Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Isr J Health Policy Res ; 13(1): 44, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256853

RESUMEN

BACKGROUND: Israel is a regional "hotspot" of plastic pollution, with little discussion of potential adverse health effects from exposure to plastic. This review aims to stimulate discussion and drive policy by focusing on these adverse health effects. MAIN BODY: Plastics are synthetic polymers containing additives which can leach from food- and beverage-contact plastic into our food and beverages, and from plastic textiles onto our skin. Plastics persist in the environment for generations, fragmenting into MNPs: Micro (1 micron-5 mm)-Nano (1 nm-1 micron)-Plastic, which contaminate our atmosphere, water, and food chain. MNP can enter the human body through ingestion, inhalation and touch. MNP < 10 microns can cross epithelial barriers in the respiratory and gastrointestinal systems, and fragments < 100 nm can cross intact skin, enabling entry into body tissues. MNP have been found in multiple organs of the human body. Patients with MNP in atheromas of carotid arteries have increased risk of a combined measure of stroke, cardiovascular disease, and death. Toxic additives to plastics include bisphenols, phthalates, and PFAS, endocrine-disrupting chemicals (EDCs) which cause dysregulation of thyroid function, reproduction, and metabolism, including increased risk of obesity, diabetes, endometriosis, cancer, and decreased fertility, sperm count and quality. Fetal exposure to EDCs is associated with increased rates of miscarriages, prematurity and low birth weight. There is likely no safe level of exposure to EDCs, with increasing evidence of trans-generational and epigenetic effects. There are several existing Israeli laws to reduce plastic use and waste. Taxes on single-use plastic (SUP) were recently cancelled. There are many gaps in regulatory standards for food-, beverage- and child- safe plastic. Existing standards are poorly enforced. CONCLUSION: Reduction in production and use of plastic, promotion of recycling and reduction of leaching of toxic additives into our food and beverages are essential policy goals. Specific recommendations: Periodic monitoring of MNP in bottled beverages, food, indoor air; Strengthen enforcement of standards for food-, beverage-, and child-safe plastic; Renew tax on SUPs; National ban on SUP at public beaches, nature reserves and parks; Ban products manufactured with MNP; Increase research on sources and health outcomes of exposure to MNP and EDCs.


Asunto(s)
Exposición a Riesgos Ambientales , Microplásticos , Plásticos , Humanos , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/legislación & jurisprudencia , Exposición a Riesgos Ambientales/prevención & control , Política de Salud/legislación & jurisprudencia , Israel , Microplásticos/efectos adversos , Microplásticos/análisis , Microplásticos/química , Plásticos/efectos adversos , Plásticos/análisis , Plásticos/química
2.
Water Environ Res ; 96(9): e11117, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39234890

RESUMEN

Water pollution involves the coexistence of microplastics (MPs) and traditional pollutants, and how can MPs influence the adsorption of other pollutants by biochar during the treatment process remains unclear. This study aimed to investigate the influence of polystyrene microplastics (PS MPs) on the adsorption of cadmium (Cd) and ciprofloxacin (CIP) by magnetic biochar (MTBC) in the single and binary systems. MTBC was prepared using tea leaf litter; the effects of time, pH, and salt ions on the adsorption behaviors were investigated; and X-ray photoelectronic spectroscopy (XPS) and density flooding theory analysis were conducted to elucidate the influence mechanisms. Results indicated that PS MPs reduced the pollutants adsorption by MTBC due to the heterogeneous aggregation between PS MPs and MTBC and the surface charge change of MTBC induced by PS MPs. The effects of PS MPs on heavy metals and antibiotics adsorption were distinctly different. PS MPs reduced Cd adsorption on MTBC, which were significantly influenced by the solution pH and salt ions contents, suggesting the participation of electrostatic interaction and ion exchange in the adsorption, whereas the effects of PS MPs on CIP adsorption were inconspicuous. In the hybrid system, PS MPs reduced pollutants adsorption by MTBC with 66.3% decrease for Cd and 12.8% decrease for CIP, and the more remarkable reduction for Cd was due to the predominated physical adsorption, and CIP adsorption was mainly a stable chemisorption. The influence of PS MPs could be resulted from the interaction between PS MPs and MTBC with changing the functional groups and electrostatic potential of MTBC. This study demonstrated that when using biochar to decontaminate wastewater, it is imperative to consider the antagonistic action of MPs, especially for heavy metal removal. PRACTITIONER POINTS: Magnetic biochar (MTBC) was prepared successfully using tea leaf litter. MTBC could be used for cadmium (Cd) and ciprofloxacin (CIP) removal. Polystyrene microplastics (Ps MPs) reduced Cd/CIP adsorption by MTBC. Ps MPs effects on Cd adsorption were more obvious than that of CIP. Ps MPs changed the functional groups and electrostatic potential of MTBC, thus influencing MTBC adsorption.


Asunto(s)
Cadmio , Carbón Orgánico , Ciprofloxacina , Microplásticos , Hojas de la Planta , Poliestirenos , Contaminantes Químicos del Agua , Cadmio/química , Poliestirenos/química , Carbón Orgánico/química , Adsorción , Ciprofloxacina/química , Microplásticos/química , Contaminantes Químicos del Agua/química , Hojas de la Planta/química , Té/química
3.
J Hazard Mater ; 478: 135562, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39178779

RESUMEN

The global attention on microplastic pollution and its implications for human health has grown in recent years. Additionally, the co-existence of heavy metals may significantly alter microplastics' physicochemical characteristics, potentially amplifying their overall toxicity-a facet that remains less understood. In this study, we focused the membrane toxicity of modified polystyrene microplastics (PS-MPs) following cadmium (Cd) pretreatment. Our findings revealed that Cd-pretreated PS-MPs exacerbated their toxic effects, including diminished membrane integrity and altered phase fluidity in simulated lipid membrane giant unilamellar vesicles (GUVs), as well as heightened membrane permeability, protein damage, and lipid peroxidation in red blood cells and macrophages. Mechanistically, these augmented membrane toxicities can be partially ascribed to modifications in the surface roughness and hydrophilicity of Cd-pretreated PS-MPs, as well as to interactions between PS-MPs and lipid bilayers. Notably, hydrogen bonds emerged as a crucial mechanism underlying the enhanced interaction of PS-MPs with lipid bilayers.


Asunto(s)
Cadmio , Enlace de Hidrógeno , Microplásticos , Poliestirenos , Poliestirenos/química , Poliestirenos/toxicidad , Microplásticos/toxicidad , Microplásticos/química , Cadmio/toxicidad , Cadmio/química , Animales , Humanos , Membrana Dobles de Lípidos/química , Macrófagos/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Liposomas Unilamelares/química , Membrana Celular/efectos de los fármacos , Ratones
4.
Nanoscale ; 16(35): 16671-16683, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39171675

RESUMEN

Pollution from micro- and nanoplastics (MNPs) has long been a topic of concern due to its potential impact on human health. MNPs can circulate through human blood and, thus far, have been found in the lungs, spleen, stomach, liver, kidneys and even in the brain, placenta, and breast milk. While data are already available on the adverse biological effects of pristine MNPs (e.g. oxidative stress, inflammation, cytotoxicity, and even cancer induction), no report thus far clarified whether the same effects are modulated by the formation of a protein corona around MNPs. To this end, here we use pristine and human-plasma pre-coated polystyrene (PS) nanoparticles (NPs) and investigate them in cultured breast cancer cells both in terms of internalization and cell biochemical response to the exposure. It is found that pristine NPs tend to stick to the cell membrane and inhibit HER-2-driven signaling pathways, including phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathways, which are associated with cancer cell survival and growth. By contrast, the formation of a protein corona around the same NPs can promote their uptake by endocytic vesicles and final sequestration within lysosomes. Of note is that such intracellular fate of PS-NPs is associated with mitigation of the biochemical alterations of the phosphorylated AKT (pAKT)/AKT and phosphorylated ERK (pERK)/ERK levels. These findings provide the distribution of NPs in human breast cancer cells, may broaden our understanding of the interactions between NPs and breast cancer cells and underscore the crucial role of the protein corona in modulating the impact of MNPs on human health.


Asunto(s)
Neoplasias de la Mama , Poliestirenos , Corona de Proteínas , Humanos , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Poliestirenos/química , Microplásticos/química , Línea Celular Tumoral , Nanopartículas/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células MCF-7 , Supervivencia Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
5.
Fish Shellfish Immunol ; 153: 109793, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39134230

RESUMEN

Microplastic pollution poses challenges for ecosystems worldwide, and nanoplastics (NPs, 1-1000 nm) have been identified as persistent pollutants. However, although some studies have described the hazards of NPs to aquatic organisms, the toxicological processes of NPs in the common carp kidney and the biotoxicity of differently sized NPs remain unclear. In this study, we used juvenile common carp as an in vivo model that were constantly exposed to freshwater at 1000 µg/L polystyrene nanoparticle (PSNP) concentrations (50, 100, and 400 nm) for 28 days. Simultaneously, we constructed an in vitro model utilizing grass fish kidney cells (CIK) to study the toxicological effects of PSNPs of various sizes. We performed RT-PCR and Western blot assays on the genes involved in FOXO1, HMGB1, HIF-1α, endoplasmic reticulum stress, autophagy, and immunoreaction. According to these results, exposure to PSNPs increased reactive oxygen species (ROS) levels, and the carp kidneys experienced endoplasmic reticulum stress. Additionally, PSNPs promoted renal autophagy by activating the ROS/ERS/FOXO1 (ERS: endoplasmic reticulum stress) pathway, and it affected immunological function by stimulating the ROS/HMGB1/HIF-1α signaling pathway. This study provides new insights into the contamination hazards of NPs in freshwater environments, as well as the harm they pose to the human living environments. The relationship between particle size and the degree of damage caused by PSNPs to organisms is a potential future research direction.


Asunto(s)
Autofagia , Carpas , Riñón , Nanopartículas , Tamaño de la Partícula , Poliestirenos , Especies Reactivas de Oxígeno , Animales , Carpas/inmunología , Nanopartículas/toxicidad , Nanopartículas/química , Autofagia/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Poliestirenos/toxicidad , Poliestirenos/química , Riñón/efectos de los fármacos , Riñón/inmunología , Contaminantes Químicos del Agua/toxicidad , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Microplásticos/toxicidad , Microplásticos/química
6.
Environ Sci Pollut Res Int ; 31(32): 45162-45176, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38958859

RESUMEN

Virgin and environmentally aged polypropylene (PP) micropowders (V-PP and E-PP, respectively) were used as reference microplastics (MPs) in comparative photo- and thermo-oxidative ageing experiments performed on their mixtures with a natural ferrous sand (NS) and with a metal-free silica sand (QS). The ferrous NS was found to catalyze the photo-oxidative degradation of V-PP after both UV and simulated solar light irradiation. The catalytic activity in the V-PP/NS mixture was highlighted by the comparatively higher fraction of photo-oxidized PP extracted in dichloromethane, and the higher carbonyl index of the bulk polymer extracted with boiling xylene, when compared with the V-PP/QS mixture. Similarly, NS showed a catalytic effect on the thermal degradation (at T = 60 °C) of E-PP. The results obtained indicate that, under suitable environmental conditions (in this case, an iron-containing sediment or soil matrix, combined with simulated solar irradiation), the degradation of some types of MPs could be much faster than anticipated. Given the widespread presence of iron minerals (including the magnetite and iron-rich serpentine found in NS) in both coastal and mainland soils and sediments, a higher than expected resilience of the environment to the contamination by this class of pollutants is anticipated, and possible routes to remediation of polluted natural environments by eco-compatible iron-based minerals are envisaged.


Asunto(s)
Hierro , Microplásticos , Polipropilenos , Polipropilenos/química , Microplásticos/química , Hierro/química , Catálisis , Minerales/química , Restauración y Remediación Ambiental , Oxidación-Reducción
7.
J Hazard Mater ; 477: 135311, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39068889

RESUMEN

Face masks have emerged as a significant source of microplastics (MPs) under the influence of biotic and abiotic interactions. However, the combined effects of abiotic photoaging and biofilm-loading on mask-derived MPs as carriers of metal ions are not clear. We investigated the Pb(Ⅱ) adsorption onto polypropylene (PP) and polyurethane (PU) mask-derived MPs treated by photoaging, biofilm-loading, and both combinations, evaluating the composite risks. PU mask-derived MPs (1.157.47 mg/g) exhibited greater Pb(Ⅱ) adsorption capacity than PP mask-derived MPs (0.842.08 mg/g) because of the presence of intrinsic carbonyl functional groups. Photoaging (30.5%, 88.4%), biofilm-loading (110.7%, 87.1%), and both combinations (146.7%, 547.0%) of PP and PU masks enhanced Pb(Ⅱ) adsorption compared to virgin mask-derived MPs due to the increase of oxygen-containing functional groups. High-throughput sequencing indicated that the structural morphology and chemical composition of masks significantly affected the microbial community. Adsorption mechanisms involved electrostatic force and surface complexation. A combination of photoaging and biofilms increased the ecological risk index of mask-derived MPs in freshwater, showing the risk level to be high (PP mask) and very high (PU mask). This research highlights the crucial role of photoaging combined with biofilms in controlling metal ion adsorption onto mask-derived MPs, thereby increasing the composite risks.


Asunto(s)
Biopelículas , Plomo , Microplásticos , Polipropilenos , Poliuretanos , Adsorción , Plomo/química , Poliuretanos/química , Polipropilenos/química , Microplásticos/química , Microplásticos/toxicidad , Contaminantes Químicos del Agua/química , Máscaras
8.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000151

RESUMEN

Plastic particles, particularly micro- and nanoparticles, are emerging pollutants due to the ever-growing amount of plastics produced across a wide variety of sectors. When plastic particles enter a biological medium, they become surrounded by a corona, giving them their biological identity and determining their interactions in the living environment and their biological effects. Here, we studied the interactions of microstructured plastics with hemoglobin (Hb). Virgin polyethylene microparticles (PEMPs) and polypropylene microparticles (PPMPs) as well as heat- or irradiation-aged microparticles (ag-PEMPs and ag-PPMPs) were used to quantify Hb adsorption. Polypropylene filters (PP-filters) were used to measure the oxygenation of adsorbed Hb. Microstructured plastics were characterized using optical microscopy, SAXS, ATR-FTIR, XPS, and Raman spectroscopy. Adsorption isotherms showed that the Hb corona thickness is larger on PPMPs than on PEMPs and Hb has a higher affinity for PPMPs than for PEMPs. Hb had a lower affinity for ag-PEMPs and ag-PPMPs, but they can be adsorbed in larger amounts. The presence of partial charges on the plastic surface and the oxidation rate of microplastics may explain these differences. Tonometry experiments using an original method, the diffuse reflection of light, showed that adsorbed Hb on PP-filters retains its cooperativity, but its affinity for O2 decreases significantly.


Asunto(s)
Hemoglobinas , Oxígeno , Plásticos , Polipropilenos , Hemoglobinas/química , Hemoglobinas/metabolismo , Adsorción , Oxígeno/química , Oxígeno/metabolismo , Plásticos/química , Polipropilenos/química , Polietileno/química , Microplásticos/química , Espectroscopía Infrarroja por Transformada de Fourier
9.
Chemosphere ; 363: 142741, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38977247

RESUMEN

Microplastics are widely present in the natural environment and exhibit a strong affinity for heavy metals in water, resulting in the formation of microplastics composite heavy metal pollutants. This study investigated the adsorption of heavy metals by electron beam-aged microplastics. For the first time, electron beam irradiation was employed to degrade polypropylene, demonstrating its ability to rapidly age microplastics and generate a substantial number of oxygen-containing functional groups on aged microplastics surface. Adsorption experiments revealed that the maximum adsorption equilibrium capacity of hexavalent chromium by aged microplastics reached 9.3 mg g-1. The adsorption process followed second-order kinetic model and Freundlich model, indicating that the main processes of heavy metal adsorption by aged microplastics are chemical adsorption and multilayer adsorption. The adsorption of heavy metals on aged microplastics primarily relies on the electrostatic and chelation effects of oxygen-containing functional groups. The study results demonstrate that environmental factors, such as pH, salinity, coexisting metal ions, humic acid, and water matrix, exert inhibitory effects on the adsorption of heavy metals by microplastics. Theoretical calculations confirm that the aging process of microplastics primarily relies on hydroxyl radicals breaking carbon chains and forming oxygen-containing functional groups on the surface. The results indicate that electron beam irradiation can simultaneously oxidize and degrade microplastics while reducing hexavalent chromium levels by approximately 90%, proposing a novel method for treating microplastics composite pollutants. Gas chromatography-mass spectrometry analysis reveals that electron beam irradiation can oxidatively degrade microplastics into esters, alcohols, and other small molecules. This study proposes an innovative and efficient approach to treat both microplastics composite heavy metal pollutants while elucidating the impact of environmental factors on the adsorption of heavy metals by electron beam-aged microplastics. The aim is to provide a theoretical basis and guidance for controlling microplastics composite pollution.


Asunto(s)
Cromo , Microplásticos , Contaminantes Químicos del Agua , Adsorción , Cromo/química , Microplásticos/química , Contaminantes Químicos del Agua/química , Cinética , Metales Pesados/química , Sustancias Húmicas , Electrones , Polipropilenos/química , Concentración de Iones de Hidrógeno
10.
Food Chem ; 456: 139947, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38850610

RESUMEN

The present study assesses the effect of culinary treatment and gastrointestinal digestion upon the release of additives present in microplastics. Organic additives were determined by gas chromatography-mass spectrometry, and inorganic additives using inductively coupled plasma-mass spectrometry. The results revealed a large number of organic additives in the plastic samples, some being classified as possible carcinogens. Contents of Sb in PET (polyethylene terephthalate), Zn and Ba in LDPE (low-density polyethylene) and PVC (polyvinylchloride), and Ti and Pb in LDPE were also noteworthy. The culinary process promotes the release and solubilization of additives into the cooking liquid, with phthalates, benzophenone, N-butylbenzenesulfonamide (NBBS) and bisphenol A being of particular concern. The solubilization of phthalates and NBBS was also observed during gastrointestinal digestion. This study demonstrates that culinary treatment and gastrointestinal digestion promote release and solubilization of additives from plastics ingested with the diet. Such solubilization may facilitate their entry into the systemic circulation.


Asunto(s)
Microplásticos , Microplásticos/química , Microplásticos/toxicidad , Humanos , Culinaria , Digestión , Contaminación de Alimentos/análisis , Tracto Gastrointestinal/metabolismo
11.
Environ Pollut ; 356: 124319, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38844042

RESUMEN

The presence of microplastics in the ecological environment, serving as carriers for other organic pollutants, has garnered widespread attention. These microplastics exposed in the environment may undergo various aging processes. However, there is still a lack of information regarding how these aged microplastics impact the environmental behavior and ecological toxicity of pollutants. In this study, we modified polystyrene microplastics by simulating the aging behavior that may occur under environmental exposure, and then explored the adsorption behavior and adsorption mechanism of microplastics before and after aging for typical triazine herbicides. It was shown that all aging treatments of polystyrene increased the adsorption of herbicides, the composite aged microplastics had the strongest adsorption capacity and the fastest adsorption rate, and of the three herbicides, metribuzin was adsorbed the most by microplastics. The interactions between microplastics and herbicides involved mechanisms such as hydrophobic interactions, surface adsorption, the effect of π-π interactions, and the formation of hydrogen bonds. Further studies confirmed that microplastics adsorbed with herbicides cause greater biotoxicity to E. coli. These findings elucidate the interactions between microplastics before and after aging and triazine herbicides. Acting as carriers, they alter the environmental behavior and ecological toxicity of organic pollutants, providing theoretical support for assessing the ecological risk of microplastics in water environments.


Asunto(s)
Microplásticos , Poliestirenos , Triazinas , Contaminantes Químicos del Agua , Microplásticos/química , Microplásticos/toxicidad , Poliestirenos/química , Triazinas/química , Triazinas/toxicidad , Adsorción , Contaminantes Químicos del Agua/química , Herbicidas/química , Plaguicidas/química
12.
Environ Pollut ; 352: 124097, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38703985

RESUMEN

Microplastics (MPs) are pervasive and undergo environmental aging processes, which alters potential interaction with the co-contaminants. Hence, to assess their contaminant-carrying capacity, mimicking the weathering characteristics of secondary MPs is crucial. To this end, the present study investigated the interaction of Zinc oxide (nZnO) nanoparticles with non-irradiated (NI) and UV-irradiated (UI) forms of the most abundant MPs, such as polypropylene (PP) and polystyrene (PS), in aqueous environments. SEM images revealed mechanical abrasions on the surfaces of NI-MPs and their subsequent photoaging caused the formation of close-ended and open-ended cracks in UI-PP and UI-PS, respectively. Batch-sorption experiments elucidated nZnO uptake kinetics by PP and PS MPs, suggesting a sorption-desorption pathway due to weaker and stronger sorption sites until equilibrium was achieved. UI-PP showed higher nZnO (∼3000 mg/kg) uptake compared to NI-PP, while UI-PS showed similar or slightly decreased nZnO (∼2000 mg/kg) uptake compared to NI-PS. FTIR spectra and zeta potential measurements revealed electrostatic interaction as the dominant interaction mechanism. Higher nZnO uptake by MPs was noted between pH 6.5 and 8.5, whereas it decreased beyond this range. Despite DOM, MPs always retained ∼874 mg/kg nZnO irrespective of MPs type and extent of aging. The experimental results in river water showed higher nZnO uptake on MPs compared to DI water, attributed to mutual effect of ionic competition, DOM, and MP hydrophobicity. In the case of humic acids, complex synthetic and natural water matrices, NI-MPs retained more nZnO than UI-MPs, suggesting that photoaged MPs sorb less nZnO under environmental conditions than non-photoaged MPs. These findings enhance our understanding on interaction of the MPs with co-contaminants in natural environments.


Asunto(s)
Microplásticos , Polipropilenos , Poliestirenos , Contaminantes Químicos del Agua , Óxido de Zinc , Óxido de Zinc/química , Microplásticos/química , Polipropilenos/química , Poliestirenos/química , Contaminantes Químicos del Agua/química , Adsorción , Nanopartículas del Metal/química , Nanopartículas/química
13.
Food Chem ; 454: 139657, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810455

RESUMEN

Polypropylene (PP) is suitable for a broad range of applications and represents the most extensively utilized plastic in food packaging. Micro- and nano-PP plastics are prevalent categories of microplastics (MPs). However, the majority of MPs particles currently utilized in laboratory studies are man-made polystyrene (PS) spheres, and there has been limited research on micrometer- and nanoscale PP plastic particles. This study aims to employ a top-down approach in crafting micro/nanoparticle (M/NPs) models of PP particles, ensuring their enhanced relevance to real-world environments. Micro/nano PP particles, featuring a negatively charged particle size ranging from 203 to 2101 nm, were synthesized through variations in solution concentration and volume. Simultaneously, the devised MPs model was employed to develop a Raman-based qualitative and quantitative detection method for micro/nano PP particles, considering diverse sizes and concentrations. This method integrates Raman spectroscopy and microscopy to measure PP particles with varying sizes, utilizing the coffee ring effect. The Limit of detection (LOD) for 203 nm PP reached 31.25 µg/mL, while those for 382-2101 nm PP were approximately 3.9 µg/mL. The method underwent quantitative analysis by introducing 203 nm PP nanospheres into real food media (i.e., tea beverages, tea leaves), revealing a minimum LOD of approximately 31.25 µg/mL.


Asunto(s)
Microplásticos , Tamaño de la Partícula , Polipropilenos , Espectrometría Raman , , Espectrometría Raman/métodos , Polipropilenos/química , Té/química , Microplásticos/análisis , Microplásticos/química , Contaminación de Alimentos/análisis , Embalaje de Alimentos/instrumentación , Plásticos/química , Nanopartículas/química
14.
Environ Sci Technol ; 58(23): 10334-10346, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38805726

RESUMEN

Microplastics (MPs)-derived dissolved organic matter (MPs-DOM) is becoming a non-negligible source of DOM pools in aquatic systems, but there is limited understanding about the photoreactivity of different MPs-DOM. Herein, MPs-DOM from polystyrene (PS), polyethylene terephthalate (PET), poly(butylene adipate-co-terephthalate) (PBAT), PE, and polypropylene (PP), representing aromatic, biodegradable, and aliphatic plastics, were prepared to examine their photoreactivity. Spectral and high-resolution mass spectrometry analyses revealed that PS/PET/PBAT-DOM contained more unsaturated aromatic components, whereas PE/PP-DOM was richer in saturated aliphatic components. Photodegradation experiments observed that unsaturated aromatic molecules were prone to be degraded compared to saturated aliphatic molecules, leading to a higher degradation of PS/PET/PBAT-DOM than PE/PP-DOM. PS/PET/PBAT-DOM was mainly degraded by hydroxyl (•OH) via attacking unsaturated aromatic structures, whereas PE/PP-DOM by singlet oxygen (1O2) through oxidizing aliphatic side chains. The [•OH]ss was 1.21-1.60 × 10-4 M in PS/PET/PBAT-DOM and 0.97-1.14 × 10-4 M in PE/PP-DOM, while the [1O2]ss was 0.90-1.35 × 10-12 and 0.33-0.44 × 10-12 M, respectively. This contributes to the stronger photoreactivity of PS/PET/PBAT-DOM with a higher unsaturated aromatic degree than PE/PP-DOM. The photodegradation of MPs-DOM reflected a decreasing tendency from aromatic-unsaturated molecules to aliphatic-saturated molecules. Special attention should be paid to the photoreactivity and environmental impacts associated with MPs-DOM containing highly unsaturated aromatic compounds.


Asunto(s)
Espectrometría de Masas , Microplásticos , Especies Reactivas de Oxígeno , Microplásticos/química , Especies Reactivas de Oxígeno/química , Contaminantes Químicos del Agua/química , Fotólisis
15.
Mar Pollut Bull ; 204: 116521, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38805976

RESUMEN

The omnipresence of microplastics (MPs) around the world has attracted extensive attention in the past decade with more focuses on the interactions of standard MPs without additives in regular shapes and individual pollutant, whereas the actual MPs containing various additives in irregular shapes and complex pollutants are often co-occurrence in the environments. In this paper, the adsorption performance of disposable polypropylene (PP) cups-based MPs subjected to ultraviolet irradiation was investigated in unitary and binary water matrices. The surface characteristics were analyzed and the experimental data of adsorption were fitted by various kinetic and isotherm models, and the results indicated that more cracks and oxygen-containing functional groups with decreased hydrophobicity were produced with aging, and electrostatic attraction and hydrogen bonding dominated methylene blue (MB) and tetracycline (TC) capture in the individual system. Moreover, pseudo-second order kinetic model better described the adsorption processes. In the binary system, the co-existence of TC promoted MB uptake, while the presence of MB inhibited TC capture. In addition, TC adsorption was enhanced by Ca2+, maybe due to its complexation effect, while the presence of mono- and divalent inorganic salts inhibited MB capture. This research provides useful insights for the fate of PP-MPs and organic pollutants in the complex environments.


Asunto(s)
Azul de Metileno , Microplásticos , Polipropilenos , Tetraciclina , Contaminantes Químicos del Agua , Azul de Metileno/química , Adsorción , Tetraciclina/química , Contaminantes Químicos del Agua/química , Polipropilenos/química , Microplásticos/química , Cinética
16.
Chem Soc Rev ; 53(12): 6445-6510, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38747901

RESUMEN

Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.


Asunto(s)
Biocatálisis , Péptidos , Péptidos/química , Péptidos/metabolismo , Humanos , Microplásticos/química , Microplásticos/metabolismo , Plantas/metabolismo , Plantas/química , Ingeniería de Proteínas
17.
Environ Sci Pollut Res Int ; 31(26): 38099-38116, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38795296

RESUMEN

Microplastics (MPs) are a potential threat to both humans and aquatic environment as they serve as carriers of various contaminants necessitating the development of reliable, efficient, and ecofriendly techniques to remove MPs from water. In this study, reduced graphene oxide (rGO) magnetized using nickel nanoparticles was utilized as a potent adsorbent for the effective removal of microplastics from water. The synthesized nickel/reduced graphene oxide (Ni/rGO) nanocomposite was characterized by X-ray diffraction (XRD), Raman spectra, vibrating sample magnetometer (VSM), scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDX), thermogravimetric analysis, and Brunauer-Emmett Teller (BET) analysis. Magnetic Ni/rGO nanocomposite exhibited significant adsorption capability for polystyrene (PS) microspheres allowing the formation of PS-Ni/rGO complex which can be easily separated out using a magnet. The SEM images of PS-Ni/rGO complex confirmed the adsorption of PS microspheres onto the nano adsorbent due to hydrophobic interaction. The adsorbent demonstrated a maximum adsorption capacity of 1250 mg/g. The analysis of isotherm and kinetic models demonstrated that the adsorption mechanism conformed to the Langmuir isotherm and followed pseudo second order kinetics. This study paves a new pathway for the application of magnetically modified reduced graphene oxide for the expedient removal of microplastics from water with the ease of separation using a magnet. The adsorbent was recycled and reused for three times.


Asunto(s)
Grafito , Microplásticos , Nanocompuestos , Níquel , Poliestirenos , Contaminantes Químicos del Agua , Grafito/química , Poliestirenos/química , Adsorción , Nanocompuestos/química , Microplásticos/química , Níquel/química , Contaminantes Químicos del Agua/química , Cinética
18.
Chemosphere ; 358: 142165, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704048

RESUMEN

Expanded polystyrene (EPS) plastic is widely used because of its low density and lightweight properties, enabling it to float on water and increase its exposure to sunlight. In this study, we simulated the photoaging process of flame retardant-added EPS (FR-EPS) and common original EPS (OR-EPS) microplastic (MP) particles with and without methyl octabromoether flame retardant (MOBE) in the laboratory to explore the effect of MOBE on the photodegradation of EPS. Results showed that MOBE accelerated size reduction and surface hole formation on the particles, hastening the shedding and replacement of particle surfaces. FR-EPS particles exhibited a weight loss exceeding that of OR-EPS, reaching 40.85 ± 3.72% after 36 days of irradiation. Moreover, rapid physical peeling of the FR-EPS surface was accompanied by continuous chemical oxidation and fluctuations of the carbonyl index and O/C ratio. A diffusion model based on Fick's second law fitted well for the concentration of MOBE remaining in FR-EPS particles. MOBE's sensitivity to direct photochemical reactions inhibited the early-stage photoaging of EPS MP particles by competing for photons. However, MOBE as chromophores could absorb photons and produce •OH to promote the aging of EPS. Moreover, the capacity of EPS to absorb light energy also accelerated MOBE degradation. These findings suggested that the photoaging behavior of commercial EPS products containing flame retardants in the environment is quite different from that of pure EPS, indicating that additive-plastic interactions significantly alter MP fate and environmental risks.


Asunto(s)
Retardadores de Llama , Microplásticos , Poliestirenos , Poliestirenos/química , Microplásticos/química , Fotólisis , Plásticos/química
19.
Water Res ; 256: 121602, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38621315

RESUMEN

Emerging microplastics-heavy metal (MPs-HM) contaminants in wastewaters pose an emerging health and environmental risk due to their persistence and increasing ecological risks (e.g., "Trojan horse" effect). Hence, removing MPs in solution and preventing secondary releases of HM has become a key challenge when tackling with MPs pollution. Leveraging the hydrophobic nature of MPs and the electron transfer efficiency from Fe0 to HM, we demonstrate an alkylated and sulfidated nanoscale zerovalent iron (AS-nZVI) featuring a delicate "core-shell-hydrophobic film" nanostructure. Exemplified by polystyrene (PS) MPs-Pb(II) removal, the three nanocomponents offer synergistic functions for the rapid separation of MPs, as well as the reduction and stabilization of Pb(II). The outmost hydrophobic film of AS-nZVI greatly improves the anticorrosion performance of nanoscale zerovalent iron and the enrichment abilities of hydrophobic MPs, achieving a maximum removal capacity of MPs to 2725.87 mgMPs·gFe-1. This MPs enrichment promotes the subsequent reductive removal of Pb(II) through the electron transfer from the iron core of AS-nZVI to Pb(II), a process further strengthened by the introduced sulfur. When considering the inevitable aging of MPs in wastewaters due to mechanical wear or microbial degradation, our study concurrently examines the efficiencies and behaviors of AS-nZVI in removing virgin-MPs-Pb(II) and aged-MPs-Pb(II). The batch results reveal that AS-nZVI has an exceptional ability to remove above 99.6 % Pb(II) for all reaction systems. Overall, this work marks a pioneering effort in highlighting the importance of MPs-toxin combinations in dealing with MPs contamination and in demonstrating the utility of nZVI techniques for MPs-contaminated water purification.


Asunto(s)
Hierro , Microplásticos , Poliestirenos , Contaminantes Químicos del Agua , Hierro/química , Poliestirenos/química , Contaminantes Químicos del Agua/química , Microplásticos/química , Humectabilidad , Metales Pesados/química , Transporte de Electrón
20.
Environ Res ; 252(Pt 2): 118975, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38649018

RESUMEN

Understanding the impact of various agricultural chemical components on the fate and transport of microplastics (MPs) in the subsurface is essential. In this study, column experiments on saturated porous media were conducted to explore the influence of the coexistence environment of pesticide adjuvants (surfactants) and active ingredients (neonicotinoids) on the transport of polyethylene (PE) and polypropylene (PP) MPs. An anionic surfactant (sodium dodecyl sulfate (SDS)), a nonionic surfactant (nonylphenol ethoxylate (NP-40)), and three neonicotinoid insecticides (acetamiprid, dinotefuran, and nitenpyram) could independently increase MP migration by 9.31%-61.01% by improving the hydrophilicity. Acetamiprid or dinotefuran reduced the adhesion work of the binary system by competing with SDS for adsorption sites, thereby inhibiting PE mobility. However, nitenpyram in the mixture was not easily adsorbed on the surface of PE MPs together with SDS because of nitenpyram's high hydrophilicity. Neonicotinoid molecules could not reduce the hydrophilic modification of SDS on PP MPs by competing for adsorption sites. Owing to their weak charge and adhesion work of nonionic surfactants (-4.80 mV and 28.45 kT for PE and -8.21 mV and 17.64 kT for PP), neonicotinoids tended to occupy the adsorption sites originally belonging to NP-40. The long molecular chain of NP-40 made it difficult for high-concentration neonicotinoids to affect the adhesion on MPs. In addition, NP-40 was harder to peel off from the MP surface than SDS, leading to a larger MP transport ability in the sand column.


Asunto(s)
Microplásticos , Polietileno , Polipropilenos , Tensoactivos , Polipropilenos/química , Polietileno/química , Microplásticos/química , Tensoactivos/química , Adsorción , Plaguicidas/química , Neonicotinoides/química , Agroquímicos/química , Insecticidas/química , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA