisms of nanosilver uptake, toxicity, and detoxification has become an important issue due to its widespread applications. Previous studies have shown differences in the toxic response of mammalian cells to nanosilver. However, the analysis results based on cell populations ignore the impact of cell uptake heterogeneity on the expression of associated stress proteins and cellular physiological activities. In this respect, this work investigated the interaction between silver uptake and metallothionein (MT) expression in individual cells. In addition, we have also preliminarily elucidated the sensitivity variation to AgNPs by using five cell lines, e.g., LX-2, HepG-2, SK-HEP-1, Huh-7, and MDA-MB-231, by adopting a two-dimensional (2D) high-throughput single-cell analysis platform coupling laser-induced fluorescence (LIF) and inductively coupled plasma mass spectrometry (ICP-MS). We developed a 2D data analysis method for one-to-one unification of fluorescence-mass spectrometry signals corresponding to a specific single cell. It indicated that there is no obvious correlation between cellular silver uptake and cell size, and the low MT expression of cells is more sensitive to silver nanoparticles. For each cell line, significant heterogeneity in MT expression was observed. This provides important information for understanding the potential heterogeneous effects of nanosilver on mammalian biological systems. Overall, detoxified cells are more tolerant to nanosilver and normal cells are more tolerant than cancer cells.


Asunto(s)
Nanopartículas del Metal , Plata , Animales , Plata/química , Metalotioneína/química , Mamíferos/metabolismo , Análisis de la Célula Individual
8.
FEBS J ; 290(17): 4316-4341, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37165729

RESUMEN

Human metallothioneins (MTs) are involved in binding the essential elements, Cu(I) and Zn(II), and the toxic element, Cd(II), in metal-thiolate clusters using 20 reduced cysteines. The brain-specific MT3 binds a mixture of Cu(I) and Zn(II) in vivo. Its metallation properties are critically important because of potential connections between Cu, Zn and neurodegenerative diseases. We report that the use of isotopically pure 63 Cu(I) and 68 Zn(II) greatly enhances the element resolution in the ESI-mass spectral data revealing species with differing Cu:Zn ratios but the same total number of metals. Room temperature phosphorescence and circular dichroism spectral data measured in parallel with ESI-mass spectral data identified the presence of specific Cu(I)-thiolate clusters in the presence of Zn(II). A series of Cu(I)-thiolate clusters form following Cu(I) addition to apo MT3: the two main clusters that form are a Cu6 cluster in the ß domain followed by a Cu4 cluster in the α domain. 63 Cu(I) addition to 68 Zn7 -MT3 results in multiple species, including clustered Cu5 Zn5 -MT3 and Cu9 Zn3 -MT3. We assign the domain location of the metals for Cu5 Zn5 -MT3 as a Cu5 Zn1 -ß cluster and a Zn4 -α cluster and for Cu9 Zn3 -MT3 as a Cu6 -ß cluster and a Cu3 Zn3 -α cluster. While many reports of the average MT3 metal content exist, determining the exact Cu,Zn stoichiometry has proven very difficult even with native ESI-MS. The work in this paper solves the ambiguity introduced by the overlap of the naturally abundant Cu(I) and Zn(II) isotopes. Contrary to other reports, there is no indication of a major fraction of Cu4 -ß-Znn -α-MT3 forming.


Asunto(s)
Cobre , Metalotioneína 3 , Humanos , Cobre/metabolismo , Metales , Metalotioneína/genética , Metalotioneína/química , Metalotioneína/metabolismo , Zinc/metabolismo , Cadmio
9.
J Am Chem Soc ; 145(11): 6383-6397, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36914167

RESUMEN

Oxidative stress is a state involving an imbalance of reactive oxygen species in a cell and is linked to a variety of diseases. The metal-binding protein metallothionein (MT) may play a role in protection due to its high cysteine content. Many studies have shown that oxidative stress will cause MT to both form disulfide bonds and release bound metals. However, studies on the more biologically relevant partially metalated MTs have been largely neglected. Additionally, most studies to date have used spectroscopic methods that cannot detect specific intermediate species. In this paper, we describe the oxidation and the subsequent metal displacement pathway of fully and partially metalated MTs with hydrogen peroxide. The rates of the reactions were monitored using electrospray ionization mass spectrometry (ESI-MS) techniques, which resolved and characterized the individual intermediate Mx(SH)yMT species. The rate constants were calculated for each species formation. Through ESI-MS and circular dichroism spectroscopy, it was found that the three metals in the ß-domain were the first to be released from the fully metalated MTs. The Cd(II) in the partially metalated Cd(II)-bound MTs rearranged to form a protective Cd4MT cluster structure upon exposure to oxidation. The partially metalated Zn(II)-bound MTs oxidized at a faster rate as the Zn(II) did not rearrange in response to oxidation. Additionally, density functional theory calculations showed that the terminally bound cysteines were more negative and thus more susceptible to oxidation than the bridging cysteines. The results of this study highlight the importance of metal-thiolate structures and metal identity in MT's response to oxidation.


Asunto(s)
Cadmio , Zinc , Zinc/química , Cadmio/química , Metalotioneína/química , Metalotioneína/metabolismo , Peróxido de Hidrógeno , Metales/química
10.
Inorg Chem ; 61(49): 19857-19869, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36454194

RESUMEN

Metallothioneins (MTs) are a ubiquitous class of small cysteine-rich metal-binding proteins involved in metal homeostasis and detoxification with highly versatile metal binding properties. Despite the long-standing association of MT with M3S3 and M4S5 metal clusters, synthetic complexes with these core architectures are exceptionally rare. Here, we demonstrate an approach to synthesizing and characterizing aggregates of group 12 metal ions with monocyclic M3S3 cores in acetonitrile solution without the protection of a protein. Multidentate monothiol ligand N,N-bis(2-pyridylmethyl)-2-aminoethanethiol (L1H) provided [Cd3(L1)3](ClO4)3 (1), the first structurally characterized nonproteinaceous aggregate with a metallothionein-like monocyclic Cd3S3 core. In addition, [Zn3(L1)3](ClO4)3·4CH3CN (2·4CH3CN) was characterized by X-ray crystallography. The complex cations of 1 and 2 had comparable structures despite being nonisomorphic. Variable temperature and concentration 1H NMR were used to investigate aggregation equilibria of 1, 2, and a precipitate with composition "Hg(L1)(ClO4)" (3). Cryogenic 1H NMR studies of 3 revealed a J(199Hg1H) coupling constant pattern consistent with an aggregate possessing a cyclic core. ESI-MS was used for gas-phase characterization of 1-3, as well as mixed-metal [M2M'(L1)3(ClO4)2]+ ions prepared in situ by pairwise acetonitrile solution combinations of the group 12 complexes of L1. Access to synthetic variants of metallothionein-like group 12 aggregates provides an additional approach to understanding their behavior.


Asunto(s)
Mercurio , Metalotioneína , Metalotioneína/química , Cadmio/química , Espectroscopía de Resonancia Magnética , Metales/metabolismo , Cristalografía por Rayos X
11.
Biol Lett ; 18(4): 20220039, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35414221

RESUMEN

Intracellular ligands that bind heavy metals (HMs) and thereby minimize their detrimental effects to cellular metabolism are attracting great interest for a number of applications including bioremediation and development of HM-biosensors. Metallothioneins (MTs) are short, cysteine-rich, genetically encoded proteins involved in intracellular metal-binding and play a key role in detoxification of HMs. We searched approximately 700 genomes and transcriptomes of non-ciliate protists for novel putative MTs by similarity and structural analyses and found 21 unique proteins playing a potential role as MTs. Most putative MTs derive from heterokonts and dinoflagellates and share common features such as (i) a putative metal-binding domain in proximity of the N-terminus, (ii) two putative MT-specific domains near the C-terminus and (iii) one to three CTCGXXCXCGXXCXCXXC patterns. Although the biological function of these proteins has not been experimentally proven, knowledge of their genetic sequences adds useful information on proteins that are potentially involved in HM-binding and can contribute to the design of future biomolecular assays on HM-microbe interactions and MT-based biosensors.


Asunto(s)
Biología Computacional , Metales Pesados , Metalotioneína/química , Metalotioneína/genética , Metalotioneína/metabolismo , Metales Pesados/metabolismo
12.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34884919

RESUMEN

Metallothioneins' (MTs) biological function has been a matter of debate since their discovery. The importance to categorize these cysteine-rich proteins with high coordinating capacity into a specific group led to numerous classification proposals. We proposed a classification based on their metal-binding abilities, gradually sorting them from those with high selectivity towards Zn/Cd to those that are Cu-specific. However, the study of the NpeMT1 and NpeMT2isoforms of Nerita peloronta, has put a new perspective on this classification. N. peloronta has been chosen as a representative mollusk to elucidate the metal-binding abilities of Neritimorpha MTs, an order without any MTs characterized recently. Both isoforms have been recombinantly synthesized in cultures supplemented with ZnII, CdII, or CuII, and the purified metal-MT complexes have been thoroughly characterized by spectroscopic and spectrometric methods, leading to results that confirmed that Neritimorpha share Cd-selective MTs with Caenogastropoda and Heterobranchia, solving a so far unresolved question. NpeMTs show high coordinating preferences towards divalent metal ions, although one of them (NpeMT1) shares features with the so-called genuine Zn-thioneins, while the other (NpeMT2) exhibits a higher preference for Cd. The dissimilarities between the two isoforms let a window open to a new proposal of chemical MT classification.


Asunto(s)
Cadmio/metabolismo , Gastrópodos/metabolismo , Metalotioneína/química , Metalotioneína/clasificación , Zinc/metabolismo , Animales , Dicroismo Circular , Cobre/metabolismo , Escherichia coli/genética , Gastrópodos/química , Metalotioneína/genética , Metalotioneína/metabolismo , Dominios Proteicos , Isoformas de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometría Ultravioleta
13.
J Basic Microbiol ; 61(11): 982-992, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34496046

RESUMEN

Metallothionein and metal-binding peptides are small cysteine-rich proteins produced by different organisms in stress conditions. In this study, the metal-binding peptide was detected in extracellular proteins of a new Bacillus velezensis strain, isolated from metal contaminated soil, and grown on the lead-enriched medium, for the first time. The presence of sulfide peptide was assayed by two simple tests (lead sulfide and Ellman's reagent test) for preliminary, and subsequently confirmed using polyacrylamide gel electrophoresis at media with different lead concentrations that the low-molecular-weight protein fragments (≈10 kDa) were observed while none were detected in the medium containing sodium chloride or calcium salt. The amino acids of the observed fragments were analyzed by matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS/MS). Also, the metal adsorption was confirmed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) by staining with chromium solution. The results showed that the putative sulfide peptide is metallothionein, which is induced in stress conditions. It was interesting that in all SDS profiles, one protein fragment (≈18 kDa) was inhibited in lead-enriched media. The data from MALDI-TOF MS/MS analysis showed that this fraction was a chitin-binding protein whose production was regulated by metal contamination. It is anticipated that these two proteins regulate the toxicity of lead.


Asunto(s)
Bacillus/metabolismo , Proteínas Bacterianas/metabolismo , Quitina/metabolismo , Metales/metabolismo , Secuencia de Aminoácidos , Bacillus/aislamiento & purificación , Proteínas Bacterianas/química , Plomo/metabolismo , Metalotioneína/química , Metalotioneína/metabolismo , Peso Molecular , Péptidos/química , Péptidos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
14.
Artículo en Inglés | MEDLINE | ID: mdl-34284103

RESUMEN

The effect of increasing amounts (0%, 25%, 50%, 75%, and 100%) of dietary supplementation with an organic micromineral complex (Fe, Zn, Cu, Mn, and Se) on antioxidant defenses and mineral deposition in tissues of Nile tilapia juveniles was evaluated, where 100% supplementation represented the average adopted by the feed industry in Brazil. Fish (initial weight 23.93 ± 0.80 g) were fed until apparent satiation twice a day for 56 days. The maximum deposition of Fe and Zn in the hepatopancreas occurred in fish given approximately 50% supplementation, whereas the deposition of Mn and Se increased linearly with the inclusion of the complex. The activity of catalase and superoxide dismutase in the hepatopancreas decreased in fish fed the 50% dose, when compared to those not receiving mineral supplementation or those receiving higher doses. Glutathione peroxidase (GPx) activity in the hepatopancreas increased as the dietary Se concentration increased. However, the concentration of metallothionein in the hepatopancreas showed an inverse relationship to the increase in dietary supplementation of the organic mineral complex. There was no relationship between the doses of organic micromineral supplementation and the activities of GPx, reduced glutathione, non-protein thiols, or protein carbonylation. However, diets supplemented with 50% to 100% promoted greater GPx activity when compared to the 0% supplemented diet. Supplementation with intermediate doses of organic microminerals, approximately 50% of that used in commercial tilapia diets, promoted the homeostasis of metal metabolism, especially for Fe and Zn.


Asunto(s)
Alimentación Animal , Antioxidantes/metabolismo , Cíclidos/fisiología , Suplementos Dietéticos , Metalotioneína/metabolismo , Animales , Antioxidantes/química , Brasil , Catalasa/metabolismo , Cíclidos/metabolismo , Dieta , Glutatión , Glutatión Peroxidasa/metabolismo , Hepatopáncreas/metabolismo , Hierro/química , Masculino , Metalotioneína/química , Minerales/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Superóxido Dismutasa/metabolismo , Zinc/química
15.
Fungal Genet Biol ; 153: 103574, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34015433

RESUMEN

Cystoderma carcharias is one of the few macrofungal species that can hyperaccumulate Cd. As we have previously documented in C. carcharias collected from a smelter-polluted area, it stores 40% of Cd and nearly 90% of Cu in sporocarps in complex(es) of identical size. In this paper we examined whether metallothionein (MT) peptides that bind Cd and Cu through cysteinyl-thiolate bonds were associated with the metals in these complexes. Screening of a sporocarp cDNA expression library in yeasts allowed the identification of two transcripts, CcMT1 and CcMT2, encoding functional 34-amino acid (AA) MTs sharing 56% identity and appearing to be encoded by duplicate genes. CcMT1 conferred reasonable tolerance to Cu and a substantially higher tolerance to Cd than CcMT2, while CcMT2 clearly protected the yeasts better against Cu toxicity. While size-exclusion chromatography revealed that CcMT1 was contained in all Cd/Cu complexes isolated from wild grown sporocarps, CcMT2 was detected in a much narrower subset of the fractions. The striking difference between the CcMTs is that CcMT1 lacks the third metal-biding cysteinyl (C) within an otherwise highly conserved-in-agaricomycetes-MTs C-AA4-C-AA-C-AA3-C-AA-C-AA4-C-AA-C motif. The elimination of the corresponding cysteinyl in CcMT2 only reduced the Cu-tolerant phenotype in yeasts to the levels observed with CcMT1. Altogether, these results indicate that CcMT2 is rather adjusted to perform Cu-related tasks and point to CcMT1 as the ligand for the storage of both Cd and Cu in C.carcharias, which is the first macrofungal species in which the potential of MT in Cd handling can be seen.


Asunto(s)
Agaricales/metabolismo , Cadmio/metabolismo , Cobre/metabolismo , Proteínas Fúngicas/metabolismo , Metalotioneína/metabolismo , Agaricales/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genes Fúngicos , Metalotioneína/química , Metalotioneína/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
16.
Metallomics ; 13(5)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33899918

RESUMEN

Non-toxic bismuth salts are used in anti-ulcer medications and to protect against nephrotoxicity from anticancer drugs. Bismuth salts also induce metallothionein (MT), a metal-binding protein that lacks a formal secondary structure. We report the impact on the metallation properties of Bi(III) to the 9-cysteine ß fragment of MT as a function of cysteine accessibility using electrospray ionization mass spectrometry. At pH 7.4, Bi2ßMT formed cooperatively. Cysteine modification shows that each Bi(III) was terminally bound to three cysteinyl thiolates. Non-cooperative Bi(III) binding was observed at pH 2.3, where cysteine accessibility is increased. However, competition from H4EDTA inhibited Bi(III) binding. When GdmCl, a well-known denaturing agent, was used to increase cysteine accessibility of the apoßMT at pH 7.4, a greater fraction of Bi3ßMT formed using all nine cysteines. The change in binding profile and equilibrium of Bi2ßMT was determined as a function of acidification, which changed as a result of competition with H4EDTA. There was no Bi(III) transfer between Bi2ßMT, Cd3ßMT, and Zn3ßMT. This lack of metal exchange and the resistance towards binding the third Bi(III) suggest a rigidity in the Bi2ßMT binding sites that inhibits Bi(III) mobility. These experiments emphasize the conformational control of metallation that results in substantially different metallated products: at pH 7.4 (many cysteines buried) Bi2ßMT, whereas at pH 7.4 (all cysteines accessible) enhanced formation of Bi3ßMT. These data suggest that the addition of the first two Bi(III) crosslinks the protein, blocking access to the remaining three cysteines for the third Bi(III), as a result of tangle formation.


Asunto(s)
Apoproteínas/química , Bismuto/química , Cadmio/química , Cisteína/química , Metalotioneína/química , Zinc/química , Humanos
17.
Protein Expr Purif ; 182: 105838, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33561519

RESUMEN

Zinc-binding proteins named MT-M-I and MT-M-II were obtained after purification from metal-exposed hairy clams (Arca subcrenata) using gel permeation and ion-exchange chromatography. MT-M-I and MT-M-II were resolved by ion-exchange chromatography, and they were found to have similar molecular weights. MT-M-I and MT-M-II can bind 6 and 7 equivalents of Zn2+ in vitro, and they showed unusual migration behaviors in Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis (Tricine-SDS-PAGE). Such migration behaviors may be due to themetal thiolate clusters in these proteins. In terms of amino acid composition, the proportion of cysteine in MT-M-I and MT-M-II was approximately 30%, and glycine accounted for approximately 15%, where as aromatic amino acids were absent. Considering the performance in Tricine-SDS-PAGE and the amino acid compositions, MT-M-I and MT-M-II conform to the molecular characteristics of the metallothionein proteins. The structures were explored using circular dichroism (CD) and Fourier-transform infrared spectroscopy (FTIR). Also determined the antioxidant activities in terms of DPPH radical scavenging ability, hydroxyl radical (·OH) scavenging ability, and ferric-reducing/antioxidant power. The antioxidant activities of MT-M-I were found to be stronger than those of MT-M-II.


Asunto(s)
Bivalvos/química , Proteínas Portadoras , Depuradores de Radicales Libres , Metalotioneína , Animales , Proteínas Portadoras/química , Proteínas Portadoras/aislamiento & purificación , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/aislamiento & purificación , Metalotioneína/química , Metalotioneína/aislamiento & purificación , Estructura Secundaria de Proteína
18.
Metallomics ; 12(12): 1951-1964, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33225329

RESUMEN

Copper is an essential element, but as a result of numerous adverse reactions, it is also a cellular toxin. Nature protects itself from these toxic reactions by binding cuprous copper to chaperones and other metalloproteins. Metallothionein has been proposed as a storage location for Cu(i) and potentially as the donor of Cu(i) to copper-dependent enzymes. We report that the addition of Cu(i) to apo recombinant human metallothionein 1a cooperatively forms a sequential series of Cu(i)-cysteinyl thiolate complexes that have specific Cu(i) : MT stoichiometries of 6 : 1, 10 : 1, and finally 13 : 1. The individual domain Cu : SCys stoichiometries were determined as Cu6S9 (for 6 : 1), Cu6S9 + Cu4S6 (for 10 : 1), and Cu6S9 + Cu7S9 (for 13 : 1) based on the number of modified free cysteines not involved in Cu(i) binding. The stoichiometries are associated with Cu-SCys cluster formation involving bridging thiols in the manner similar to the clusters formed with Cd(ii) and Zn(ii). The locations of these clustered species within the 20 cysteine full protein were determined from the unique speciation profiles of Cu(i) binding to the ß and α domain fragments of recombinant human metallothionein 1a with 9 and 11 cysteines, respectively. Competition reactions using these domain fragments challenged Cu(i) metallation of the ßα protein, allowing the sequence of cluster formation in the full protein to be determined. Relative binding constants for each Cu(i) bound are reported. The emission spectra of the Cu4S6, Cu6S9, and Cu7S9 clusters have unique λmax and phosphorescent lifetime properties. These phosphorescent data provide unambiguous supporting evidence for the presence of solvent shielded clusters reported concurrently by ESI-MS. Simulated emission spectra based on the cluster specific emission profiles matched the experimental spectra and are used to confirm that the relative concentrations seen by ESI-MS are representative of the solution. Our results suggest that the availability of a series of sequential Cu(i)-thiolate clusters provides flexibility as a means of protecting the cell from toxicity while still allowing for homeostatic control of the total copper content in the cell. This mechanism provides a dynamic and reactive method of reducing the cellular free copper concentrations.


Asunto(s)
Cobre/metabolismo , Metalotioneína/metabolismo , Sitios de Unión , Humanos , Metalotioneína/química , Modelos Moleculares , Unión Proteica , Dominios Proteicos
19.
Inorg Chem ; 59(23): 16988-16997, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33205965

RESUMEN

Metallothioneins (MTs) are a large superfamily of ubiquitous cysteine-rich metalloproteins with main functions in metal ion homeostasis and detoxification. Neclu_MT1 is a metallothionein from the aquatic fungus Heliscus lugdunensis and so far the only known MT that is solely induced by CdII but not by ZnII or copper ions. In addition to eight cysteine residues, Neclu_MT1 also contains a less common single C-terminal histidine residue. To better understand the role of this histidine residue in metal ion binding, for the first time, potentiometric pH titrations are applied, revealing insights into the protonation and metal ion binding processes. Additional studies with absorption and NMR spectroscopy complement the finding that while the histidine residue is not crucial for the overall metal binding capacity, it does serve as a ligand in the ZnII but not in the CdII form of the protein.


Asunto(s)
Cadmio/química , Histidina/química , Hypocreales/química , Metalotioneína/química , Zinc/química
20.
Metallomics ; 12(11): 1637-1655, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32996528

RESUMEN

Metallothioneins (MTs) are a group of cysteine-rich, universal, low molecular weight proteins distributed widely in almost all major taxonomic groups ranging from tiny microbes to highly organized vertebrates. The primary function of this protein is storage, transportation and binding of metals, which enable microorganisms to detoxify heavy metals. In the microbial world, these peptides were first identified in a cyanobacterium Synechococcus as the SmtA protein which exhibits high affinity towards rising level of zinc and cadmium to preserve metal homeostasis in a cell. In yeast, MTs aid in reserving copper and confer protection against copper toxicity by chelating excess copper ions in a cell. Two MTs, CUP1 and Crs5, originating from Saccharomyces cerevisiae predominantly bind to copper though are capable of binding with zinc and cadmium ions. MT superfamily 7 is found in ciliated protozoa which show high affinity towards copper and cadmium. Several tools and techniques, such as western blot, capillary electrophoresis, inductively coupled plasma, atomic emission spectroscopy and high performance liquid chromatography, have been extensively utilized for the detection and quantification of microbial MTs which are utilized for the efficient remediation and sequestration of heavy metals from a contaminated environment.


Asunto(s)
Bacterias/metabolismo , Metalotioneína/química , Metalotioneína/metabolismo , Metales Pesados/aislamiento & purificación , Biodegradación Ambiental , Metaloproteínas/metabolismo , Metalotioneína/genética , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA