Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
J Biol Chem ; 298(9): 102292, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35868557

RESUMEN

Katanin p60 ATPase-containing subunit A1 (KATNA1) is a microtubule-cleaving enzyme that regulates the development of neural protrusions through cytoskeletal rearrangements. However, the mechanism underlying the linkage of the small ubiquitin-like modifier (SUMO) protein to KATNA1 and how this modification regulates the development of neural protrusions is unclear. Here we discovered, using mass spectrometry analysis, that SUMO-conjugating enzyme UBC9, an enzyme necessary for the SUMOylation process, was present in the KATNA1 interactome. Moreover, GST-pull down and co-immunoprecipitation assays confirmed that KATNA1 and SUMO interact. We further demonstrated using immunofluorescence experiments that KATNA1 and the SUMO2 isoform colocalized in hippocampal neurites. We also performed a bioinformatics analysis of KATNA1 protein sequences to identify three potentially conserved SUMOylation sites (K77, K157, and K330) among vertebrates. Mutation of K330, but not K77 or K157, abolished KATNA1-induced microtubule severing and decreased the level of binding observed for KATNA1 and SUMO2. Cotransfection of SUMO2 and wildtype KATNA1 in COS7 cells increased microtubule severing, whereas no effect was observed after cotransfection with the K330R KATNA1 mutant. Furthermore, in cultured hippocampal neurons, overexpression of wildtype KATNA1 significantly promoted neurite outgrowth, whereas the K330R mutant eliminated this effect. Taken together, our results demonstrate that the K330 site in KATNA1 is modified by SUMOylation and SUMOylation of KATNA1 promotes microtubule dynamics and hippocampal neurite outgrowth.


Asunto(s)
Katanina , Microtúbulos , Proyección Neuronal , Sumoilación , Adenosina Trifosfatasas/metabolismo , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Katanina/genética , Katanina/metabolismo , Microtúbulos/enzimología , Microtúbulos/genética , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
2.
Cells ; 11(2)2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35053362

RESUMEN

TRIM36 is a member of the tripartite motif (TRIM) family of RING-containing proteins, also known as Haprin, which was first discovered for its abundance in testis and found to be implicated in the spermatozoa acrosome reaction. TRIM36 is a microtubule-associated E3 ubiquitin ligase that plays a role in cytoskeletal organization, and according to data gathered in different species, coordinates growth speed and stability, acting on the microtubules' plus end, and impacting on cell cycle progression. TRIM36 is also crucial for early developmental processes, in Xenopus, where it is needed for dorso-ventral axis formation, but also in humans as bi-allelic mutations in the TRIM36 gene cause a form of severe neural tube closure defect, called anencephaly. Here, we review TRIM36-related mechanisms implicated in such composite physiological and pathological processes.


Asunto(s)
Desarrollo Embrionario , Microtúbulos/enzimología , Espermatogénesis , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Humanos , Masculino , Neoplasias/enzimología , Neoplasias/patología , Filogenia , Ubiquitina-Proteína Ligasas/química
3.
J Cell Biol ; 220(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34137788

RESUMEN

Mutations in the WDR62 gene cause primary microcephaly, a pathological condition often associated with defective cell division that results in severe brain developmental defects. The precise function and localization of WDR62 within the mitotic spindle is, however, still under debate, as it has been proposed to act either at centrosomes or on the mitotic spindle. Here we explored the cellular functions of WDR62 in human epithelial cell lines using both short-term siRNA protein depletions and long-term CRISPR/Cas9 gene knockouts. We demonstrate that WDR62 localizes at spindle poles, promoting the recruitment of the microtubule-severing enzyme katanin. Depletion or loss of WDR62 stabilizes spindle microtubules due to insufficient microtubule minus-end depolymerization but does not affect plus-end microtubule dynamics. During chromosome segregation, WDR62 and katanin promote efficient poleward microtubule flux and favor the synchronicity of poleward movements in anaphase to prevent lagging chromosomes. We speculate that these lagging chromosomes might be linked to developmental defects in primary microcephaly.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Microtúbulos/enzimología , Proteínas del Tejido Nervioso/metabolismo , Polos del Huso/enzimología , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Microcefalia/genética , Microcefalia/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Microtúbulos/genética , Proteínas del Tejido Nervioso/genética , Unión Proteica , Transporte de Proteínas , Transducción de Señal , Polos del Huso/genética , Factores de Tiempo
4.
Small GTPases ; 12(5-6): 416-428, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33985411

RESUMEN

Epithelial folding is a common means to execute morphogenetic movements. The gastrulating Drosophila embryo offers many examples of epithelial folding events, including the ventral, cephalic, and dorsal furrows. Each of these folding events is associated with changes in intracellular contractility and/or cytoskeleton structures that autonomously promote epithelial folding. Here, we review accumulating evidence that suggests the progression and final form of ventral, cephalic, and dorsal furrows are also influenced by the behaviour of cells neighbouring these folds. We further discuss the prevalence and importance of junctional rearrangements during epithelial folding events, suggesting adherens junction components are prime candidates to modulate the transmission of the intercellular forces that influence folding events. Finally, we discuss how recently developed methods that enable precise spatial and/or temporal control of protein activity allow direct testing of molecular models of morphogenesis in vivo.


Asunto(s)
Citoesqueleto/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Embrión no Mamífero/fisiología , Células Epiteliales/fisiología , Proteínas de Unión al GTP Monoméricas/metabolismo , Morfogénesis , Animales , Citoesqueleto/enzimología , Drosophila/enzimología , Embrión no Mamífero/citología , Embrión no Mamífero/enzimología , Células Epiteliales/enzimología , Microtúbulos/enzimología , Microtúbulos/fisiología
5.
Aging (Albany NY) ; 12(22): 23233-23250, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33221742

RESUMEN

Nuclear paraspeckles assembly transcript 1 (NEAT1) is a well-known long noncoding RNA (lncRNA) with various functions in different physiological and pathological processes. Notably, aberrant NEAT1 expression is implicated in the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease (AD). However, the molecular mechanism of NEAT1 in AD remains poorly understood. In this study, we investigated that NEAT1 regulated microtubules (MTs) polymerization via FZD3/GSK3ß/p-tau pathway. Downregulation of NEAT1 inhibited Frizzled Class Receptor 3 (FZD3) transcription activity by suppressing H3K27 acetylation (H3K27Ac) at the FZD3 promoter. Our data also demonstrated that P300, an important histone acetyltransferases (HAT), recruited by NEAT1 to bind to FZD3 promoter and mediated its transcription via regulating histone acetylation. In addition, according to immunofluorescence staining of MTs, metformin, a medicine for the treatment of diabetes mellitus, rescued the reduced length of neurites detected in NEAT1 silencing cells. We suspected that metformin may play a neuroprotective role in early AD by increasing NEAT1 expression and through FZD3/GSK3ß/p-tau pathway. Collectively, NEAT1 regulates microtubule stabilization via FZD3/GSK3ß/P-tau pathway and influences FZD3 transcription activity in the epigenetic way.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Receptores Frizzled/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipocampo/enzimología , Microtúbulos/enzimología , Neuronas/enzimología , ARN Largo no Codificante/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Receptores Frizzled/genética , Hipocampo/efectos de los fármacos , Hipocampo/patología , Humanos , Metformina/farmacología , Ratones Endogámicos C57BL , Ratones Transgénicos , Microtúbulos/efectos de los fármacos , Microtúbulos/genética , Microtúbulos/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Fosforilación , Presenilina-1/genética , ARN Largo no Codificante/genética , Transducción de Señal
6.
J Cell Biol ; 219(8)2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32497213

RESUMEN

Nearly six decades ago, Lewis Wolpert proposed the relaxation of the polar cell cortex by the radial arrays of astral microtubules as a mechanism for cleavage furrow induction. While this mechanism has remained controversial, recent work has provided evidence for polar relaxation by astral microtubules, although its molecular mechanisms remain elusive. Here, using C. elegans embryos, we show that polar relaxation is achieved through dynein-mediated removal of myosin II from the polar cortexes. Mutants that position centrosomes closer to the polar cortex accelerated furrow induction, whereas suppression of dynein activity delayed furrowing. We show that dynein-mediated removal of myosin II from the polar cortexes triggers a bidirectional cortical flow toward the cell equator, which induces the assembly of the actomyosin contractile ring. These results provide a molecular mechanism for the aster-dependent polar relaxation, which works in parallel with equatorial stimulation to promote robust cytokinesis.


Asunto(s)
Actomiosina/metabolismo , Anafase , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Centrosoma/enzimología , Citocinesis , Dineínas/metabolismo , Microtúbulos/enzimología , Miosina Tipo II/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Dineínas/genética , Microtúbulos/genética , Mutación , Miosina Tipo II/genética , Transducción de Señal
7.
J Cell Biol ; 218(4): 1250-1264, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30728176

RESUMEN

Cytokinesis begins upon anaphase onset. An early step involves local activation of the small GTPase RhoA, which triggers assembly of an actomyosin-based contractile ring at the equatorial cortex. Here, we delineated the contributions of PLK1 and Aurora B to RhoA activation and cytokinesis initiation in human cells. Knock-down of PRC1, which disrupts the spindle midzone, revealed the existence of two pathways that can initiate cleavage furrow ingression. One pathway depends on a well-organized spindle midzone and PLK1, while the other depends on Aurora B activity and centralspindlin at the equatorial cortex and can operate independently of PLK1. We further show that PLK1 inhibition sequesters centralspindlin onto the spindle midzone, making it unavailable for Aurora B at the equatorial cortex. We propose that PLK1 activity promotes the release of centralspindlin from the spindle midzone through inhibition of PRC1, allowing centralspindlin to function as a regulator of spindle midzone formation and as an activator of RhoA at the equatorial cortex.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Citocinesis , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/enzimología , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Huso Acromático/enzimología , Animales , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Activación Enzimática , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Proteínas Proto-Oncogénicas/genética , Transducción de Señal , Huso Acromático/genética , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Quinasa Tipo Polo 1
8.
J Biochem ; 164(3): 239-246, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29718428

RESUMEN

In this study, we synthesized a novel photochromic inhibitor of the mitotic kinesin Eg5, which is composed of the photochromic compound spiropyran to photo-control the function of Eg5. The compound (S)-2, 3-dispiropyran propionic acid (DSPPA) exhibits reversible spiropyran-merocyanine photo-isomerization upon irradiation with visible or ultra-violet light. DSPPA induced reversible changes in the inhibitory effect on Eg5 ATPase and motor activities, which correlates with the spiropyran-merocyanine photo-isomerization. Microtubule-dependent ATPase activity was significantly more inhibited by the spiropyran isomer of DSPPA than by the merocyanine isomer. Additionally, an in vitro motility assay revealed that the microtubule gliding velocity was reduced more by the spiropyran isomer than by the merocyanine isomer. This indicates that the spiropyran derivative may be useful in regulating the function of the mitotic kinesin.


Asunto(s)
Benzopiranos/química , Indoles/química , Cinesinas/antagonistas & inhibidores , Cinesinas/metabolismo , Luz , Mitosis/efectos de los fármacos , Nitrocompuestos/química , Rayos Ultravioleta , Adenosina Trifosfatasas/metabolismo , Animales , Isomerismo , Ratones , Microtúbulos/enzimología
9.
J Cell Biol ; 217(4): 1319-1334, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29351996

RESUMEN

Kinesin-4 motors play important roles in cell division, microtubule organization, and signaling. Understanding how motors perform their functions requires an understanding of their mechanochemical and motility properties. We demonstrate that KIF27 can influence microtubule dynamics, suggesting a conserved function in microtubule organization across the kinesin-4 family. However, kinesin-4 motors display dramatically different motility characteristics: KIF4 and KIF21 motors are fast and processive, KIF7 and its Drosophila melanogaster homologue Costal2 (Cos2) are immotile, and KIF27 is slow and processive. Neither KIF7 nor KIF27 can cooperate for fast processive transport when working in teams. The mechanistic basis of immotile KIF7 behavior arises from an inability to release adenosine diphosphate in response to microtubule binding, whereas slow processive KIF27 behavior arises from a slow adenosine triphosphatase rate and a high affinity for both adenosine triphosphate and microtubules. We suggest that evolutionarily selected sequence differences enable immotile KIF7 and Cos2 motors to function not as transporters but as microtubule-based tethers of signaling complexes.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Cinesinas/metabolismo , Microtúbulos/enzimología , Adenosina Trifosfato/metabolismo , Animales , Células COS , Catálisis , Chlorocebus aethiops , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolución Molecular , Hidrólisis , Cinesinas/genética , Cinética , Microscopía Fluorescente , Microtúbulos/genética , Filogenia , Transporte de Proteínas , Transducción de Señal , Imagen Individual de Molécula/métodos
10.
J Cell Biol ; 216(11): 3571-3590, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28972102

RESUMEN

Establishing the bipolar spindle in mammalian oocytes after their prolonged arrest is crucial for meiotic fidelity and subsequent development. In contrast to somatic cells, the first meiotic spindle assembles in the absence of centriole-containing centrosomes. Ran-GTP can promote microtubule nucleation near chromatin, but additional unidentified factors are postulated for the activity of multiple acentriolar microtubule organizing centers in the oocyte. We now demonstrate that partially overlapping, nonredundant functions of Aurora A and Plk4 kinases contribute to initiate acentriolar meiosis I spindle formation. Loss of microtubule nucleation after simultaneous chemical inhibition of both kinases can be significantly rescued by drug-resistant Aurora A alone. Drug-resistant Plk4 can enhance Aurora A-mediated rescue, and, accordingly, Plk4 can phosphorylate and potentiate the activity of Aurora A in vitro. Both kinases function distinctly from Ran, which amplifies microtubule growth. We conclude that Aurora A and Plk4 are rate-limiting factors contributing to microtubule growth as the acentriolar oocyte resumes meiosis.


Asunto(s)
Aurora Quinasa A/metabolismo , Centriolos/enzimología , Meiosis , Microtúbulos/enzimología , Oocitos/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/genética , Células Cultivadas , Centriolos/efectos de los fármacos , Técnicas de Cultivo de Embriones , Femenino , Cinética , Meiosis/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Microtúbulos/efectos de los fármacos , Oocitos/efectos de los fármacos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Proteína de Unión al GTP ran/metabolismo
11.
J Biol Chem ; 292(35): 14680-14694, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28701465

RESUMEN

Kinesin motors play central roles in establishing and maintaining the mitotic spindle during cell division. Unlike most other kinesins, Cin8, a kinesin-5 motor in Saccharomyces cerevisiae, can move bidirectionally along microtubules, switching directionality according to biochemical conditions, a behavior that remains largely unexplained. To this end, we used biochemical rate and equilibrium constant measurements as well as cryo-electron microscopy methodologies to investigate the microtubule interactions of the Cin8 motor domain. These experiments unexpectedly revealed that, whereas Cin8 ATPase kinetics fell within measured ranges for kinesins (especially kinesin-5 proteins), approximately four motors can bind each αß-tubulin dimer within the microtubule lattice. This result contrasted with those observations on other known kinesins, which can bind only a single "canonical" site per tubulin dimer. Competition assays with human kinesin-5 (Eg5) only partially abrogated this behavior, indicating that Cin8 binds microtubules not only at the canonical site, but also one or more separate ("noncanonical") sites. Moreover, we found that deleting the large, class-specific insert in the microtubule-binding loop 8 reverts Cin8 to one motor per αß-tubulin in the microtubule. The novel microtubule-binding mode of Cin8 identified here provides a potential explanation for Cin8 clustering along microtubules and potentially may contribute to the mechanism for direction reversal.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/enzimología , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Tubulina (Proteína)/metabolismo , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Unión Competitiva , Biocatálisis , Microscopía por Crioelectrón , Cristalografía por Rayos X , Eliminación de Gen , Humanos , Cinesinas/química , Cinesinas/genética , Microtúbulos/química , Microtúbulos/metabolismo , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Tubulina (Proteína)/química
12.
J Biol Chem ; 292(29): 12245-12255, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28576829

RESUMEN

Cytoplasmic dynein is the primary minus-end-directed microtubule motor protein in animal cells, performing a wide range of motile activities, including transport of vesicular cargos, mRNAs, viruses, and proteins. Lissencephaly-1 (LIS1) is a highly conserved dynein-regulatory factor that binds directly to the dynein motor domain, uncoupling the enzymatic and mechanical cycles of the motor and stalling dynein on the microtubule track. Dynactin, another ubiquitous dynein-regulatory factor, releases dynein from an autoinhibited state, leading to a dramatic increase in fast, processive dynein motility. How these opposing activities are integrated to control dynein motility is unknown. Here, we used fluorescence single-molecule microscopy to study the interaction of LIS1 with the processive dynein-dynactin-BicD2N (DDB) complex. Surprisingly, in contrast to the prevailing model for LIS1 function established in the context of dynein alone, we found that binding of LIS1 to DDB does not strongly disrupt processive motility. Motile DDB complexes bound up to two LIS1 dimers, and mutational analysis suggested that LIS1 binds directly to the dynein motor domains during DDB movement. Interestingly, LIS1 enhanced DDB velocity in a concentration-dependent manner, in contrast to observations of the effect of LIS1 on the motility of isolated dynein. Thus, LIS1 exerts concentration-dependent effects on dynein motility and can synergize with dynactin to enhance processive dynein movement. Our results suggest that the effect of LIS1 on dynein motility depends on both LIS1 concentration and the presence of other regulatory factors such as dynactin and may provide new insights into the mechanism of LIS1 haploinsufficiency in the neurodevelopmental disorder lissencephaly.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Complejo Dinactina/metabolismo , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Animales , Dimerización , Dineínas/química , Humanos , Ratones , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/enzimología , Mutagénesis Sitio-Dirigida , Mutación , Proteínas del Tejido Nervioso/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Células Sf9 , Spodoptera , Sus scrofa , Tubulina (Proteína)/metabolismo
13.
J Biol Chem ; 292(34): 14092-14107, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28637871

RESUMEN

Tyrosine hydroxylase (TH) catalyzes the conversion of l-tyrosine into l-DOPA, which is the rate-limiting step in the synthesis of catecholamines, such as dopamine, in dopaminergergic neurons. Low dopamine levels and death of the dopaminergic neurons are hallmarks of Parkinson's disease (PD), where α-synuclein is also a key player. TH is highly regulated, notably by phosphorylation of several Ser/Thr residues in the N-terminal tail. However, the functional role of TH phosphorylation at the Ser-31 site (THSer(P)-31) remains unclear. Here, we report that THSer(P)-31 co-distributes with the Golgi complex and synaptic-like vesicles in rat and human dopaminergic cells. We also found that the TH microsomal fraction content decreases after inhibition of cyclin-dependent kinase 5 (Cdk5) and ERK1/2. The cellular distribution of an overexpressed phospho-null mutant, TH1-S31A, was restricted to the soma of neuroblastoma cells, with decreased association with the microsomal fraction, whereas a phospho-mimic mutant, TH1-S31E, was distributed throughout the soma and neurites. TH1-S31E associated with vesicular monoamine transporter 2 (VMAT2) and α-synuclein in neuroblastoma cells, and endogenous THSer(P)-31 was detected in VMAT2- and α-synuclein-immunoprecipitated mouse brain samples. Microtubule disruption or co-transfection with α-synuclein A53T, a PD-associated mutation, caused TH1-S31E accumulation in the cell soma. Our results indicate that Ser-31 phosphorylation may regulate TH subcellular localization by enabling its transport along microtubules, notably toward the projection terminals. These findings disclose a new mechanism of TH regulation by phosphorylation and reveal its interaction with key players in PD, opening up new research avenues for better understanding dopamine synthesis in physiological and pathological states.


Asunto(s)
Neuronas Dopaminérgicas/enzimología , Aparato de Golgi/enzimología , Microtúbulos/enzimología , Procesamiento Proteico-Postraduccional , Serina/metabolismo , Vesículas Sinápticas/enzimología , Tirosina 3-Monooxigenasa/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular Tumoral , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Microscopía Confocal , Microscopía Fluorescente , Microtúbulos/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Transporte de Proteínas , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Vesículas Sinápticas/metabolismo , Tirosina 3-Monooxigenasa/genética
14.
Nat Cell Biol ; 19(5): 480-492, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28436967

RESUMEN

ASPM (known as Asp in fly and ASPM-1 in worm) is a microcephaly-associated protein family that regulates spindle architecture, but the underlying mechanism is poorly understood. Here, we show that ASPM forms a complex with another protein linked to microcephaly, the microtubule-severing ATPase katanin. ASPM and katanin localize to spindle poles in a mutually dependent manner and regulate spindle flux. X-ray crystallography revealed that the heterodimer formed by the N- and C-terminal domains of the katanin subunits p60 and p80, respectively, binds conserved motifs in ASPM. Reconstitution experiments demonstrated that ASPM autonomously tracks growing microtubule minus ends and inhibits their growth, while katanin decorates and bends both ends of dynamic microtubules and potentiates the minus-end blocking activity of ASPM. ASPM also binds along microtubules, recruits katanin and promotes katanin-mediated severing of dynamic microtubules. We propose that the ASPM-katanin complex controls microtubule disassembly at spindle poles and that misregulation of this process can lead to microcephaly.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Microcefalia/metabolismo , Microtúbulos/enzimología , Proteínas del Tejido Nervioso/metabolismo , Polos del Huso/enzimología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Sistemas CRISPR-Cas , Células HEK293 , Células HeLa , Humanos , Katanina , Microcefalia/genética , Microcefalia/patología , Microtúbulos/genética , Microtúbulos/patología , Modelos Moleculares , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Polos del Huso/genética , Polos del Huso/patología , Relación Estructura-Actividad , Factores de Tiempo , Transfección
15.
Adv Mater ; 29(13)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28160337
16.
J Cell Biol ; 212(4): 409-23, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26880200

RESUMEN

Primary cilia protrude from the surface of quiescent cells and disassemble at cell cycle reentry. We previously showed that ciliary reassembly is suppressed by trichoplein-mediated Aurora A activation pathway in growing cells. Here, we report that Ndel1, a well-known modulator of dynein activity, localizes at the subdistal appendage of the mother centriole, which nucleates a primary cilium. In the presence of serum, Ndel1 depletion reduces trichoplein at the mother centriole and induces unscheduled primary cilia formation, which is reverted by forced trichoplein expression or coknockdown of KCTD17 (an E3 ligase component protein for trichoplein). Serum starvation induced transient Ndel1 degradation, subsequent to the disappearance of trichoplein at the mother centriole. Forced expression of Ndel1 suppressed trichoplein degradation and axonemal microtubule extension during ciliogenesis, similar to trichoplein induction or KCTD17 knockdown. Most importantly, the proportion of ciliated and quiescent cells was increased in the kidney tubular epithelia of newborn Ndel1-hypomorphic mice. Thus, Ndel1 acts as a novel upstream regulator of the trichoplein-Aurora A pathway to inhibit primary cilia assembly.


Asunto(s)
Aurora Quinasa A/metabolismo , Proteínas Portadoras/metabolismo , Proliferación Celular , Células Epiteliales/enzimología , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Recién Nacidos , Aurora Quinasa A/genética , Proteínas Portadoras/genética , Puntos de Control del Ciclo Celular , Centriolos/enzimología , Cilios/enzimología , Genotipo , Células HeLa , Humanos , Túbulos Renales/citología , Túbulos Renales/enzimología , Ratones , Ratones Noqueados , Microtúbulos/enzimología , Fenotipo , Estabilidad Proteica , Proteolisis , Interferencia de ARN , Células 3T3 Swiss , Factores de Tiempo , Transfección
17.
Oncotarget ; 6(39): 41550-65, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26595804

RESUMEN

Regulated interactions between kinetochores and spindle microtubules are critical for maintaining genomic stability during chromosome segregation. Defects in chromosome segregation are widespread phenomenon in human cancers that are thought to serve as the fuel for tumorigenic progression. Tumor suppressor proteins ASPP1 and ASPP2, two members of the apoptosis stimulating proteins of p53 (ASPP) family, are frequently down-regulated in human cancers. Here we report that ASPP1/2 are required for proper mitotic progression. In ASPP1/2 co-depleted cells, the persistence of unaligned chromosomes and the reduction of tension across sister kinetochores on aligned chromosomes resulted in persistent spindle assembly checkpoint (SAC) activation. Using protein affinity purification methods, we searched for functional partners of ASPP1/2, and found that ASPP1/2 were associated with a subset of kinetochore proteins (Hec1, KNL-1, and CENP-F). It was found that ASPP1/2 act as PP1-targeting subunits to facilitate the interaction between PP1 and Hec1, and catalyze Hec1 (Ser165) dephosphorylation during late mitosis. These observations revealed a previously unrecognized function of ASPP1/2 in chromosome segregation and kinetochore-microtubule attachments that likely contributes to their roles in chromosome stability and tumor suppression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Segregación Cromosómica , Cinetocoros/enzimología , Microtúbulos/enzimología , Mitosis , Proteína Fosfatasa 1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Ciclo Celular , Proteínas Cromosómicas no Histona/metabolismo , Proteínas del Citoesqueleto , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Complejos Multiproteicos , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica , Proteína Fosfatasa 1/genética , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
18.
Oncotarget ; 6(31): 30516-31, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26483365

RESUMEN

Cells induced into senescence exhibit a marked increase in the secretion of pro-inflammatory cytokines termed senescence-associated secretory phenotype (SASP). Here we report that SASP from senescent stromal fibroblasts promote spontaneous morphological changes accompanied by an aggressive migratory behavior in originally non-motile human breast cancer cells. This phenotypic switch is coordinated, in space and time, by a dramatic reorganization of the actin and microtubule filament networks, a discrete polarization of EB1 comets, and an unconventional front-to-back inversion of nucleus-MTOC polarity. SASP-induced morphological/migratory changes are critically dependent on microtubule integrity and dynamics, and are coordinated by the inhibition of RhoA and cell contractility. RhoA/ROCK inhibition reduces focal adhesions and traction forces, while promoting a novel gliding mode of migration.


Asunto(s)
Neoplasias de la Mama/enzimología , Movimiento Celular , Senescencia Celular , Fibroblastos/metabolismo , Miosinas/metabolismo , Comunicación Paracrina , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Actinas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Movimiento Celular/efectos de los fármacos , Polaridad Celular , Forma de la Célula , Femenino , Adhesiones Focales/enzimología , Humanos , Células MCF-7 , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/enzimología , Mutación , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Factores de Tiempo , Transfección , Quinasas Asociadas a rho/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/genética
19.
FEBS J ; 282(20): 3945-58, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26227614

RESUMEN

It has been suggested that DYNLT, a dynein light chain known to bind to various cellular and viral proteins, can function as a microtubule-cargo adaptor. Recent data showed that DYNLT links the small GTPase Rab3D to microtubules and, for this to occur, the DYNLT homodimer needs to display a binding site for dynein intermediate chain together with a binding site for the small GTPase. We have analysed in detail how RagA, another small GTPase, associates to DYNLT. After narrowing down the binding site of RagA to DYNLT we could identify that a ß strand, part of the RagA G3 box involved in nucleotide binding, mediates this association. Interestingly, we show that both microtubule-associated DYNLT and cytoplasmic DYNLT are equally able to bind to the small GTPases Rab3D and RagA. Using NMR spectroscopy, we analysed the binding of dynein intermediate chain and RagA to mammalian DYNLT. Our experiments identify residues of DYNLT affected by dynein intermediate chain binding and residues affected by RagA binding, hence distinguishing the docking site for each of them. In summary, our results shed light on the mechanisms adopted by DYNLT when binding to protein cargoes that become transported alongside microtubules bound to the dynein motor.


Asunto(s)
Citoplasma/metabolismo , Dineínas Citoplasmáticas/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP rab3/metabolismo , Sustitución de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Citoplasma/enzimología , Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/genética , Dimerización , Dineínas/química , Dineínas/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Microtúbulos/enzimología , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas de Unión al GTP rab3/química , Proteínas de Unión al GTP rab3/genética
20.
Nat Cell Biol ; 17(8): 1024-35, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26192437

RESUMEN

Correct formation of the cell division axis requires the initial precise orientation of the mitotic spindle. Proper spindle orientation depends on centrosome maturation, and Polo-like kinase 1 (PLK1) is known to play a crucial role in this process. However, the molecular mechanisms that function downstream of PLK1 are not well understood. Here we show that LRRK1 is a PLK1 substrate that is phosphorylated on Ser 1790. PLK1 phosphorylation is required for CDK1-mediated activation of LRRK1 at the centrosomes, and this in turn regulates mitotic spindle orientation by nucleating the growth of astral microtubules from the centrosomes. Interestingly, LRRK1 in turn phosphorylates CDK5RAP2(Cep215), a human homologue of Drosophila Centrosomin (Cnn), in its γ-tubulin-binding motif, thus promoting the interaction of CDK5RAP2 with γ-tubulin. LRRK1 phosphorylation of CDK5RAP2 Ser 140 is necessary for CDK5RAP2-dependent microtubule nucleation. Thus, our findings provide evidence that LRRK1 regulates mitotic spindle orientation downstream of PLK1 through CDK5RAP2-dependent centrosome maturation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitosis , Proteínas del Tejido Nervioso/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Huso Acromático/enzimología , Secuencias de Aminoácidos , Animales , Sitios de Unión , Proteína Quinasa CDC2 , Células COS , Proteínas de Ciclo Celular/genética , Centrosoma/enzimología , Chlorocebus aethiops , Quinasas Ciclina-Dependientes/metabolismo , Activación Enzimática , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Microtúbulos/enzimología , Mutación , Proteínas del Tejido Nervioso/genética , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Interferencia de ARN , Serina , Transducción de Señal , Factores de Tiempo , Transfección , Tubulina (Proteína)/metabolismo , Quinasa Tipo Polo 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA